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Patients with locally advanced rectal cancer (LARC) who achieve a pathologic complete
response (pCR) after neoadjuvant chemoradiotherapy (nCRT) typically have a good
prognosis. An early and accurate prediction of the treatment response, i.e., whether a
patient achieves pCR, could significantly help doctors make tailored plans for LARC
patients. This study proposes a pipeline of pCR prediction using a combination of deep
learning and radiomics analysis. Taking into consideration missing pre-nCRT magnetic
resonance imaging (MRI), as well as aiming to improve the efficiency for clinical application,
the pipeline only included a post-nCRT T2-weighted (T2-w) MRI. Unlike other studies that
attempted to carefully find the region of interest (ROI) using a pre-nCRT MRI as a
reference, we placed the ROI on a “suspicious region”, which is a continuous area that
has a high possibility to contain a tumor or fibrosis as assessed by radiologists. A deep
segmentation network, termed the two-stage rectum-aware U-Net (tsraU-Net), is
designed to segment the ROI to substitute for a time-consuming manual delineation.
This is followed by a radiomics analysis model based on the ROI to extract the hidden
information and predict the pCR status. The data from a total of 275 patients were
collected from two hospitals and partitioned into four datasets: Seg-T (N = 88) for training
the tsraUNet, Rad-T (N = 107) for building the radiomics model, In-V (N = 46) for internal
validation, and Ex-V (N = 34) for external validation. The proposed method achieved an
area under the curve (AUC) of 0.829 (95% confidence interval [CI]: 0.821, 0.837) on In-V
and 0.815 (95% CI, 0.801, 0.830) on Ex-V. The performance of the method was
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considerable and stable in two validation sets, indicating that the well-designed pipeline
has the potential to be used in real clinical procedures.
Keywords: LARC, nCRT, MRI, radiomics analysis, deep learning
INTRODUCTION

Colorectal cancer is currently still the third most common cancer
and the second most fatal cancer in the world (1). Nearly 30%
sufferers are rectal cancer patients (2), great numbers of which
are in the locally advanced stage at initial diagnosis (3).

To date, for patients with locally advanced rectal cancer
(LARC), neoadjuvant chemoradiotherapy (nCRT) followed by
total mesorectal excision (TME) has been the standard clinical
treatment (4–6). The purpose of nCRT is to improve the
feasibility of surgical procedures for LARC and reduce the
incidence of complications, as it not only improves the local
tumor control rate but also exhibits less toxicity to the human
body (7). Clinically, the pathological response of LARC patients
after nCRT treatment has demonstrated obvious heterogeneity
(8). For a large percentage of patients (approximately 70–80%),
the tumor will have been found to be shrunken or down-staged,
and some patients may even have complete regression. It has
been reported that approximately 20% of patients, defined as
pathologic complete response (pCR) patients, contain no
residual surviving tumor cells after nCRT and surgery (9, 10).
These patients have a favorable long-term prognosis with superb
local control and disease-free survival (11). Therefore, for pCR
patients, the option of organ-saving treatment could be
developed to replace surgery. However, currently, the only way
to accurately diagnose pCR is to utilize a pathological diagnosis
after TME surgery, which presents an insoluble dilemma (12–14).
As a result, a prediction method before surgery would greatly
assist doctors in evaluating the treatment effects of nCRT and
construct a tailored plan for each patient.

In recent years, magnetic resonance imaging (MRI) has been
widelyusedasanon-genetic andnon-invasivediagnosticmethodto
assess the tumor condition due to its superior soft-tissue contrast
and high spatial resolution. The T2-weighted (T2-w) MRI is
recognized as the most important modality for rectal cancer
assessments (15). Some previous works have attempted to
evaluate the response of nCRT on T2-w MRI using assessments
of post-treatment T staging (ymrT), tumor regression grading
(mrTRG), volume reduction post-treatment, and other
characteristics (16). However, the results were dependent on the
experience of doctors, thus introducing subjectivity. The
development of more objective ways to extract information from
the MRI and guide clinical diagnosis is required.

Radiomics is a mathematical technique that utilizes high-
throughput extraction of shape, intensity, and texture features
from images, and transforms this visual information into high
dimensional features for quantitative analysis (17). Radiomics
analysis can help obtain additional image information with
reliability and objectivity that may be invisible in human
assessments (18). Applying a radiomics analysis to predict the
2

pCR on an MRI has drawn increasing attention. In many studies
(19–21), researchers have used a pre-nCRT MRI to analyze the
relationship of the radiomics features and the pCR status. The
use of a pre-nCRT MRI could provide a clear tumor region for
analysis. However, considering that the nCRT could affect the
tumor and change its properties, the use of a pre-nCRT MRI is
indirect and may not reflect the true condition of the patient after
nCRT treatment.

