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Background: Uveal melanoma (UM) is the most common primary intraocular malig-
nancy in adults. Monosomy 3 and BAP1 mutation are strong prognostic factors
predicting metastatic risk in UM. Nuclear BAP1 (nBAP1) expression is a close
immunohistochemical surrogate for both genetic alterations. Not all laboratories
perform routine BAP1 immunohistochemistry or genetic testing, and rely mainly on
clinical information and anatomic/morphologic analyses for UM prognostication. The
purpose of our study was to pilot deep learning (DL) techniques to predict nBAP1
expression on whole slide images (WSIs) of hematoxylin and eosin (H&E) stained UM
sections.

Methods: One hundred forty H&E-stained UMs were scanned at 40 × magnifica-
tion, using commercially available WSI image scanners. The training cohort comprised
66 BAP1+ and 74 BAP1− UM, with known chromosome 3 status and clinical outcomes.
Nonoverlapping areas of three different dimensions (512 × 512, 1024 × 1024, and
2048 × 2048 pixels) for comparison were extracted from tumor regions in each WSI,
and were resized to 256 × 256 pixels. Deep convolutional neural networks (Resnet18
pre-trained on Imagenet) and auto-encoder-decoders (U-Net) were trained to predict
nBAP1 expression of these patches. Trainedmodels were tested on the patches cropped
from a test cohort of WSIs of 16 BAP1+ and 28 BAP1− UM cases.

Results: The trainedmodelwith best performance achieved area under the curve values
of 0.90 for patches and 0.93 for slides on the test set.

Conclusions: Our results show the effectiveness of DL for predicting nBAP1 expression
in UM on the basis of H&E sections only.

Translational Relevance: Our pilot demonstrates a high capacity of artificial
intelligence-related techniques for automated prediction on the basis of histomorphol-
ogy, and may be translatable into routine histology laboratories.
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Introduction

Uveal melanoma (UM) is the most common
primary intraocular malignancy in adults.1 Although
ocular treatments have high rates of success in control-
ling the tumor locally, approximately 50% of patients
develop metastatic disease to the liver.1 Disseminated
UM is unfortunately, at present, incurable.2

Various parameters are well-known for determin-
ing patients’ with UM prognosis, and this enables their
stratification into metastatic risk groups for surveil-
lance of the liver.3,4 Should the metastases be detected
earlier, patients can either undergo liver surgery for
removal of metastatic UM nodules, or be registered
into clinical trials.5 Prognostic parameters for primary
UM include clinical features (age and gender of the
patient; intraocular tumor location; and size and extent
of tumor growth), and both histomorphological and
genetic features of the tumor.1 With respect to the
genetic features, one of the strongest parameters is
the status of chromosome 3 in the UM cells: loss
of one copy of chromosome 3 (i.e. monosomy 3) is
associated with a poor prognosis.6 Located on chromo-
some 3 (3p21.1) is the gene BAP1 (BRCA1 associ-
ated protein-1), which encodes for the deubiquitinating
enzyme, ubiquitin carboxy-terminal hydrolase.7 BAP1
mutations are associated with cancers, such as clear
cell renal carcinoma, mesothelioma, and non-small cell
lung cancer as well as UM.6–8 Somatic inactivating
mutations in BAP1 have been reported in 18 to 48%
of all UM, and in approximately 84% of UM with
monosomy 3; this is strongly associated with metasta-
sis and poor patient prognosis.6–11 The bi-allelic inacti-
vation of BAP1 frequently leads to a loss of nuclear
BAP1 protein expression (nBAP1) on immunohisto-
chemistry (IHC; i.e. it can be used as a surrogatemarker
because its nuclear expression corresponds to a high
degree with both BAP1 mutational and chromosome
3 status).9,10

Recent work using digital image analysis (DIA)
of enucleated UM specimens stained with BAP1
IHC demonstrated that DIA is a competitive alter-
native to manual assessment as well as gene expres-
sion profiling in prognostication of these tumors.12
Because not all laboratories have access to high quality
IHC facilities or to genetic testing, DIA and artifi-
cial intelligence (AI) has been applied to a variety of
cancer types to predict underlying genomic changes
from conventional stains.13–16 Deep learning (DL),
one of the major branches in AI, has burgeoned
over the past decade for its superior performance
comparedwith traditional approaches relying on hand-
crafted features.17 With the help of DL techniques, we

developed a pilot algorithm to predict nBAP1 expres-
sion based on hematoxylin and eosin (H&E) sections
only of clinically and genetically well-defined cohorts
of UM.

