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Abstract

Organisms alter their phenotypes in response to changing environmental conditions. The

developmental basis of this phenomenon, phenotypic plasticity, is a topic of broad interest in

many fields of biology. While insects provide a suitable model for studying the genetic basis

of phenotypic plasticity, the physiological aspects of plasticity are not fully understood. Here,

we report the physiological basis of polyphenism, an extreme form of phenotypic plasticity

by utilizing a dung beetle species, Onthophagus taurus. We highlighted the metabolome

between sexes as well as two distinct male morphs—large and small horns. Unlike results

from previous transcriptomic studies, the comparative metabolomic study revealed that dif-

ferences in metabolite level were more prominent between animals with different body sizes

than different sexes. Our results also indicate that specific metabolites and biochemical

pathways may be active during horn size determination.

1 Introduction

Phenotypic plasticity is a phenomenon in which organisms alter their phenotypes in response

to changes in the surrounding environment without altering their genotypes [1–3]. Beetle

horns are recognized as a good model for studying the genetic basis of phenotypic plasticity

due to their prominent phenotypes and sensitivity to environmental conditions. For instance,

multiple reports suggest that the same genetic mechanisms, such as the gene doublesex (dsx)

and the insulin/IGF signaling pathway, are responsible for horn development in different bee-

tle species [4–8].

The dung beetle species Onthophagus taurus provides a unique opportunity to study plastic

horn development. In this species, horn development is polyphenic, where horn size drastically

and almost discretely changes at a certain body size (threshold body size). Specifically, when

raised under suboptimal nutritional conditions during the larval stage, animals stay below the

threshold body size, and males develop short, almost rudimental horns. Conversely, animals

raised under optimal nutritional conditions exceed the threshold body size and develop dis-

proportionately large horns (S1 Fig). Here, the horn size distribution is bimodal, whereas the
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body size exhibits a normal distribution [9]. Horn development and subsequent horn size

determination take place in the larval period, specifically, during 48 hours prior to pupation

that is known as the prepupal stage. Cells in the head region proliferate and grow very rapidly

to form horn primordia in this stage.

Thus far, two developmental processes and their associated genes have been identified as

responsible for both horn development itself as well as polyphenism in O. taurus: the gene dou-
blesex (dsx) and genes in the Hedgehog pathway including hedgehog (hh), smoothened (smo),

and patched (ptc). In both cases, these genes play critical roles in their original context; sex

determination is regulated by dsx [10] and axis patterning is regulated by the Hh pathway

[11–13]. Additionally, these genes regulate nutrition-dependent horn polyphenism either

below (Hh pathway) or above (dsx) the threshold body size [4, 14].

Although involvement of the insulin signaling pathway or studies of juvenile hormone titer

suggest the presence of certain critical metabolites in horn size determination [15–17], the

actual biochemical processes or metabolites that may contribute to the activation and/or sup-

pression of these genetic processes remain relatively unknown. To obtain knowledge regarding

the physiological status that may associate with horn polyphenism in O. taurus, we highlighted

the metabolic profiles in different body sizes and sexes, namely large males (LM), small males

(SM), large females (LF), and small females (SF). We obtained the first comprehensive list of

metabolites that showed significant changes across different body sizes. We also identified can-

didate metabolites and possible biochemical pathways that may associate with polyphenic

horn development. Furthermore, our results suggest that unlike transcriptome studies in the

past, body size (determined by nutritional condition) showed greater changes in metabolome

pattern than sex.

2 Materials and methods

2.1 Beetle rearing

Beetles were collected at WVU’s Animal Sciences Farm in Morgantown, WV and used for

breeding. Cow dung was collected at the farm and homogenized to ensure beetles were reared

under similar nutritional conditions. Larvae were transferred from their brood balls to 12-well

plates with similar amounts of homogenized dung and kept at 26 ˚C in a 16-hour light and

8-hour dark cycle [4].