Analysis of a post-nCRTMRI might be a more direct method.
However, the problem still remains that the region of interest
(ROI) delineation on a post-nCRT is much more difficult due to
tumor recession and the appearance of the fibrosis region. In
previous studies (22, 23), researchers applied a pre-nCRTMRI to
provide a reference of the primary tumor region or the treated
region for a post-nCRT MRI. However, a pre-nCRT MRI is not
always available in real clinical practice, as some patients may be
diagnosed with LARC using proctoscopy, and some patients may
be transferred from other hospitals without access to the two
previously scanned MRIs. Currently, only a few of studies have
utilized a post-nCRT MRI to predict the pCR status. The work of
Horvat et al. (15) obtained considerable results by applying a
radiomics analysis on a post-nCRT T2 and diffusion-weighted
imaging (DWI) MRI; however, the ROI was still obtained due to
a careful discussion by at least two experienced physicians. An
accurate delineation might be difficult to obtain for less
experienced physicians without the reference of a pre-nCRT
MRI. Additionally, it is time-consuming and resource-wasting if
each delineation requires at least two physicians in clinical
practice. Inspired by this, the aim of this study is to explore a
pipeline that only uses the information from a single post-nCRT
T2 MRI combined with a new method to provide a fast and
reliable ROI. Deep learning uses multiple layers as a portion of a
broader family of machine learning methods and has been
successfully applied to various medical tasks (24–28).

In this study, we introduce a deep learning model for ROI
delineation. A novel two stage model, termed the two-stage
rectum-aware U-Net (tsraU-Net), is proposed to replace
human evaluation. The ROI should be feasible for a deep
learning model to find and contain sufficient information
relating to the pCR status; hence, it is defined on a continuous
region having abnormal intensity signals on a T2-w MRI
assessed by radiologists that has a high possibility to contain a
tumor or fibrosis. It is considered a rougher region, as the further
identification of a tumor, fibrosis, or other tissues like edema is
not defined. The following analysis extracts a great number of
radiomics features, including texture, first-order statistics, and
shape, on the ROI and its wavelet decompositions to represent
certain properties. Machine learning and statistical techniques
are later applied to select the most representative features and
construct a final model to predict the pCR status.
August 2021 | Volume 11 | Article 711747
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MATERIALS AND METHODS

Patients
We included a total of 496 patients from multiple institutions who
received nCRT treatment diagnosed with LARC. Patients were
retrospectively enrolled from July 2011 to December 2018 from
two hospitals (Guangdong Institute of Gastroenterology, Sixth
Affiliated Hospital of Sun Yat-sen University and Yunnan Cancer
Center). The inclusion criteria were as follows: (1) adenocarcinoma
confirmed by pathologists (excluding mucinous adenocarcinoma);
(2) tumor locatedwithin15cmfromthe edgeof theanus; (3) received
nCRT treatment and TME; (4) in the clinical stage of T3–4 or N-
positive; (5) completed the restagingMRI; and (6) the restagingMRI
was performed no more than 1 week before the TME. This clinical
trial was approved by the Clinical Ethics Review Committee of Sixth
Affiliated Hospital of Sun Yat-sen University (2020ZSLYEC-010).

Patients from the Sixth Affiliated Hospital of Sun Yat-sen
University were separated into three groups. Dataset Seg-T
Frontiers in Oncology | www.frontiersin.org 3
consisted of patients from July 2011 to June 2013 to train deep
networks for ROI segmentation; dataset Rad-T consisted of
patients from June 2013 to May 2017 to build the radiomics
model for predicting the pCR status; and dataset In-V consisted
of patients from June 2017 to December 2018 for internal
validation. In addition, patients from Yunnan Cancer Center
(dataset Ex-V) were used as an external validation set. Patients
were further selected according to the following exclusion
criteria: (1) poor MRI quality caused by severe inflammatory
effusion, intestinal adhesions, or bowel movements, and (2) (for
dataset Rad-T, Val, E-Val) the absence of a postoperative
pathological diagnosis. Figure 1 shows the flowchart of the
patient selection process.

All of the patients’ treatments were discussed by the
multidisciplinary team (MDT). Patients were delivered the
intensity-modulated radiotherapy treatment (IMRT), and a
dose of 45 Gy for 25 fractions was delivered to the clinical
target volume. Then, a boost dose of 5.4 Gy was delivered to the
FIGURE 1 | Flowchart showing how patients from two hospitals were collected and partitioned.
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gross tumor. The concurrent chemotherapy treatment was based
on oral or intravenous 5-fluorouracil. Following the completion
of neoadjuvant treatment, all of the patients received TME
surgery. The majority of patients received adjuvant
chemotherapy based on FOLFOX or CAPOX based on the
decision of the members of the MDT.

Pathology Assessment of Response
In this study, the pCR diagnosis was confirmed by two
pathologists with more than 12 years of experience. Following
the recommendation of the NCCN Guidelines for rectal cancer
(29), patients with no surviving tumor cells in the surgical
pathological specimens were judged as pCR; otherwise, they
were judged as non-pCR.