Materials and Methods

Ethics

This study conformed to the principles of the
Declaration of Helsinki and Good Clinical Practice
guidelines. Approval for the study was obtained
from the Health Research Authority (NRES REC
ref 15/SC/0611), and all patients provided informed
consent.

UM Samples

H&E and BAP1-stained sections from 184 patients
with UM treated by enucleation or local resection at
the Liverpool Ocular Oncology Centre (LOOC), Liver-
pool University Hospitals National Health Service
(NHS) Foundation Trust between January 2013 and
December 2015 were included in this study. The
specimens were processed with the Liverpool Clinical
Laboratories, stained using conventional and immuno-
histochemical stains (including BAP1, as previously
described9,10), and reported by the senior author.

In total, there were 140 slides used for the train-
ing set, including 66 nBAP1+ and 74 nBAP1−. A
second cohort of UM cases (n = 14) was retrieved
from the Liverpool Clinical Laboratory archive, and
used as the test set (16 nBAP1+ and 28 nBAP1−).
The scoring of the nBAP1 staining of the training set
UM and the association of nBAP1 IHC to tumor cell
morphology, molecular genetics, and clinical outcomes
has been reported in detail recently.9 Chromosome
3 status was available for all patients with UM and was
determined, as previously described.9 The details of the
“training”and “test set”cohorts of UMare provided in
Supplementary Tables S1 and S2. Examples of low and
highmagnification of H&E and BAP1-stained UMare
provided in Figure 1.

Whole Slide Imaging

Sample Statistics
The H&E-stained sections of all patients with UM

in the training set were scanned at 40 × magnifica-
tion using Aperio CS2 (LeicaBiosystems, Newcastle-
Upon-Tyne, UK), and saved as whole slide images
that have extremely high resolution. These slides of
the test set were scanned also at 40 × magnification
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Figure 1. Low- and high-power magnification images of enucle-
ated eyes stained for hematoxylin and eosin (H&E) and BAP1
immunohistochemistry, taken after whole slide scanning. Top row:
This is a nBAP1 positive UM; bottom row: a nBAP1 negative UM.
The insets provide the higher power magnification of the tumor
morphology and the location of the BAP1 staining.

using the VentanaDP200 (Roche, West Sussex, UK).
Random slides from both cohorts were also scanned
on both platforms. The use of the differing platforms
was undertaken to determine the flexibility of the
algorithm.

Generation of Tumor Patches
From the whole slide images (WSIs), UM regions

were first recognized visually in the H&E section
and “cropped out” (Fig. 2). The nonoverlapping
tiling operation was then applied to the cropped
tumor regions and patches with > 90% tumor area
were selected. By referencing to the counterpart
BAP1-stained slide, all the selected patches were
labelled on the corresponding H&E section, either as
BAP1+ or BAP1−. From the total 184 UM slides
(i.e. both the training and test sets), 539848, 130471,
and 30677 tumor patches were cropped in 3 different
dimensions, respectively (Table 1).

Figure 2. Generation of tumor patches. The tumor region is first
segmented from a whole slide image. The tiling operation is then
applied to the tumor region. A tile with tumor ratio over 90% is
cropped out as a tumor patch.

DL for Prediction of nBAP1 Expression

A “bottom-up approach” was developed for the
prediction of nBAP1 expression using a deep convo-
lutional neural network (DCNN). The DCNNs, as a
subgroup of DL networks, are dedicated for image
processing tasks,18,19 and can achieve an image classi-
fication in an end-to-end manner without the need
of handcrafting features from images for classifica-
tion. In this study, a binary prediction was obtained
(i.e. nBAP1+ and nBAP1-). The overall framework is
shown in Figure 3. In brief, by utilizing the labeled
patches, a ResNet-1820 was trained to predict nBAP1
expression of each patch. The ResNet-18 served not
only as a classifier but also as a feature extractor. The
extracted feature vectors of all the tumor patches in a
slide were re-assembled as a set of feature maps accord-
ing to their spatial locations, defined as the “global
feature” map, and subsequently were fed into an auto-
encoder-decoder that outputted the probability maps.
By applying the element-wise product with the tumor
masks, one element in a probability map correspond-
ing to a tumor patch in the original slide, indicated as
the “posterior probability” for this tumor patch to be
nBAP1+.

