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Introduction
Multiple sclerosis (MS) is a chronic inflammatory 
and degenerative disease of the central nervous sys-
tem (CNS). In the majority of cases, MS is preceded 
by a clinically isolated syndrome (CIS), the first clini-
cal episode suggestive of MS. People with CIS have a 
variable risk of developing MS, depending on fea-
tures such as age, lesion burden, or oligoclonal band 
status in the cerebrospinal fluid.1 Current diagnostic 
criteria enable MS to be diagnosed soon after presen-
tation, and disease-modifying therapies (DMTs) delay 
the development of MS from CIS.1

In the trial of Minocycline in Clinically Isolated 
Syndrome (MinoCIS), 142 participants were rand-
omized to receive minocycline 100 mg BID or pla-
cebo, with a primary outcome of conversion to MS 

within 6 months after randomization.2 Minocycline 
significantly reduced the risk of conversion to MS by 
54%. The precise mechanism of action of mino-
cycline is unknown, but it modifies immune cell 
functioning and inhibits matrix metalloproteinases 
(MMPs), important extracellular proteases that par-
ticipate in tissue remodeling and blood brain barrier 
disruption.3

Levels of neurofilament light (NfL) chain in the 
serum is a proposed biomarker of neuroaxonal 
damage.4 Elevation of NfL correlates with relapses 
and appearance of new active lesions on magnetic 
resonance imaging (MRI), and it is reduced after the 
initiation of DMTs in relapsing-remitting multiple scle-
rosis (RRMS).4,5 This suggests that NfL in the serum 
may be a promising biomarker of disease activity and 
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treatment response. Furthermore, baseline NfL levels 
in people with CIS correlate with lesion burden and 
predict future development of brain atrophy and 
Expanded Disability Scoring Scale (EDSS) worsen-
ing 5–15 years later.6–9 Glial fibrillary acidic protein 
(GFAP) is a protein in astrocytes. Its level in the 
serum may reflect astrocyte activation that accompa-
nies CNS injury, and blood GFAP levels are reported 
to correlate with disability, relapses, and MRI activity 
in RRMS.10,11

We hypothesized that serum NfL, GFAP, and MMP 
levels would decrease over time after minocycline 
treatment. We tested this hypothesis by comparing the 
longitudinal trajectories of NfL, GFAP, and MMPs in 
minocycline or placebo-treated patients with CIS. We 
then evaluated the potential of NfL, GFAP, or MMPs 
at baseline to predict future disease activity.

Methods

Cohort
Patients were from the MinoCIS study, a randomized 
placebo-controlled trial.2 In the study, baseline and 
serial blood samples were obtained and stored at 
−80 degrees Celsius. The trial included untreated peo-
ple between the ages of 18–60 years with CIS who 
presented during the period from January 2009 to July 
2013 with their first demyelinating symptom within 
the previous 180 days, and classified as CIS according 
to the then applicable McDonald 2005 criteria.12 
Participants also had at least two lesions larger than 
3 mm in diameter on T2-weighted MRI of the brain 
(one lesion had to be ovoid, periventricular, or 
infratentorial). Participants were randomized to 
receive either 100 mg of minocycline BID or placebo. 
The primary outcome was conversion to MS, accord-
ing to 2005 McDonald criteria, within 6 months after 
randomization. Clinical data such as EDSS and MRIs 
were available at baseline and at different time points 
in the trial. This biomedical study was designed and 
analyzed these data retrospectively.

Serum NfL and GFAP measurement
Blood was collected at baseline, after 1, 3, and 
6 months, and centrifuged at 1800g for 10 minutes at 
room temperature. Serum and plasma was aliquoted 
and stored at −80°C until analysis. Serum NfL and 
GFAP quantification was performed using Simoa 
assays (NfL kit and GFAP discovery kit run on HD-X; 
Quanterix (Lexington, MA, USA)). The samples of 
each individual patient were analyzed within one 
run, and the personnel performing the analyses was 

blinded for the clinical data. For technical reasons, 
NfL and GFAP were unmeasurable in serum samples 
from two participants (one in each group).