MRI Data Acquisition
All of the MRI images were scanned under a 1.5-Tesla MRI unit
(30). Bowel preparation was not routinely used for most cases
prior to the examination. However, some specific patients with
relatively small tumors in the sagittal view were filled with some
rectal gel, making it easier to identify tumors on the oblique axis.
The MRIs in the datasets Seg-T, Rad-T, and In-V (Sixth
Affiliated Hospital of Sun Yat-sen University) were acquired
using GE OPTIMA MR360 with a 100 ms echo time, a 4000 ms
repetition time, a 100 field of view, a 512 × 512 matrix, 0.4–0.5
pixel spacing, and 5 mm slice thickness. The MRIs in the dataset
Ex-V (Yunnan Cancer Hospital) were acquired using Philips
Ingenia with a 100 ms echo time, a 4000 ms repetition time, a 100
field of view, a 432 × 432 matrix, 0.4–0.5 pixel spacing, and 5 mm
slice thickness.

Data Pre-Processing
As suggested by some researchers (31), we applied complex
methods to the pre-process MRI to both improve the image
quality and unify the geometric and intensity patterns with the
aim to assure the success of our analysis. The steps included (1)
all of the MRIs were resampled into 0.4 mm × 0.4 mm pixel
spacing using bilinear interpolation; (2) the size of each image
matrix was unified into 544 × 544 by cutting or padding the
background; (3) the intensity of each patient was adjusted using
BiasCorrection to remove any inhomogeneity; and (4) the
intensity histogram of each patient was matched to one
selected patient (as template) who was from Seg-T. All of the
procedures were implemented using the open-source python
package “SimpleITK” (32).

Suspicious Region Definition
The “suspicious region” in our study was defined as a continuous
region containing 129 abnormal intensity signals compared to a
normal rectal wall, which are highly suspected to be cancer or
fibrosis according to clinical experience. Following the guidance
(33), the abnormal signals may have presented as slightly high,
low, or mixed intensities. By such definition, the exact cancer and
fibrosis region was not further distinguished. Instead, we relied
on the radiomics analysis to elicit the hidden properties of the
cancer or fibrosis and predict the pCR. In particular, the
“suspicious region” was delineated by radiologists on only a
Frontiers in Oncology | www.frontiersin.org 4
post-nCRT T2-w MRI. As the region was visible to human
vision, we assumed it could be captured by deep learning as
well. Therefore, the use of “suspicious region” was both sufficient
and proper in the pipeline that combined a radiomics analysis
and deep learning. Figure 2 provides some examples of the
suspicious region.
Deep Learning-Based Segmentation
The tsraU-Net Model
To provide a reliable ROI using deep learning for the radiomics
analysis, the most important consideration was rectum
localization. If the deep segmentation network misrecognized
the rectum with other organs such as the colon, uterus, bladder,
or prostate due to a morphology change or location shift of the
rectum, it could still find a “suspicious region,” but not related to
the pCR at all, thereby making the radiomics analysis totally
meaningless. To address such a problem, we proposed a two-
stage model, named the two-stage rectum-aware U-Net (tsraU-
Net), which would first find the rectum region and then segment
the ROI using the awareness of the rectum location. The overall
framework of the tsraU-Net model is shown in Figure 3.

U-Net, a deep segmentation network expressly designed for
biomedical segmentation tasks (24), was applied as a base model in
bothof the two stages of the tsraU-Net. Further improvementswere
made in each stage according to the task. The detailed descriptions
were organized as follows. First, we briefly introduced the base
model, U-Net. Next, we provided comprehensive explanations of
the improvements in the two stages of tsraU-Net. Finally, we
described other adjustments of the base model.

The Original U-Net Model
TheoriginalU-Net is a fully convolutionnetwork (FCN)containing
an encoder to extract features and a decoder to reassemble features.
Typically, both of themhave five convolution blocks, s.t. each block
consists of two 3 × 3 convolutions and a rectified linear unit (ReLU)
for activation. After going through the convolution block, the
number of features (more specifically, channels) would double in
the encoder part and halve in the decoder part symmetrically.
Between each convolution block in the encoder, the max pooling
operation is applied to reduce the image resolution. Oppositely, an
up-sample operation is inserted into the neighboring convolution
blocks in the decoder to increase the image resolution. To fully
utilize high resolution information, high resolution features in the
encoder are concatenated to the corresponding convolution blocks
in the decoder. This is named a “skip connection.” In addition, a 3 ×
3 convolution is applied after the last convolution block in the
decoder to combine the rest of the features and obtain the final
segmentation result.