Table 1. Data With Respect to Patch Size and Numbers in the Training and Test Sets

Training Set (Including Validation Set) Test Set

Patch Dimension Positive Negative Positive Negative

512 × 512 160,059 253,097 49,769 76,923
1024 × 1024 38,589 61,189 12,066 18,627
2048 × 2048 9,007 14,275 2,826 4,569
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Figure 3. Schematic diagram to show the process to predict patch-level nBAP1 expression. All the tumor patches in a slide are fed to a
trained ResNet-18, which outputs the posterior probabilities of the patches (this is referred to independent patch classification). The feature
vector corresponding to a tumor patch is extracted from the convolutional module (a) in the ResNet-18. The feature vectors of all the tumor
patches are re-assembled into global feature maps according to the locations of tumor patches in the slide. The global feature maps are
then forward to a U-Net (b), that outputs the probabilitymap of the slide. The posterior probabilities of patches can be produced by a region
correlation classification from the probability map of the slide. a A diagram shows a standard residual block used in the ResNet-18; b a
diagram represents the U-net architecture used.
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Independent Patch Prediction
Fine tuning is a widely used approach for transfer

learning to train DL models and for image classifica-
tion tasks, it is a common practice to train application
specific models by fine-tuning ImageNet pretrained
models for rich features they have learned. A ResNet-
18 pretrained on ImageNet21 was fine-tuned again to
independently classify each individual patch’s nBAP1
expression status. The skip connection operation in
ResNet-18 concatenates feature maps of a functional
convolution module (typically comprising a convolu-
tion layer, pooling layer, batch normalization layer, and
activation layer consecutively in order) with the feature
map (resized if necessary) from a previous module
(see Fig. 3a). This mechanism enables back-propagated
gradients to be amplified to alleviate the gradient-
vanishing effect.22 ResNet-18 was chosen based on the
tradeoff between the performance and the computa-
tional consumption; however, other networks, such as
VGG-Nets23 or Dense-Nets,24 will equally work. To
train a ResNet-18 model, weighted cross-entropy was
adopted as the loss function to compensate the imbal-
ance between the positive and negative patches. Specif-
ically, the losses from the positive patches were scaled
up by a weight that was inversely proportional to the
ratio of all positive patches in the training set, and vice
versa for negative patches.

Tumor Patches Prediction with Region Correlation
Intuitively, a tumor patch is more likely to be

nBAP1+ if its surrounding tumor patches are also
nBAP1+, and vice versa. We define this prior infor-
mation as the “region-correlation.” It has been empiri-
cally proven that the region correlation was effective to
improve the accuracy of histopathology patches classi-
fication.25–28 To explore the effectiveness of region
correlation for patch classification, we further imposed
region correlation on the global feature to obtain the
resultant global probability map. The resultant proba-
bility of each tumor patch can be directly read from the
global probability map.

We adopted the strategy modified from Takahama
et al.28 to utilize region information. This allowed us
to directly utilize the benefits of well-developed and
“off-the-shelf” auto-encoder-decoder models for this
purpose. The U-Net architecture29 used is character-
ized by the short-cut connections of feature maps
among the counterpart layers from the encoder and
decoder modules, respectively (see Fig. 3). Specifically,
the feature vector for each patch in aWSIwas extracted
by the convolutional module in the trained ResNet-18,
and then re-organized to form a set of global features
maps based on their locations in the slide, which serves
as the input to a U-Net model. The U-Net model

outputted a probability map with the same dimension
as the input global feature maps. An element value in
the probability map indicated the posterior probability
to be nBAP1+ for the corresponding tumor patch in
the WSI.

A weighted cross-entropy on the probability maps
was used as the loss function to train the U-Net
model whereas only the losses corresponding to tumor
patches were considered. This was implemented by
an element-wise product of the probability maps and
the corresponding tumor masks before calculating the
weighted cross-entropy. The final decision on BAP1
status of the corresponding H&E-stained whole slide
was achieved by averaging the output probability of all
the patches in the tumor.