MMPs
MMPs were measured at baseline and at 1 month of 
follow-up. Plasma MMP analyses were performed by 
Eve Technologies (Calgary, Canada) with the Human 
MMP 9-MultiPlex, TIMP 4 MultiPlex Discovery 
Assay, a commercially available bead-based multi-
plex platform that measures MMP-1, MMP-2, MMP-
3, MMP-8, MMP-9, MMP-10, MMP-12, MMP-13, 
TIMP-1, TIMP-2, TIMP-3, and TIMP-4. The details 
of the multiplex method and limits of detection of this 
assay are available online (https://www.evetechnolo-
gies.com).

MRI
A baseline cranial MRI (proton density; T2-weighted; 
fluid-attenuated inversion recovery; axial T1-weighted 
images before and after gadolinium (Gad) enhance-
ment (0.1 mmol per kilogram of body weight)) was 
obtained in accordance with standardized reproducible 
imaging protocols. Lesion volume at baseline was 
determined using a semiautomatic method as described 
previously.13 Follow-up MRI scans were performed at 
regular intervals and evaluated by experienced MR 
radiologists for inflammatory activity, defined as new 
T2 lesions or Gad-enhancing lesions.

Demographic, clinical, and radiologic 
characteristics related to NfL, GFAP, and MMPs
The analysis for correlation between variables was 
performed with Spearman’s rank correlation coeffi-
cient, and the results were plotted in correlation matri-
ces. In the case of MMPs, where the analyses involved 
multiple comparisons, we applied the false discovery 
rate (FDR) method to correct p-values. We then inves-
tigated the association between baseline NfL/GFAP 
levels and selected variables using the Kruskal–Wallis 
test by categorizing into three groups, based on the 
median NfL/GFAP values in the study population: 
low, <the median of NfL/GFAP values; high, >twice 
the median, and mid, > the median but < than twice 
the median values. The median NfL in the study pop-
ulation was 10.35 pg/mL, and the median GFAP was 
60.4 pg/mL.

Prognosis of outcome
To investigate the prognostic potential of the bio-
markers on outcome (conversion to clinically definite 
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multiple sclerosis (CDMS) at 6 months), baseline age, 
sex, disease onset <90 days, EDSS, T2 lesion volume, 
presence or absence of Gad+ lesions, and baseline 
NfL/GFAP and MMPs were explored using the uni-
variate Mann–Whitney test. Significant variables were 
then included in a multivariate binary logistic regres-
sion model with outcome as the dependent variable. 
The underlying assumptions of the binary logistic 
regression models were acceptable in the obtained plots.

Longitudinal change of NfL, GFAP, and MMPs
For analysis of treatment effects, all available longitu-
dinal paired samples from patients who had completed 
the trial were included. Paired tests of significance 
were analyzed using the Wilcoxon Signed-Rank or 
Friedman test, depending on the number of time 
points. Then, a treatment effect of minocycline on NfL 
and GFAP versus placebo was analyzed using a mixed 
model for repeated measurements with NfL and GFAP 
from month 1 to month 6 as the response variables and 
with adjustments for treatment and other potential 
explanatory variables (found to be significant in uni-
variate analysis). Baseline NfL and GFAP levels were 
included as independent variables. An unstructured 
covariance matrix was used. Model assumptions were 
checked in regression diagnostic plots and deemed 
acceptable. The estimated treatment effects across all 
follow-up visits are presented. Another model included 
visit-by-treatment and visit-by-NfL or GFAP interac-
tions, but results did not differ significantly. Adding 
variables such as age, sex, EDSS, or disease onset 
<90 days did not change the results of the model.

Analysis and descriptive statistics
Statistical analyses were performed using the 
Statistical Package for Social Sciences (SPSS 25.0, 
Chicago, IL, USA) and GraphPad PRISM (PRISM 

9.0, GraphPad Software, San Diego, CA, USA). Since 
most of the biomarker data were not normally distrib-
uted, median and interquartile range (IQR) was used to 
describe the data, unless specified otherwise. Clinical 
and demographic characteristics were described with 
mean value ± standard deviation (SD) or as mean 
values (range) depending on the distribution.

Standard protocol approvals, registrations, and 
patient consents
This study received approval from the local ethics 
committee on human experimentation. All patients 
provided written informed consent.

Data availability
The raw data can be obtained upon reasonable request 
by contacting the corresponding author. However, we 
have no consent to share participant level clinical data. 