2.2 Sampling

During the prepupal stage, animals stop feeding and purge their gut contents to prepare for

pupal development. After they pupate, their external phenotypes, including horn size, are com-

parable to their adult phenotypes. Thus, to obtain basic knowledge of metabolite composition

during horn development, as well as acquire a list of candidate metabolites that may represent

the physiological processes during polyphenic horn development, we utilized hemolymph

from animals in their late prepupal stage.

Larval development was monitored in 12-well plates, where animals were staged and sexed

at appropriate points in their development. Body mass was measured when the larvae reached

the prepupal stage. Animals were collected around 48 hours after they entered the prepupal

stage (referred as PP2 hereafter). Animals were rinsed briefly in 70% methanol, flash frozen in

liquid nitrogen, and stored at -80˚C until they were used for hemolymph extraction. Five ani-

mals were used in this study for each sample group: Large males (0.1458, 0.1477, 0.1485,

0.1491, 0.1492 g), small males (0.0773, 0.0905, 0.0934, 0.1003, 0.1008 g), large females (0.1374,

0.1430, 0.1435, 0.1469, 0.1568 g), and small females (0.0885, 0.0900, 0.0925, 0.0954, 0.1032 g).

The distribution pattern of body mass can be found in S2 Fig.
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2.3 Methanol extraction of organic compounds from beetle hemolymph

Organic compounds were extracted from hemolymph using a cold methanol extraction

method based on Want et al. due to its efficacy and ability to extract a broad spectrum of

metabolites [18, 19]. Beetles at PP2 were kept on ice during the extraction process. To extract

hemolymph, a small hole was made at the bottom of a 1.7ml microcentrifugation tube

(referred to as the sample tube hereafter), containing the stored beetle samples. The sample

tube was then placed on top of another 1.7ml tube for collection (referred to as the collection

tube hereafter). Hemolymph was obtained by centrifugation at 6,200 x g for 15 minutes at 4˚C.

Sample tubes that contained large pieces of beetle cuticles were removed from the collection

tubes, and the remaining hemolymph in the collection tube was processed further. The soft

pellets in the collection tubes were resuspended and centrifuged again for 15 minutes at 17,000

x g to fully pellet insoluble debris and ensure the extraction of compounds. From each sample,

equal volumes (30 μl) of supernatant were transferred to the extraction tubes. Ice cold metha-

nol containing 50 μM caffeine and 50 μM each of deuterated amino acids, serine D3 and lysine

D9, as internal standards was added in a 3:1 volume ratio to each hemolymph sample. Five

quality control (QC) samples were prepared that contained equal amounts of pooled hemo-

lymph from each beetle and were extracted in methanol containing internal standards at the

same ratio described above. Samples were then sonicated for five minutes on ice in a water

bath sonicator and transferred to a -20˚C freezer for one hour. Samples were then centrifuged

for 15 minutes at 17,000 x g at 4˚C, and supernatants were retained for LC-MS analysis.

2.4 Liquid chromatography-mass spectrometry

Liquid chromatography mass spectrometry (LC-MS) was performed using HILIC chromatog-

raphy (Phenomenex Luna column, 100 mm x 2 mm in dimension, 3 μm particle diameter, 200

Å pore size) on each beetle and QC sample. Additionally, data from blank samples were col-

lected by injection of blank methanol. For all samples, 10 μL were injected into the LC-MS sys-

tem. Gradient elution was performed using an Accela UHPLC (Thermo Fisher Scientific,

Waltham, MA). The aqueous mobile phase consisted of 10mM ammonium acetate in water

(mobile phase A), and 100% acetonitrile as the organic mobile phase (mobile phase B). The

35-minute gradient pattern consisted of the following: 5% A held for 1.5 minutes, 5% to 80% A

increased over 18.5 minutes, a further increase from 80% A to 90% A over 3 minutes, a

decrease from 90% A to 5% A over 2 minutes, and then held constant at initial conditions for