Experimental Configurations

Patch Pre-Processing
The experiments were performed independently

on 3 different dimensions of patches cropped from
slides of 40 × magnification, namely 512 × 512,
1024 × 1024, and 2048 × 2048, respectively, and the
patches of different dimensions were all further resized
to 256 × 256. For training purposes, a sub-patch
(224 × 224) was randomly cropped from an original
patch (256 × 256), and then was randomly flipped
horizontally or vertically. Color jitter was applied on
the sub-patch for data augmentation before being fed
to ResNet-18, which randomly changed the brightness,
contrast, saturation, and hue of the sub-patch with
ranges all between approximately 0.6 and 1.4. During
validation and test periods, no data augmentations
were used and sub-patches (224 × 224) were cropped
from the center of original patches (256 × 256).

Networks Training
All the 140 slides for training were randomly and

evenly split into 5 subgroups, with each subgroup
having approximately even numbers of nBAP1+ and
nBAP1− slides. For each dimension of patches, five
models (each included a ResNet-18 and a U-Net) were
trained, and each used one of the subgroups of slides
as the validation dataset, whereas the remaining four
subgroups were used as the training dataset (Table 2).
During training, the parameters of each model that
achieved the best performance on the corresponding
validation set were saved and tested on the test set.
Importantly, although the predictions were performed
on patches, the training dataset, validation set, and test
sets were split at the slide-level basis, instead of at the
patch-level in order to avoid “information leaking,”
based on the intuition that patches from the same slide
are highly correlated.
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Table 2. Different Subsets (S1–S5) in the Training Set
for Training and Validation, Respectively

Subsets for Training Subset for Validation

Model 1 S2, S3, S4, S5 S1
Model 2 S1, S3, S4, S5 S2
Model 3 S1, S2, S4, S5 S3
Model 4 S1, S2, S3, S5 S4
Model 5 S1, S2, S3, S4 S5

Stochastic gradient descent (SGD) was adopted as
the training optimizer with a momentum of 0.9 and
weight decay of 0.0005 for both the ResNet andU-Net.
A ResNet-18 was trained for 30 epochs with an initial
learning rate of 0.001, and the learning rate was divided
by 5 at epoch 10 and epoch 20, respectively. A U-Net
was trained with a constant learn rate of 0.0001 for 100
epochs.

Performance Metrics

Area under the receiver operating characteristic
curve (AUC) was the main performance metric used
to evaluate the trained models. A receiver operating
characteristic (ROC) profiles the relationship between
the sensitivity and specificity and is obtained by sliding
a threshold (between 0 and 1) over the nBAP1+ proba-
bility to calculate the corresponding sensitivity and
specificity values. An ROC closer to the top left corner
means better performance; consequently, a better AUC
has the value closer to 1. Besides, accuracy, precision,
and F1 value were also adopted, which were calculated
with the probability threshold 0.5.

Results

Patch-Based Prediction

In what follows, we use the notation “model(n)-k”
to represent the kth model that trained and tested on
the “n” by “n” patches. For example, model (1024)-2 is
the second model that trained and tested on the 1024
× 1024 patches.

For independent patch classification (from ResNet-
18), the ranges of the AUC values of 5 models are 0.66
to 0.80, 0.80 to 0.84, and 0.77 to 0.81 for patch size
of 512 × 512, 1024 × 1024, and 2048 × 2048, respec-
tively. The corresponding mean ± standard deviation
(SD) are 0.711 ± 0.059, 0.825 ± 0.012, and 0.805 ±
0.023, respectively. For patch classification with region
correlation (from U-Net), the AUC values of 5 models
range from 0.67 to 0.80, 0.83 to 0.90, and 0.79 to 0.85
for patch sizes of 512 × 512, 1024 × 1024, and 2048

× 2048, respectively. The corresponding mean ± SD
are 0.753 ± 0.055, 0.861 ± 0.026, and 0.823 ± 0.027,
respectively. The patch-level performances (AUC) are
shown in Table 3.

The best performance was provided by model
(1024)-4 with region correlation, that achieved anAUC
value of 0.90 (95% confidence interval [CI]: 0.901–
0.908). Further, it can be concluded that patches with
a size of 1024 × 1024 performs the best, with the
corresponding mean ± SD AUCs are 0.825 ± 0.012
(independent patch classification) and 0.861 ± 0.023
(region correlation), respectively. In contrast, patches
with a dimension of 512 × 512 performed worst and
unstable with smallest mean value and largest among
all. By comparison, it also shows that by impos-
ing region correlation, most cases achieved higher
AUC values, with improvements that ranged from 2%
to 5%, compared with those by independent patch
classification.