Results

Patient characteristics
Ninety-six participants in the MinoCIS trial whose 
blood samples were available for analysis were stud-
ied, which represents 68% of the trial population. Of 
these, 49 were in the minocycline group and 47 in the 
placebo group. The remainder participants did not 
provide blood samples for biomedical studies sepa-
rate from the original trial. Age, EDSS, T2 lesion load, 
or Gad-enhancing lesions at baseline were similar 
between these two groups (Table 1). This cohort did 
not differ in any of these characteristics from the 
overall population in the original trial (not shown). At 
6 months, 32.7% of the patients in the minocycline 
group had converted to CDMS versus 51.1% in the 
placebo-treated group. Significance was not tested as 

Table 1. Cohort characteristics at baseline.

Placebo (n = 47) Minocycline (n = 49) p

Age (years) 36.7 ± 9 34.7 ± 9.9 NS

Female, n (%) 30 (64) 37 (76) NS

Onset <90 days, n (%) 9 (19.1) 9 (18.4) NS

Median EDSS (range) 1.5 (0–4.5) 1.5 (0–3.0) NS

Presence of Gad+ lesions (%) 18 (38.3) 15 (30.6) NS

Median number of Gad+ lesions (IQR) 0 (2) 0 (1) NS

Median T2-lesion volume (mm3) 1079 (31–17,231) 1406 (105–20,897) NS
CDMS at 6 months (%) 24 (51.1%) 16 (32.7%)  

NS: not significant; EDSS: Expanded Disability Scoring Scale; IQR: interquartile range; CDMS: clinically definite multiple sclerosis.
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this cohort would not meet the power requirements as 
in the original trial.

NfL as a predictor of conversion to CDMS and 
associations with clinic-radiological variables
At baseline, NfL was significantly and positively 
correlated with T2 lesion volume (r = 0.48, 95% confi-
dence interval (CI) = 0.31–0.63, p < 0.001), number 

of Gad-enhancing lesions (r = 0.37, 95% CI = 0.17–
0.54, p < 0.001), and baseline GFAP concentra-
tions (r = 0.31, 95% CI = 0.11–0.49, p = 0.002), but not 
with EDSS or age (Figure 1(a)). Furthermore, NfL 
concentrations were higher in those with disease 
onset <90 days (median = 11.91 (14.42) vs 7.72 (7.3), 
p = 0.028). NfL at baseline was significantly higher in 
those who converted to CDMS at month 6, indepen-
dently of treatment arm (Figure 2(c)). There was, 

Figure 1. Correlation matrix plots of NfL/GFAP (a) and MMP (b) concentrations and clinical/radiological variables. 
The heatmaps indicate the Spearman r value, where red is a positive correlation and blue is a negative correlation. 
Associations between baseline NfL and Gad+ lesions (c), T2 lesion volume (d), and GFAP (e). Association between 
baseline GFAP and T2 lesion volume (f). The dots represent the medians and the error lines represent the IQR. 
Significance levels for MMPs are corrected with the false discovery rate method.
ns: not significant.
* < 0.05; ** < 0.01; *** < 0.001.

Figure 2. Association between outcome and baseline Gad+ lesions (a), T2 lesion volume (b), NfL (c), and GFAP (d).
CDMS: clinically definite MS (outcome); ns: not significant.
Points represent the medians and the error lines the IQR.
** < 0.01; *** < 0.001.
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however, significant overlap among groups. Other 
significant variables associated with outcome were 
baseline T2 lesion volume and presence of Gad-
enhancing lesions (Figure 2(a) and (b)). In a logistic 
regression model that included baseline NfL, T2 lesion 
volume, and presence/absence of Gad-enhancing 
lesions, only the presence of Gad-enhancing lesions 
was independently predictive of outcome (odds ratio 
(OR) = 7.39 (95% CI = 2.65–20.6), p = 0.02).