The First Stage
In the first stage, we designed a four-channel 2D U-Net aiming to
guide the segmentation with a plentiful amount of information.
Knowing that rectal regions would maintain certain continuity
between neighboring MRI slices, the input of our model contains
not only the currently input MRI slice but also its previous slice
and the next slice to help detect the contours of the rectum. If the
rectal wall is unclear compared with the neighboring region on
August 2021 | Volume 11 | Article 711747
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the current slice, the other two slices may provide extra
information. Furthermore, for each patient, we roughly marked
two to four points inside the rectum for localization. Initially, the
first and last MRI slices were given localization points, with
bilinear interpolation applied between them to give localization
information to the middle layers. If the shape of the rectum was
not regular, another one to two points will be given in the middle
layers. The previous slice, the current slice, the next slice, and the
position information were combined into four channels as the
input of our first stage model. The output of the first stage was
the region of the rectum.
Frontiers in Oncology | www.frontiersin.org 5
The Second Stage
The second stage would use the currently inputted slice and the
predicted rectal region in the first stage to find the “suspicious
region.” In this stage, we focused on strengthening the model
awareness of the abnormal intensity signals and, hence, applied
an “attention” mechanism. “Attention” was first introduced in
the natural language process (NLP) tasks to encourage models to
pay more attention to efficacious information and suppress
irrelevant information. There are two types of attention, i.e.,
soft attention and hard attention. In this task, we used the soft
attention mechanism for the model (34). This method would
FIGURE 3 | The framework of tsraU-Net model.
FIGURE 2 | Examples of suspicious region. The first row is the original T2-w MRI, and the second row displays the delineation of the suspicious region in red color.
August 2021 | Volume 11 | Article 711747
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update the propagated features from “skip connection” by point-
wise multiplication with a weight matrix given by an attention
gate. An attention gate is a block containing several 1 × 1
convolutions and activation functions. It uses both the
propagated features and the features from the corresponding
former decoder block as input. Figure 4 provides a detailed
explanation of an attention gate. Specifically, we inserted four
attention gates into the original U-Net model s.t. every “skip
connection” was followed by an attention gate.

Adjustments on Base Model
In addition to the above methods, we also made some small
adjustments to the original U-Net model: (1) the addition of
image padding during convolution so that the image size would
not change; (2) the addition of instance normalization after each
convolution block to accelerate the convergence; and (3) the
replacement of the ReLU activation function with the Leaky
Rectified Linear Unit (Leaky ReLU) to prevent the vanishing
gradient problem.

Loss Function
The loss function in both two stages is the Dice Loss, which is
widely used in medical image segmentation. It is defined from
the dice coefficient, which essentially measures the overlap of two
sets. The dice coefficient has a range of 0–1, where 1 means
complete overlap. It is defined as Equation 1:

Dice =
2 A ∩ Bj j
Aj j + Bj j (1)

where A ∩ B is the intersection of sets A and B, | | represents the
number of elements in the set.

As forDiceLoss, it is simplydefinedby the followingEquation 2.

Dice Loss = 1 − Dice (2)

Experiment Setup
To provide the gold standard of segmentation, two radiologists
(one had 6 years of experience and one had 9 years of experience)
reviewed the post-nCRT T2-wMRI of the Dataset Seg-T and InV
(for validating the performance), and they jointly provide
delineations of the rectum and the “suspicious region.” When
Frontiers in Oncology | www.frontiersin.org 6
delineating the “suspicious region,” the normal rectal wall should
be avoided, and for some patients with rectal gel filling, the gel
should also be avoided. Both radiologists were completely
blinded to the histopathology information, as well as the pre-
nCRT MRI of patients. Following the instructions in the
guidance (33), they used the rectal wall as a reference to find
abnormal signals. This work was performed via ITK-snap
version 3.4.0 software (http://itk-snap.org).

While training, the initial hyper-parameters were established
identically in two stages. The optimizer we used was the Adaptive
Moment Estimation (Adam) (35) with an initial learning rate a =
2 × 10-4, b = (0.9,0.999) and would decay 30% every 20 epochs.
The maximum training epoch was set to 120, the early stopping
method was applied to prevent overfitting, and the training
would stop if performance on the minority set did not improve
over 30 epochs. The model was implemented with PyTorch 1.8.1
(36) on a Nvidia Titan X GPU with 12 G of memory.

Radiomics Analysis
After the segmentation model was well-trained, it was directly
applied to the Rad-T, In-V, and Ex-V to obtain the ROI. Then,
the following procedures of the radiomics analysis were applied
to build the pCR prediction model.

Feature Extraction
In order to extract useful information related to the pCR status, a
large feature space was generated, which included features not
only from the original image but also from its wavelet
decomposition images. A total of 93 types of features were
calculated on each original image and its four Harr wavelet
subbands, i.e., HH, HL, LH, and LL. The 93 features include 18
intensity features and 75 texture features. In addition, nine shape
features were extracted on the original image. Together, 474
features were generated from each MRI slice.

Concerning that each patient had a different number of MRI
slices, we used the arithmetic mean, three quartiles (Q1, Q2, and
Q3 points), and the standard deviation of the features extracted
from all of the slices as representations. Therefore, each patient
had 2370 features in total.

All of the features were extracted using the Python package
“PyRadiomics” (37). As announced in its document, most
FIGURE 4 | The detailed explanation of attention gates. Let x represents the “skip connect” features from encoder, g represents the features from corresponding
former decoder layer, then x̂ is the updated of x. “Conv2D 1×1” represents a 2D convention with kernel size of 1×1. “ReLU” and “Sigmoid” are two different
activation functions.
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features meet the Introduction Intellidyne Business Systems
(IBSI) standard, which would increase the reliability to our
experiments. More details are shown on the “PyRadiomics
documentation” website (http://pyradiomics.readthedocs.io).