10 minutes. The column temperature was held constant at 35˚C. A Q Exactive Orbitrap mass

spectrometer (Thermo Fisher Scientific, Waltham, MA) was used to collect full scan MS data

for all individual sample, blanks, and QC samples in negative ion mode from m/z 100 to 1000

using 70,000 resolution. Separate, data-dependent MS/MS data files were collected from the

QC samples using the same liquid chromatography conditions except with collection of mass

spectrometry data for the top 5 most intense peaks over a m/z 100 to 1000 scan range using

17,500 resolution, a 4 m/z isolation window, and 30 normalized collision energy. Dynamic

exclusion was set at 10 seconds. Electrospray ionization source conditions consisted of spray

voltage of 3.5 kV, sheath gas flow rate of 20 arbitrary units, auxiliary gas flow rate of 8 arbitrary

units, and sweep gas flow rate of 1 arbitrary unit. The capillary temperature was set at 320˚C,

and the S-lens RF level was set at 30.

2.5 Untargeted metabolomics data processing and metabolite annotation

Initial review of the raw data files indicated that LC-MS data collection was of acceptable

reproducibility. The relative standard deviation of the peak areas of spiked internal standards

within the QC samples was used to determine initial data quality and reproducibility, and was
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found to be less than 15%, which exceeds minimum requirements for untargeted metabolo-

mics studies [20]. Raw data files were further processed by Compound Discoverer (version

3.10.305, Thermo Scientific) using the untargeted metabolomics workflow with statistics to

align peaks across data files and pick significant peaks. All raw files from individual insects

from the four groups (large male, small male, large female, and small female), five QC samples,

and blank injection samples were included in the initial analysis except for one large male sam-

ple. During the sample preparation process (above), one of the large male samples was mis-

placed and was excluded from the analysis.

In subsequent analyses, statistical comparisons were also made between large and small

beetles, excluding factor of sex, as well as between male and female beetles, excluding the size

factor. Compound Discoverer settings, in all cases, consisted of 10 ppm mass tolerance peak

picking of parent m/z values, a minimum S/N threshold of 3, minimum peak intensity of 1 x

106, default setting of 2-minute RT shift for the compound detection parameter, grouping

compounds within 0.2-minute RT window, and normalization of peak areas across samples by

the constant mean algorithm. Peaks were retained in the data set that exhibited at most a peak

area relative standard deviation of 30% within the QC samples. Database searching of Chem-

Spider (chemspider.com) and mzCloud (mzCloud.org) was performed through Compound

Discoverer for compound annotation.

Metabolite features that showed statistically significant differences (p-value< 0.05) between

all pairwise comparisons of four sample sets (large male, small male, large female, and small

female) at any fold change are enumerated in Table 1. All compound formulas obtained from

these analyses are listed in S1 Table, and their annotation is classified as level 3, tentative struc-

tures [19].

We considered compounds that had parent m/z values matching compounds in ChemSpi-

der and those with MS/MS spectral matches to compounds within the mzCloud database for

further discussion in Table 2. Annotation using both parent m/z values and MS/MS database

matching are designated as level two, putative identifications [19].

2.6 Hierarchical clustering and principal component analysis

A hierarchical model with Pearson distance function and complete linkage method was chosen

to compare the relative metabolite enrichment across samples. We utilized the Compound

Discoverer suite with the setting “scale before clustering” for the analysis. This involved the

application of a z-score transformation prior to hierarchical clustering. All normalized chro-

matographic peak areas detected above background were included in the analysis. A Principal

Component Analysis (PCA) was also conducted to understand the overall similarity/difference

in the metabolome. To indicate the same samples across figures by the same markers, markers

Table 1. Number of metabolites that showed significant differences through pairwise comparisons.

Comparison Total metabolite number Higher in first group Higher in second group

LM/SM 140 105 35

LM/LF 30 28 2

LM/SF 84 67 17

LF/SF 40 20 20

LF/SM 44 22 22

SF/SM 21 14 7

LM: large male, SM: small male, LF: large female, SF: small female.

https://doi.org/10.1371/journal.pone.0265222.t001
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in PCA results are manually added to the result figures generated by Compound Discoverer.