For comparison, we also re-implemented the
method from Sun et al.,30 which was developed for
the classification of patches from BAP1-stained UM
slides, and applied it to the our dataset with the same
configuration of sample splitting. Table 4 shows the
corresponding AUCs. It can be seen that when trained
with the same subset of samples, our method outper-
forms that based on the BAP-1 stained slide,30 and
that the performance gain can be even up to 5% (from
model (1024)-4).

Ensemble from Five Models
Giving a patch of a certain dimension, we calcu-

lated its “ensemble” posterior probability by averag-
ing the posterior probabilities of this patch from the
five models. Table 5 presents the corresponding ensem-
ble results. It shows the results by ensemble can always
achieve the best or near best performances among
the results from the five network models, as is further
confirmed by Figure 4, where the ensemble ROC is the
one most close to the best ROC (model (1024)-4) and is
above the four curves of other models. The best perfor-
mance was also on the patches of 1024 × 1024 with an
AUC value of 0.884 (95% CI: 0.879, 0.886).

Probability Maps
Figure 5 presents the probability maps of six

randomly selected slides from the test sets. For indepen-
dent patch classification, the probability maps were
generated by stitching the probabilities of the tumor
patches fromResNet-18 into all-zeromaps, whereas for
patch classification with region correlation the proba-
bilities were from the element-wise product of outputs
fromU-Net and the tumor masks. Clearly, by indepen-
dent classification of patches, the probabilities are
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Table 4. Patch-Level Area Under Curve (AUC) on the Test Set of the Method from Sun et al.30 and Our Method
(with Region Correlation)

Model (1024)-1 Model (1024)-2 Model (1024)-3 Model (1024)-4 Model (1024)-5

Sun et al.30 0.846 (0.842–0.850) 0.799 (0.794–0.804) 0.849 (0.844–0.853) 0.854 (0.850–0.859) 0.847 (0.843–0.851)
Our method 0.853 (0.849–0.857) 0.837 (0.832–0.841) 0.850 (0.845–0.854) 0.904 (0.900–0.907) 0.858 (0.853–0.862)

The 95% confidence intervals (CIs) are in parentheses.

Table 5. Patch-Level Area Under Curve (AUC) on the Test Set of the Ensemble Model

Patch Dimension 512 × 512 1024 × 1024 2048 × 2048

Independent 0.753 (0.752, 0.753) 0.849 (0.847, 0.851) 0.823 (0.812, 0.831)
Region-Correlation 0.825 (0.824, 0.826) 0.8841 (0.878, 0.886) 0.8401 (0.835, 0.848)

The 95% confidence intervals (CIs) are in parentheses.

Figure 4. Receiver operating characteristic (ROC) curve for patch
classification (Patch dimension: 1024 × 1024).

scattering in a probability map. Whereas with region
correlation, the probability maps in comparison are
more cohesive and consistent locally.

Classification Results at theWhole Slide Level

The nBAP1 expression of a UM in the same slide
is essentially unified (i.e. the BAP1 expression in a slide
can either be positive or negative, but cannot have two
co-existing states simultaneously). Because of this, it is
meaningful to categorize a slide by the BAP1 expres-
sion. To this end, we calculated the posterior proba-
bility of a slide to be BAP1 positive by averaging the
posterior probabilities of all the tumor patches in it.
The posterior probabilities of patches can be from a

single model or from the “ensemble”of the five individ-
ual models.

Table 6 presents the performance metrics for slide-
level classification. The best performance was obtained
from the model (1024)-4 derived from independent
patch classification, with the accuracy, sensitivity,
specificity, precision, F1, and AUC being 0.864, 0.813,
0.893, 0.813, 0.813, and 0.940, respectively. The perfor-
mance by the “five model ensemble” was close to that
achieved by the best of the five individual models.
Unlike the patch-level performances; however, the
slide-level classifications derived from the patch classi-
fication with region correlation are not significantly
superior to the counterparts that derived from indepen-
dent patch classifications. Due to the limited number of
slides for test (44 UMWSI), the 95% CIs were compa-
rably wide (e.g. 0.881-1 and 0.856-1 for the ensembles
of the independent case and region correlation case,
respectively), as shown in Figures 6 and 7, and Table 6.