Feature Selection
Two feature selection steps were applied in our study to increase
the robustness and avoid overfitting. First, we evaluated the
discriminative power of each single feature by calculating the
Harrell’s concordance index (C-index) (38) between the features
and the pCR status. The univariate Cox analysis is a commonly
used procedure in survival analysis, and we adopted this method
because it does not require the features to follow a normal
distribution compared with a t-test. Let A = {a1, a2, …, an}
denote the features of patients, b present the pCR status of
patients, for each feature af ∈ A, the C-index can be computed
with the Equation 3.

C − index(af , b) =
Si,jU(afj < afi) · U(bj < bi)

Si,jU(bj < bi)
, (3)

where afi is the i-th value of af, bi is the i-th value of b, andU (a <
b) = 1 if a < b else 0.

By definition, C-index equals to 1 means the best
discriminative power and C-index equals to 0.5 represents a
theoretically result of random prediction. We calculate the
maximum of C-index(af, b) and C-index(–af, b) as the
predictive score of feature af. After calculation, scores are
sorted and features with lower score are excluded.

In the second step, the remaining features were put into the least
absolute shrinkage and selection operator (LASSO) (39) for further
selection. LASSO is a logistic regressionmodel with L1 regularization
as a penalty of the coefficients. It will encourage the regression use of
sparse features. The objective function of LASSO is:

min
1
2
jjAx − bjj22+ljjxjj1, (4)

where A is the matrix of radiomics features, x is the coefficient of
each feature, b is the pCR status, and l is the regularization
penalty coefficient.

Due to the L1 regularization, the LASSO forces the sum of the
absolute value of the regression coefficients to be less than a fixed
value, minimizing the residual sum of the squares. Such an
operation forces the certain coefficient to zero. After the LASSO
regression, features with a coefficient of non-zero are retained.
Here, l was determined using a grid search and 5-fold cross
validation on 100 iterations between 0.01 and 0.2.

The pCR Status Prediction
In our study, the support vector machine (SVM) (40) was applied
to predict the pCR status. As suggested in study (41), the radial
basis function (RBF) kernel was used. The RBF kernel is defined
as Equation 5:

K(a, b) = e(−g jja−bjj
2) (5)

where a, b are two samples from dataset and g is a hyper-
parameter. g and the regularization coefficient C of SVM were
Frontiers in Oncology | www.frontiersin.org 7
determined also by grid search on 5-fold cross validation within
set {1/16, 1/8, 1/4, 1/2, 1}. After choosing the best g and C, the
SVM model was trained for the pCR prediction.
Performance Evaluation
Various evaluation metrics of suspicious region segmentation
and pCR prediction are listed below.

Three metrics—dice coefficient, sensitivity, and specificity—
were applied to evaluate the performance of segmentation. The
dice coefficient’s definition has been given in Equation 1.
Sensitivity (SEN) and specificity (SPC) are defined as Equation
6 and Equation 7, where TP, FP, TN, and FN denoted true
positive, false positive, true negative, and false negative,
respectively.

SEN =
TP

TP + FN
(6)

SPC =
TN

TN + FP
(7)

As for the pCR status prediction, five metrics—the area under
receiver operating characteristic (ROC) curve (AUC), accuracy,
sensitivity, specificity, and the F-score—were applied for the
evaluation. The F-score is a weighted harmonic mean that
comprehensively considers sensitivity and specificity, which
can be calculated as Equation 8.

Fb − score = (1 + b2) ·
SEN � SPC

b2 · SPC + SEN
(8)

Here, we included F0.5, F1, and F1.5 in order to provide a
multiple trade-off between specificity and sensitivity under
different situations.
RESULTS

Clinical Characteristics
In our study, 241 of 424 patients from Guangdong Institute of
Gastroenterology, Sixth Affiliated Hospital of Sun Yat-sen
University and 34 of 72 patients from Yunnan Cancer Center
met the inclusion criteria and did not meet the exclusion criteria.
After selection, the number of patients in SegT, Rad-T, In-V, and
Ex-V were 88, 107, 46, and 34, respectively. More clinical
information of the Rad-T, In-V, and Ex-V groups is provided
in Table 1. Statistical comparisons were performed for each
clinical characteristic between the two response groups (pCR vs.
non-pCR). There were no statistical differences between the pCR
and non-pCR in sex, age, and the pre-CRT N stage in all
three sets.
Segmentation Performance
When training the segmentation model, Seg-T was randomly
separated into two sets with percentages of 70% and 30%. The s.t.
of the majority set was used for updating the model, and the
minority set was used for selecting the best network parameters.
August 2021 | Volume 11 | Article 711747
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After training, the model was validated on In-V, and the results
are listed below.

The First Stage
The numerical results of stage one, segmentation of the rectum,
are presented in Table 2. The results of the original U-Net
are also provided for comparison. It can be seen that the 4-
channel U-Net had a significant improvement compared to the
original U-Net on the rectum segmentation. Moreover, as the 4-
channel U-Net achieved (0.942, 0.965) 95% CI of the dice
coefficient, it could be inferred that this network could provide
a stable 300 and accurate rectum segmentation.