The original data figures are available in S5 Fig.

3 Results and discussion

3.1 Overall metabolome comparison

Overall, we identified 981 metabolites that could be detected by the procedure utilized in this

study. Of those, 358 metabolites displayed statistically significant enrichment in two or more

sample groups (i.e., large male, small male, large female, and small female). With these 358

metabolites, we further explored the differential presence of metabolites by specific pairs of

comparison (Table 1). Among all compared pairs, the large and small male comparison indi-

cated the largest number (140) of differentially enriched metabolites. Our results also suggest

that higher level and possibly more diverse types of biochemical reactions may take place in

large males (LM) when compared with the other three sample sets. Specifically, of those 140

differentially present metabolites, 75% (105 out of 140) were enriched in LM when compared

with small males (SM), whereas 93% (28 out of 30) were enriched in LM when compared with

large females (LF). Although both sex and body size are different, 80% (67 out of 84) were

detected as significantly differentially enriched in LM when compared with small females (SF).

Interestingly, comparison by sex indicated a much smaller number of enriched metabolites.

Specifically, comparison between sex (LF vs. LM or SF vs. SM) indicated a total of 51 metabo-

lites (30 metabolites for LF vs. LM and 21 for SF vs. SM), whereas 180 metabolites (140 from

LM vs. SM and 40 from LF vs. SF) were identified from the comparison between body size.

Unlike large males, large females did not indicate a significantly larger number of enriched

metabolites when compared with the two other sample sets (SF or SM).

In order to examine the overall similarity or difference in the metabolome among samples,

we conducted hierarchical clustering analysis (HCA) and principal component analysis (PCA)

using all 19 individual beetle samples (see Materials and methods for details about sampling

and metabolite detection). Both analyses implied that samples tend to cluster by size rather

than sex (Figs 1 and 2). We then considered only one of these factors, namely sex or body size

alone, to screen metabolites, and performed HCA and PCA with the same parameter settings.

We detected a similar trend that supported the first set of results (S3 and S4 Figs). Specifically,

PCA results clearly indicated the separation of small and large animals, whereas no grouping

was seen when comparing the sexes. Moreover, HCA results indicated a dendrogram in which

one clade is heavily enriched with large animals. However, samples from the same sex did not

clearly cluster when only sex was considered to screen metabolites, again suggesting that the

metabolome profile is relatively similar between sexes in a similar body size range. In contrast,

previous transcriptomic studies using tissues of pupae (including horns) in different sexes and

Table 2. Six metabolites were discussed in detail in this research. Highlighted metabolites were only different between the large and small male comparison.

Name of metabolite Confirmation method/database � Comparison Respective relative fold differences Respective relative p values

D-Xylonic acid 1 SM>LM, SF>LF 5.78, 3.73 0.0190, 0.0379

N-acetyl-DL-glutamic acid 1, 2 SM>LM 1.82 0.0215

Citric acid 1, 2 LM>SM 1.53 0.0345

Glycerol 3-phosphate 1, 2 LM>SM 2.11 0.0356

N-Acetyl-L-glutamine 1, 2 LM>SM, LM>LF, LM>SF 2.36, 2.04, 2.87 0.0011, 0.0227, 0.0011

D-Glutamine 1, 2 LM>SM, LM>LF, LM>SF 1.57, 1.41, 1.48 0.0052, 0.0418, 0.0347

� 1: ChemSpider, 2: mzCloud (ms/ms).

https://doi.org/10.1371/journal.pone.0265222.t002
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Fig 1. Hierarchical clustering for all samples used in this research. Blue and green represent large and small animals, respectively. Diagonal stripes

and vertical stripes represent females and males, respectively. Note that one of large animal samples has been removed due to misplacement during

sample preparation (see Methods section).

https://doi.org/10.1371/journal.pone.0265222.g001

Fig 2. Principal component analysis of all samples used in this research. Blue and green represent large and small animals, respectively. Diagonal

stripes and vertical stripes represent females and males, respectively. Note that one of large animal samples has been removed due to misplacement

during sample preparation (see Methods section).

https://doi.org/10.1371/journal.pone.0265222.g002
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body sizes, suggested that sex is the most prominent factor that explains the variation of gene

expression level [21]. Overall, our metabolic profiling using distinct traits (sex and body size)

highlighted potential differences in the physiological processes among the samples we used.