Discussion

In this study, to the best of our knowledge, we
demonstrate for the first time that a pilot DL model
can be applied to predict nBAP1 expression in uveal
melanoma from H&E-stained sections only, which is
very difficult (if not impossible) by human patholo-
gists. Although our model would benefit from a multi-
center external validation study, our results demon-
strate a “proof-of-concept” (i.e. it provides a feasible
alternative to estimate nBAP1 status), and thereby the
risk of UM metastasis. It is particularly beneficial for
those laboratories without access to high quality IHC
facilities or to genetic testing. In addition to indepen-
dent patch classification, we further verified that region
correlation was able to improve the performance of a
patch-level classification.
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Figure5. Probabilitymaps. The first column lists theUMslide stainedwithH&E, and their probabilitymapsby independent patch classifica-
tion (fromResNet-18) and by region-correlation patch classification (fromU-Net) were shown on the second and third columns, respectively.
The probability maps corresponding to the red dotted regions in the UM slide with zooming. Grey corresponds to nBAP1 negative, whereas
blue corresponds to nBAP1 positive.

Our results show that the developed models for
patch classification, which were trained on different
subsets of the whole training set, were able to achieve
promising performances. Particularly the best model
(1024)-4 by region correlation could achieve an AUC
value of up to 0.90. For slide-level prediction, the
AUC value derived from independent patch classifi-
cation by the best model (model (1024)-4) was up
to 0.94.

We further created an “ensemble”model by averag-
ing the posterior probabilities of a patch of certain
dimensions from the five trained models, and the
related performance of the ensemble was best (or close
to the best) when compared with the correspond-
ing five models. Although it could not outperform
the five models, the ensemble operation has practical
relevance. That is, in the clinical “real-world” scenario,
the “ground truth” (i.e. the nBAP1 status) of an
individual slide or a tumor patch is not always available,
and, therefore, it is not possible to determine which
individual model would give the best prediction. By
applying the ensemble model, it would guarantee the
best result close to optimal.

Prognostication in UM usually entails the incor-
poration of clinical, histomorphological, and genetic

parameters.3,4 The latter information may not be avail-
able in all ocular centers and hence prognostication
for patients with UM is based predominantly on the
American Joint Committee on Cancer (AJCC)/ tumor
size, lymph nodes affected, and metastases (TNM)
staging system (i.e. on clinical, anatomic, and morpho-
logic parameters),31 However, direct manual analysis
of digital histopathological images has proven feasi-
ble and efficient to predict and detect the related gene
status of tumor cells, as a potential surrogate to both
IHC and genetic testing.14 This, however, requires a
large number of hours of repetitive work by pathol-
ogists, annotating slides to determine the “ground
truth.”32,33 In recent years, there has been an appetite
to apply AI-related techniques, especially DL, for the
automated analysis of digital histopathology images.
Data-driven approaches have resulted in an improve-
ment in DL techniques with respect to their objective-
ness, reproducibility, and accuracy, and have provided
new insights into various pathological features, as
indicated below. There are numerous studies using DL
to assess features, such as cell/cytoplasm segmenta-
tion,34,35 detection of mitoses,36–40 tubules,41,42 nuclei,
and nucleoli,43 and grading of cancers,41,44 etc. Yet,
there are very few studies focused on using DL on
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Table 6. Slide-Level Performances of the 5 Models (on 1024 × 1024 Patches) on the Test Set

Independent

Model
(1024)-1

Model
(1024)-2

Model
(1024)-3

Model
(1024)-4

Model
(1024)-5 Ensemble

Accuracy 0.931 0.795 0.886 0.864 0.818 0.863
Sensitivity 0.937 0.875 0.875 0.813 0.750 0.875
Specificity 0.928 0.750 0.892 0.893 0.857 0.857
Precision 0.882 0.666 0.823 0.813 0.750 0.777
F1 0.909 0.756 0.848 0.813 0.750 0.823
AUC 0.953 0.915 0.928 0.940 0.915 0.944

Region Correlation

Model
(1024)-1

Model
(1024)-2

Model
(1024)-3

Model
(1024)-4

Model
(1024)-5

Ensemble

Accuracy 0.886 0.840 0.840 0.909 0.863 0.886
Sensitivity 0.875 0.750 0.812 0.812 0.750 0.812
Specificity 0.892 0.892 0.857 0.964 0.928 0.928
Precision 0.823 0.800 0.764 0.928 0.857 0.866
F1 0.848 0.774 0.787 0.866 0.800 0.838
AUC 0.912 0.863 0.890 0.939 0.915 0.935