The visual results of the 4-channel U-Net and the original U-
Net are also presented. Figure 5 shows eight typical cases of
rectum segmentation. The 4-channel U-Net had successfully
segmented the rectum regions in all of the cases, while the U-
Net showed different defects. In case (A), the U-Net was able to
find the rectum, but the morphology lacked accuracy. In case (B),
because the U-Net had no position information, the prostate was
mistakenly judged as the rectum. In case (C), the U-Net
outputted a continuous region containing both the rectum and
the uterus. In case (D), due to the unclear rectal wall, the U-Net
produced a bad result with an undesirable shape. In case (E), the
prediction of the U-Net was less regular compared with the 4-
channel U-Net. In case (G), the U-Net seriously under-
segmented the rectum region. In case (H), the U-Net found
two separated regions with similar sizes. Among those defects,
Frontiers in Oncology | www.frontiersin.org 8
(A) and (E) might be improved by post-processing methods, but
for the rest, even postprocessing methods such as image dilation
or the removal of the smaller region seems useless to obtain the
correct rectum region. Thus, our design in the first stage has
great importance for guaranteeing the success of the
following analysis.
The Second Stage
Numerical results of stage two, segmentation of the “suspicious
region,” are presented in Table 3. For a fair comparison, the U-
Net model in this stage was also given the rectum localization
information from the first stage, and we intended to evaluate the
use of the attention mechanism. From the results, the attention
slightly improved the result. The dice coefficient and specificity
may not be considerably high, but the sensitivity achieved nearly
0.8, indicating that the network could find the major portion of
the “suspicious region.”

Figure 6 shows a visual display of the tsraU-Net, including
the last attention maps, the final segmentation results, and the
overlapping region compared with the gold standard. In some
cases, such as (B), (D), and (F), the segmentation results are
oversized. However, the morphology between them is still
similar, and the segmentation results do not neglect most of
the gold standard. Consequently, we believe the model is capable
of providing the ROI with enough information for
radiomics analysis.
TABLE 1 | The clinical characteristics of patients in dataset Rad-T, In-V, and Ex-V.

Characteristics Dataset Rad-T P-value Dataset In-V p-value Dataset Ex-V p-value

pCRa (n = 36) NonpCR (n = 71) pCR (n = 8) NonpCR (n = 38) pCR (n = 6) NonpCR (n = 28)

Sex 0.72 0.24 0.18
Male 8 (22.2%) 18 (25.4%) 5 (62.5%) 31 (81.6%) 2 (33.3%) 19 (67.9%)
Female 28 (77.8%) 53 (74.6%) 3 (37.5%) 7 (18.4%) 4 (66.7%) 9 (32.1%)
Age (mean ± SDb, year) 53.4 ± 12.1 56.9 ± 9.9 0.11 57.9 ± 8.4 55.0 ± 11.1 0.49 60.0 ± 10.8 59.2 ± 8.2 0.83
Pre-CRTc T stage 0.51 <0.01 0.31
T0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
T1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
T2 1 (2.8%) 3 (4.2%) 0 (0%) 0 (0%) 1 (16.7%) 0 (0%)
T3 31 (86.1%) 55 (77.5%) 8 (100%) 30 (78.9%) 2 (33.3%) 8 (28.6%)
T4 4 (11.1%) 13 (18.3%) 0 (0%) 8 (21.1%) 3 (50.0%) 20 (71.4%)
Pre-CRT N stage 0.59 0.2 0.33
N0 4 (11.1%) 13 (18.4%) 0 (0%) 13 (34.2%) 1 (16.7%) 1 (3.6%)
N1 17 (47.2%) 29 (40.8%) 4 (50.0%) 9 (23.7%) 1 (16.7%) 1 (3.6%)
N2 15 (41.7%) 29 (40.8%) 4 (50.0%) 16 (42.1%) 4 (66.6%) 26 (92.8%)
Post-CRT T stage < 0.01 <0.01 < 0.01
T0 36 (100%) 0 (0%) 8 (100%) 0 (0%) 6 (100%) 0 (0%)
T1 0 (0%) 7 (9.9%) 0 (0%) 2 (5.3%) 0 (0%) 4 (14.4%)
T2 0 (0%) 18 (25.4%) 0 (0%) 11 (28.9%) 0 (0%) 6 (21.4%)
T3 0 (0%) 43 (60.6) 0 (0%) 22 (57.9%) 0 (0%) 9 (32.1%)
T4 0 (0%) 3 (4.2%) 0 (0%) 3 (7.9%) 0 (0%) 9 (32.1%)
Post-CRT N stage 0.01 <0.01 0.17
N0 36 (100%) 50 (70.4%) 8 (100%) 30 (78.9%) 6 (100%) 21 (75.0%)
N1 0 (0%) 20 (28.2%) 0 (0%) 8 (21.1%) 0 (0%) 6 (21.4%)
N2 0 (0%) 1 (1.4%) 0 (0%) 0 (0%) 0 (0%) 1 (3.6%)
Post-CRT CRMd 0.48 / /
Negative 36 (100%) 70 (98.6%) 8 (100%) 38 (100%) 6 (100%) 28 (100%)
Positive 0 (0%) 1 (1.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
August 2021 | Volume 11 | Article
apCR, pathologic complete response. aSD, standard deviation. cCRT, chemoradiotherapy, dCRM, circumferential resection margin.
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Treatment Response Prediction
A total of 2370 features representing certain properties of the
“suspicious region” predicted by tsraUNet were extracted from
each patient. These features were progressively selected in the
initial univariate analysis, and only approximately the top 2.5%
features, which was 63 features, remained according to their
predictive scores. The histogram of the predicted scores with the
number of features is illustrated in Figure 7A. A distinct gap was
found between the remaining features and the excluded features
with a corresponding threshold of 0.622.