Particularly, higher and more diverse physiological activities may take place in large males

over any of the other samples during the stage in which horn size is determined.

3.2 Candidate metabolites detected through pairwise comparisons

Since the overall comparison indicated a potential size effect in metabolomic differences, we

further analyzed the data by only focusing on size (i.e., “large” samples consist of 4 LM and 5

LF samples, or “small” samples consist of 5 SM and 5 SF samples). In total, 107 metabolites

showed significant presence in one category over the other. Of those, 24 chemical formulas

were annotated in the ChemSpider database; however, these compounds could not be con-

firmed to a higher degree of confidence as none of the corresponding MS/MS spectra were

matched in the mzCloud database. Then, we compared metabolite profiles by just focusing on

sex (i.e., “male” samples consist of 4 LM and 5 SM samples, or “female” samples consist of 5 LF

and 5 SF samples). In total, 30 metabolites indicated a significant presence in male or female.

Of those 30, two had a match with mzCloud, D (or L)-Arginine and ornithine, which were

more present in the male group than the female group by 1.26 times and 1.38 times, respec-

tively. Although these two amino acids are critical components of the urea cycle in vertebrates,

it is unclear if the same pathway is functional in insects, as they lack some enzymes in this

cycle [22, 23].

To further identify candidate metabolites that may associate with polyphenic horn develop-

ment, we attempted screening after the pairwise comparison. This analysis included both sex

and size, and utilized the 358 metabolites that showed enrichment in two or more sample

groups (Table 1). We obtained a list of moderate number (55), yet potentially critical, non-

redundant metabolites that showed significant enrichment in certain samples and annotated

by one or more databases (see Materials and methods). Of those, we focused on metabolites

that showed significant differences between large males and other sample sets. Below, we list

the metabolites we were able to annotate and discuss their potential significance in horn devel-

opment. While most metabolites on this list were confirmed by mzCloud, we included one

metabolite (D-xylonic acid) without a match in mzCloud due to its significant p-value and rel-

atively large difference among the compounds we could identify (Table 2, S1 Table).

3.3 LM/SM or LF/SF pairwise comparison

We identified 10 metabolites that were shared between the LM/SM and LF/SF comparisons.

None of these 10 had a match in mzCloud, however, D-xylonic acid was found to be signifi-

cantly higher in small males than large males by 5.78 times and 3.73 times greater in small

females than large females. This compound is synthesized by oxidizing xylose that is derived

from hemicellulose, a major component of plant cell walls [24]. Animals usually require gut

microbes to metabolize plant material. Since all beetle larvae were reared under the same con-

ditions with the same food, it is likely that all animals used in this study harbored similar gut

microbiomes. Thus, accumulation of xylonic acid in small animals may not be attributed to

the differential activity of gut microbes, rather it may indicate that the resource is not fully

metabolized due to a relatively slower overall metabolism (cell activity) in small animals.

3.4 Large/small male comparison

We sought compounds that were found to have significantly different enrichment within the

large and small male comparison as they could potentially reflect direct differences in horn
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development. Of 140 compounds we detected as significantly different (Table 1), 30 indicated

a match in ChemSpider. Of these 30, five metabolites were annotated by mzCloud. With these

five, we compared all other possible pairwise combinations that involve large males (i.e., LM/

LS, LM/LF, LM/SF) and identified three compounds that are only present in the LM/SM com-

parison, while the other two showed enrichment in large males versus the other sample groups

(all of SM, LF, and SF). The former three include N-acetyl-DL-glutamic acid, glycerol 3-phos-

phate, and citric acid (shaded metabolites in Table 2).