Figure 6. Slide-level receiver operating characteristic (ROC) curve
with 95% confidence intervals of the ensemble of 5 models
(independent patch classification) trained on 1024 × 1024 patches.

the analysis of digital pathological images to indirectly
predict gene or protein expression status (e.g. from a
conventional stain, such as the H&E). To the best of
our knowledge, Sun et al.30 is the first group that devel-
oped a DenseNet24 model to predict nBAP1 expres-
sion on BAP1-IHC stained UMpatches. Although this

Figure 7. Slide-level receiver operating characteristic (ROC) curve
with 95% confidence intervals of the ensemble of 5 models (region-
correlation) trained on 1024× 1024 patches.

work was groundbreaking inUM, a potential weakness
of the authors’ study was the risk of “information
leakage” caused by splitting patches from the same
slide into both the training and test sets. In the current
study, we have challenged the DL to greater levels (i.e.
by asking it to predict the nBAP1 IHC result from
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an H&E-stained section), something that even for a
well-trained and experienced histopathologist would be
quite difficult to do. Indeed, when we applied the Sun
et al. method to our dataset, we could demonstrate
that our regional correlation method designed onH&E
sections outperforms that based on the BAP-1 stained
UM slide,30 and that the performance gain can be even
up to 5% (from model (1024)-4).

One of the major concerns to develop a machine
learning model is its functionality and applicability (i.e.
generalization ability). A model with higher general-
ization ability should be able to achieve better predic-
tions using other unseen broader datasets. To this end,
in our study, we adopted various measures to design
and train the models. The choice of the ResNet-18,
which served as the first-stage classifier as well the
feature extractor, was chosen, because ResNet-18 has
comparably fewer parameters to train, and with exten-
sive batch normalization layers, it could alleviate the
issue of “over-fitting” to some extent.45 Further, data
augmentation approaches were adopted to relieve the
limitation of a relatively small dataset, which included
color jitter, random cropping, and random spatial
transformation, etc. To better verify the generalization
ability of the developed models, the experiments were
elaborately designed and used two digital scanning
platforms. First, there were five models, instead of just
one model, trained on different subsets of the train-
ing set using patches of certain dimension. The corre-
sponding experimental results showed the robustness
and the highly generalization ability of our developed
methods, because the trained models all achieved good
results on the test set. Second,we split thewhole dataset
into a training set and a test set in a slide-based way,
to avoid information leakage, ensuring that patches
from the same slide would not simultaneously appear
in both sets. Last, we collected training and test slides
separately from two scanners with different specifica-
tions, respectively. Therefore, variances in WSI were
introduced among the two groups of data. In future
work, we aim to validate the developed models on a
wider range of external UM cases.

Despite the promising performances of all the
trained models, there are still some aspects that can
be refined to gain an even better performance of the
proposed method. We have used 184 slides in total for
training (n = 140) and testing (n = 44). The patches
from the same slide are similar in tissue morpholo-
gies, pigments, etc., and thus these patches, although
the total number is large, have limited “knowledge”
from the perspective of a DL model. In other words,
although the number of tumor patches from all the
slides is more than enough, the whole dataset trialed
is still relatively small. This also resulted in the wide

range of 95% CI for slide-level classification. With
a greater number of cases, we believe the developed
model can achieve better performance. Hence a large
multicenter validation study would be of value to exter-
nally validate and potentially revise our pilot model
for ultimate application in routine laboratories. Such
a larger study would also provide a broader spectrum
of tumor size and shape, enabling improved training of
the DL network on small UM. In our current study, the
only clue utilized for the prediction of nBAP1 expres-
sion (and therefore prognostication) was the H&E-
stained slides. Other well-known prognostic variables
for UM, such as patient age and gender, were not
considered in this work. In the future, we intend to
develop a multivariable prognostic model, similar to
(or a revision of) the Liverpool-developed prognostic
algorithm, LUMPO3,46 which could incorporate the
DL tool and its analysis of various morphological,
IHC, and genetic parameters of UM.

In summary, through this work we showed that
our new pilot DL techniques are able to effectively
predict nBAP1 expression in UM using H&E-stained
WSI images only. This work demonstrates a proof-of-
concept of AI-related techniques for automated analy-
sis of basic histological data, and could be translat-
able into routine laboratories. It is an important step
toward an automated prediction of UM dissemina-
tion by applying digital pathology, as is already done
in other cancer types.
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