The remaining features were then put into LASSO. After a
grid search and cross-validation, the best l was 0.293. The grid
search of l in the LASSO regression to minimize the residual
mean square error (MSE) is visually provided in Figures 7B, C,
which provides the coefficients of the features during the grid
search. Ten features were finally chosen, and they are presented
in Table 4. The detailed descriptions of these features can be
found in the “PyRadiomics documentation.”

The remaining 10 features was used to build a SVM classifier.
The hyperparameters were decided after grid search and cross-
validation: C = 1 and g = 0.125. After training, the SVM achieved
0.924 of the AUC on Rad-T, 0.829 on In-V, and 0.815 on Ex-V.
More numerical results are displayed in Table 5. In addition,
Frontiers in Oncology | www.frontiersin.org 9
Figure 8 gives a visual display of the AUC and SVM scores
[provided by the Python package “scikit-learn” (42)].

We further applied t-test on the three datasets to test the
distribution of SVM score between real pCR and non-pCR
patients. The p-values on Rad-T, In-V, and Ex-V are 1.26×10–10,
1.41×10–3, and 3.26×10–3, respectively, indicating that the SVM
score between real pCR and non-pCR is from different
distribution under significance level a = 0.05.

From the above results, we conclude that the radiomics model
could extract information related to the pCR and predict its
status with certain reliability. Furthermore, the results indicated
that the “suspicious region” is capable to be the ROI in this
research, which means a single post-nCRT T2-w MRI has the
ability to predict the pCR status without the help of a pre-nCRT
MRI or other post-nCRT modalities. The overall pipeline is
provided in Figure 9.
DISCUSSION

In this study, we proposed a method for predicting the pCR
status of LARC patients after nCRT that only requires the post-
nCRT T2-w MRI and a few manual operations. We provided a
A B C GD E F H

FIGURE 5 | Eight typical cases of ructum segmentation (A–H). The first row provide the gold standard, the second is the prediction of original U-Net, and the third
row is the results of the first stage of tsraU-Net.
TABLE 2 | Comparison between U-Net and 4-channael U-Net in the dice coefficient, sensitivity and specificity between the gold standard and the results from stage
one, that is, 4-channel U-Net, in tsraU-Net as well as the baseline, original U-Net.

Model Dice Sensitivity Specificity

U-Net 0.861 0.876 0.867
(95% CIa: 0.850, 0.873) (95% CI: 0.864, 0.888) (95% CI: 0.852, 0.882)

4-channel 0.954 0.967 0.96
U-Net (95% CI: 0.942, 0.965) (95% CI: 0.955, 0.980) (95% CI: 0.945, 0.976)
August 2021 | Volum
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novel definition of the suspicious region and used it as the ROI to
build the radiomics analysis. Furthermore, we designed a deep
learning model for suspicious region segmentation that could
greatly reduce the workload of radiologists. Our experimental
results, 0.829/0.815 AUC on the internal/external validation set,
prove the feasibility and stability of our method in pCR
prediction, indicating that our method has great potential for
providing assistance to doctors in clinical diagnosis.

Some information was obtained from the 10 selected features.
First of all, no shape feature remained after selection. The reason
Frontiers in Oncology | www.frontiersin.org 10
might come from the fact that all of the ROIs were provided by
the deep networks, which had a homogeneous shape regardless
of the pCR status. Furthermore, half of the selected features were
wavelet features, which might imply that some valuable
information was hidden in the frequency domain. Many recent
studies have also highlighted the importance of wavelet features
in radiomics analysis (43–46). Finally, 8 of the 10 features were
quantiles, and 1 was the standard deviation. This suggested that
simply averaging the features from all of the slices per patient was
insufficient compared with using multiple statistics.
FIGURE 6 | Attention map and comparison of suspicious region segmentation between gold standard and tsraU-Net. The first row is the input of the network, the
second row is the attention map provided by attention U-Net, the third row is the prediction of tsraU-Net, the fourth row is the gold standard, and the last row is the
overlapped region between prediction and gold standard.
TABLE 3 | Comparison between U-Net and Attention U-Net in dice, sensitivity and specificity.