Citric acid was detected in both male types and was enriched 1.5 times more in large

males than in small males. It is a major intermediate in the citric acid cycle (also known as

TCA or Krebs cycle) that generates NADH which further links to ATP generation. There-

fore, the increase in citric acid in large males may represent high cellular activity or rapid cell

division.

Glycerol-3-phosphate (G3P) was indicated as significantly greater in large males than small

males by 2.1 times. In Drosophila and mammals, G3P can be utilized to maintain redox bal-

ance (NAD+ and NADH ratio) in cells that affects ATP production. Drosophila mutant larvae

that lack the key enzyme in this cycle, lactate dehydrogenase (LDH), can develop normally

because the increased level of G3P compensates for the expected low-energy status caused by

the lack of the Ldh gene [25]. Thus, by analogy, the higher level of G3P in large male O. taurus
may indicate a lower activity of Ldh. Intriguingly, our previous transcriptome study also

showed that the Ldh level was lower in the head horn tissue of large male pupa [21] (note that

the animals’ stage used is different from our current study). Alternatively, G3P can be involved

in fatty acid synthesis rather than mobilization. When fatty acids are synthesized in conditions

of excess energy input, they are esterified to G3P and stored as triglycerides [26]. In this case,

the enrichment of G3P in large males may reflect a higher nutritional condition which would

enable them to store more energy than their small male counterparts. Since the animals we

used in this research were in their prepupal stage, a stage where extensive tissue degradation

and reconstruction associated cell division/growth/death take place, this scenario may be less

likely. While we reserve our conclusion on the cause of enriched G3P only in large males, high

citric acid presence likely indicates heightened cellular activity such as cell growth in general

and possibly large horn development in particular.

Unlike the two metabolites above, N-acetyl-DL-glutamic acid (N-acetylglutamate, NAG)

was identified as a compound that was significantly enriched in small males versus large males

by 1.82 times. Although the biochemical function of NAG in dung beetles is not known, it is

known that a high-fat diet in Drosophila melanogaster lowers the level of amino acids including

glutamate, which can be converted to NAG [27]. This may imply relatively higher levels of fat

accumulation in large males.

Previous metabolome studies used other insects to highlight metabolite differences in

gonads between males and females or ejaculate of males in different body sizes. These studies

identified potential male (sperm)-specific metabolites or metabolites in male ejaculates [28–

30]. Studies of potential sperm competition in genus Onthophagus provided insights into evo-

lutionary and ecological significance of testis-horn size relationships [31, 32]. Moreover, a

trade-off between male genitalia development and horn size determination has been reported

using O. taurus [33]. Thus, we sought candidate metabolites that are specifically detected by

the male-female comparison or the large-small male comparison (see above). Our criteria did

not identify metabolites other than D-xylonic acid. This may suggest the metabolic condition

in prepupal hemolymph is relatively well-regulated and stable due to homeostasis. By analogy,

metabolites identified in the current study might be strong candidates representing sex- or

morph-specific biological processes.
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Overall, our comparative analyses identified some key metabolites in critical biochemical

pathways for cellular activities and highlighted significant differences between large and small

males.

3.5 Large male/other samples

As an alternative way to discover metabolites that may represent biochemical processes critical

for the horn development, we compared metabolomic profiles and screened ones that were

enriched in the large male group over any other group (i.e. large female, small female, small

male). Of the 264 metabolites combined (LM/SM, LM/LF, and LM/SF, Table 1), seven met the

above criteria and had a match in ChemSpider. Of those seven, we further confirmed two

metabolites (glutamine and N-acetyl-L-glutamine) using mzCloud (Table 2).

D-glutamine was identified as a compound that is enriched in large males by 1.57 times,

1.48 times, and 1.40 times more than small males, small females, and large females, respec-

tively. Glutamine can be converted to glutamate which can then be further converted to α-

ketoglutarate through a process known as glutaminolysis, which can fuel citric acid cycle [34]

that is likely to be active in large males.