Model Dice Sensitivity Specificity

U-Net 0.656 0.781 0.624
(95% CIa: 0.630, 0.683) (95% CI: 0.750, 0.812) (95% CI: 0.590, 0.659)

4-channel 0.66 0.785 0.632
U-Net (95% CI: 0.628, 0.691) (95% CI: 0.752, 0.817) (95% CI: 0.594, 0.668)
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To further address the thoughtful design of our study, we
wanted to highlight the importance of independent training of
the segmentation and radiomics model. As a model always
tends to overfit more or less while training, if we use the same
set to train the segmentation as well as the radiomics, the
predicted ROI on the training set and validation set might
have different distributions, and consequently affect the
stability of the radiomics analysis. Due to the above
consideration, we used a particular dataset, Seg-T, to
train the segmentation model and choose the network
parameters. We then applied the best model on Rad-T, In-V,
Frontiers in Oncology | www.frontiersin.org 11
and Ex-V to assure the independence between segmentation
and radiomics.

Unlike other studies (47, 48) that have utilized a two-sample
t-test as the first step to select the features, we used univariate
Cox analysis. In fact, prior to the feature selection, we examined
whether each feature was normally distributed by calculating the
skewness and kurtosis (49). A total of 34 features did not pass
this simple normality test under a significance level a = 0.05.
Therefore, t-test could not be applied to all features in our study.
Consequently, we utilized the concordance index as a
replacement because it did not limit the distribution of data.
TABLE 4 | The features finally remained, and their coefficients.

Features Group Abbreviation Attribute Coefficient

original firstorder Maximum Q2 -0.03166
original firstorder Maximum Q3 -0.009714
original glcm MCC SD -0.083918
original gldm LargeDependenceHighGrayLevelEmphasis Q2 -0.002476
original gldm LowGrayLevelEmphasis Q1 0.044713
wavelet-LH ngtdm Busyness Q1 -0.012269
wavelet-LH ngtdm Busyness Q2 -0.054026
wavelet-LH ngtdm Strength Q2 0.013605
wavelet-HL firstorder Median AVG -0.059893
wavelet-LL glszm LargeAreaLowGrayLevelEmphasis Q3 0.004648
August 2021 | Volume 11 | Ar
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FIGURE 7 | (A) Histogram of predicted score. Features in red were remained and in blue were excluded. (B) MSE of each l in LASSO while grid search. (C) The
coefficient of each feature in lasso while grid search.
TABLE 5 | The pCRa status predicted performance on datasets Rad-T, In-V and Ex-V, in terms of AUC, accuracy, sensitivity, specificity, F0.5-score, F1-score,
F1.5-score.

Dataset AUCb Accuracy Sensitivity Specificity F0.5-score F1-score F1.5-score

Rad-T 0.924 0.860 0.861 0.859 0.860 0.860 0.860
(95% CIc: (95% CI: (95% CI: (95% CI: (95% CI: (95% CI: (95% CI:

0.923, 0.926) 0.856, 0.863) 0.855, 0.867) 0.855, 0.863) 0.856, 0.863) 0.820, 0.880) 0.825, 0.901)
In-V 0.829 0.804 0.750 0.816 0.802 0.782 0.769

(95% CI: (95% CI: (95% CI: (95% CI: (95% CI: (95% CI: (95% CI:
0.821, 0.837) 0.794, 0.815) 0.720, 0.780) 0.805, 0.827) 0.789, 0.811) 0.689, 0.793) 0.722, 0.794)

Ex-V 0.815 0.853 0.500 0.929 0.793 0.650 0.583
(95% CI: (95% CI: (95% CI: (95% CI: (95% CI: (95% CI: (95% CI:

0.801, 0.830) 0.841, 0.865) 0.453, 0.548) 0.919, 0.938) 0.746, 0.813) 0.634, 0.678) 0.555, 0.615)
apCR, pathologic complete response. bAUC, area under the curve; cCI, confidence intervals.
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There were some limitations in our study. However, this was
only a preliminary exploration. In the future, we will attempt
further improvements. For instance, we could collect more
unified standard data for analysis, and at the same time
Frontiers in Oncology | www.frontiersin.org 12
carefully choose the year of patient recruitment to avoid data
mixing. In addition, we could encourage radiologists to delineate
more precisely so that our segmentation network could better
learn the characteristics of the suspicious regions. Additionally,
A B C 

D E F

FIGURE 8 | The ROC curves and scores of predicting pCR in the training and validation sets. The ROC curves of the training set (A), internal validation set (B) and
external validation set (C). The scores of the training set (D), internal validation set (E) and external validation set (F).
FIGURE 9 | The overall workflow in this study.
August 2021 | Volume 11 | Article 711747
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our segmentation network could be adjusted and improved using
techniques, such as combining different loss functions following
previous works (50–53) or adding clinical characteristics for a
joint analysis. In addition, if we could obtain MRI with smaller
slice thickness (≤1mm), we could consider building a 3D model
and studying the 3D radiomics features that may contain richer
information of the suspicious region.

Finally, the motivation of this study was different than other
related works. We wanted to explore the possibility of using a
single post-nCRT T2 MRI for patients missing a pre-nCRT MRI
or other modalities. In addition, we intended to improve the
efficiency of the model and reduce the workload of doctors for
clinical use. Our method has great potential to guide less-
experienced doctors, as it does not require manual delineation
of the ROI. Moreover, as our model is less restricted regarding
data requirements and the prediction of the pCR was easily
obtained, it can be combined with other studies for joint
decision-making.
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