N-acetyl-L-glutamine (acetylglutamine, aceglutamide), a derivative of glutamine, showed

2.36 times, 2.87 times, and 2.04 times enrichment in large males over small males, small

females, and large females, respectively. Although the physiological function of this metabolite

is not clear in insects, in humans, it is known to provide protection to organs in patients under

protein energy malnutrition, which can occur when individuals experience highly stressful

nutritional conditions such as a severe malnutrition or secondarily caused by cancer [35, 36].

On one hand, the large/small male comparison identified biologically very significant and

relevant, thus intuitive, compounds such as citric acid. On the other hand, the comparison

between large males and multiple samples shed light on rather unfamiliar compounds in the

context of beetle horn development. Thus, our results can provide a new scope on the biologi-

cal processes that transcriptomic studies did not highlight. Here, we propose that amino acids,

particularly glutamine and its derivatives may be key molecules in beetle development, or

more specifically in males that develop large horns. The mechanisms by which these com-

pounds affect the development of large males are still unclear. However, we speculate unusu-

ally rapid cell proliferation and growth in large male’s head (horn) may be associated with

enrichment of these compounds.

4 Concluding remarks

From genetic content (genome) or expressed genes (transcriptome), to actual functioning

molecules (proteome), advances in molecular biology have provided researchers with informa-

tion on non-model organisms through so called -omics approaches. Here, we report, to our

knowledge, the first metabolomic dataset highlighting the physiological profiles of dung bee-

tles. In this work, we aim to identify key metabolites that may reflect the physiological differ-

ences between males that develop horns in distinct sizes.

Through transcriptome studies, we identified genes that are not sensitive to nutritional input

in their original context. For instance, the sex determination gene doublesex (dsx) is expressed

more in the horns of large males, suggesting dsx might have been sensitized to changes in certain

metabolites during the horn development. We were able to detect differentially enriched metab-

olites between large and small males, which may offer a new opportunity towards understanding

the interaction of genetic processes, such as sex determination and physiological processes such

as energy production. For instance, the overall pattern of metabolite enrichment suggests that

body size rather than sex reflects the differences in metabolomic profiles. In contrast, the
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transcriptome study indicated that sex was a stronger factor than body size in explaining gene

expression variation [21]. Further integrated analyses of the transcriptome and metabolome

across developmental stages (e.g., third instar larva and/or pupa, which was used in almost all O.

taurus transcriptome studies) and different tissues in different body sizes would provide insight

into the complex and systemic aspects of polyphenic trait development.

Specific metabolites discovered in this study suggest vigorous cellular processes such as cell

division or growth take place in large males. Interestingly, some compounds identified in large

males (e.g., citric acid and glycerol-3-phospate) were not identified in large/small female com-

parison. Since the horn primordia in males rapidly develop and respond to nutritional input

in the stage we studied, we suspect these compounds are highly utilized/mobilized in large

males during the horn development. Furthermore, we identified metabolites associating with

glutamine/glutamate metabolism, which was rather unexpected. In the past, transcriptome

studies unexpectedly identified some “horn polyphenism-related genes” such as genes in the

Hedgehog pathway after their function was confirmed by RNAi [12]. We consider the gluta-

mine/glutamate metabolism may be a process we could have missed unless we conducted the

metabolomic study.

Studying the metabolome in non-model organisms still requires efforts in establishing

methods in metabolite extraction as well as metabolite identification through database

searches. Our current results were obtained by using a method that may not be optimized for

certain compounds. Establishing methods for more focused compound extraction (e.g., hor-

mones, sugars, etc.) would enrich our understandings in the physiological basis of horn poly-

phenism. Pathway enrichment analyses that require existing evidence in databases would

further identify key physiological processes in polyphenic horn development. More generally,

when the trait development associates with nutritional (physiological) changes, integrating the

knowledge obtained from both the transcriptome and metabolome studies can lead to the dis-

covery of new and critical biological processes that each study alone may not highlight.
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