Longitudinal dynamics of serum NfL levels
Baseline NfL concentrations were similar in both 
minocycline and placebo–treated groups (Table 2). 
Median NfL increased from 10.4 (13.5) pg/mL at 
baseline to 24.6 (18.4) pg/mL at month 1 (+136.5%), 
31.6 (23.7) pg/mL at month 3 (+203.8% vs base-
line), and then dropped to 23 (18.1) pg/mL at month 6 
(+121.2% vs baseline) in the minocycline group. The 
increase reached statistical significance at month 3, 
compared to baseline (Figure 3(a)). In the placebo 
group, NfL concentrations remained stable over the 
course of the study. In the mixed model including 
NfL concentrations from month 1 to month 6 as the 
dependent variable, minocycline treatment group 
was associated with higher NfL levels (mean treat-
ment effect in % change = +152% (95% CI = 107–
206.2), p < 0.001) after adjusting for baseline NfL 
levels, baseline T2 lesion volume and Gad+ lesion 
status. Adding age, EDSS or disease onset <90 days 
into the model added no additional explanatory 
value.

GFAP as a predictor of conversion to CDMS and 
associations with clinic-radiological variables
At baseline, GFAP was significantly correlated with T2 
lesion volume (r = 0.29, 95% CI = 0.09–0.47, p = 0.004) 

(Figure 1(a)), but not with number of enhancing 
lesions, EDSS, or age. GFAP concentrations were 
lower in those with disease onset <90 days (median 
58 (33.9) vs 75.8 (42.8), p = 0.033). GFAP at baseline 
was not different in participants who converted to 
CDMS at month 6 (Figure 2(d)).

Longitudinal dynamics of serum GFAP levels
Baseline GFAP concentrations were higher in the 
minocycline group compared to the placebo group 
(Table 2). Median GFAP decreased from 64.2 (32.9) 
pg/mL at baseline to 59.9 (44.1) pg/mL at month 1 
(−6.7%), 58.3 (67.1) pg/mL at month 3 (−9.2% vs 
baseline), and 56.15 (16.7) pg/mL at month 6 (−12.5% 
vs baseline) in the minocycline group. This decrease 
reached statistical significance at month 6 (Figure 3(b)). 
In the placebo group, GFAP concentrations remained 
stable over the course of the study. Treatment was not a 
significant predictor in the mixed model when adjust-
ing for baseline GFAP, T2 lesion volume, and Gad+ 
lesion status.

MMPs as a predictor of conversion to CDMS and 
associations with clinic-radiological variables
None of the MMPs at baseline (Table 3) predicted 
conversion to CDMS at month 6 (not shown), and 
they were not correlated with any clinical or radio-
logical variable (Figure 1(b)). Several MMPs were 
correlated with each other.

Longitudinal dynamics of serum MMPs levels
Between baseline and month 1, only MMP-7 concen-
trations were significantly reduced in the minocycline 
group, but not the placebo group (Figure 3(c) and 
Table 3).

Figure 3. Longitudinal dynamics of NfL (a), GFAP (b), and MMP-7 (c) concentrations. Statistical tests are the Friedman 
test with the post hoc Wilcoxon test and Bonferroni correction. The dots represent the medians and error bars IQR.
BL: baseline; M1: month 1; M3: month 3; M6: month 6.
*< 0.05; ***< 0.001.
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Discussion
In this study, we took advantage of stored samples 
from a randomized placebo-controlled trial to 
investigate if minocycline modifies serum NfL and 
GFAP levels and to explore potential mechanisms. 
Minocycline significantly reduced the concentrations 
of GFAP and MMP-7. We also found that despite 
minocycline being effective in reducing conversion to 
MS,2 it had paradoxical effects on NfL levels. Baseline 
NfL levels were correlated with MRI activity at base-
line, and was associated with outcome, while GFAP 
was only modestly correlated with T2 lesion volume, 
but not with outcome.

In the previous studies, serum GFAP has shown good 
correlation with clinical and radiological activity in 
RRMS,10,11 but there are a few studies in CIS. In one 
study, cerebrospinal fluid (CSF) levels of GFAP were 
increased in CIS compared to controls, and the levels 
were higher in those who converted to MS.14 In 
another small study, serum GFAP was correlated with 
T2 lesion load.15 In this study, baseline serum GFAP 
was only moderately correlated with MRI lesion load 
but not with Gad-enhancing lesions. Use of DMTs has 
also been shown to correlate with lower serum GFAP 
levels in a pilot study in RRMS.16 In contrast to NfL, 
GFAP levels were reduced at 6 months in the minocy-
cline-treated group in this study. GFAP levels showed 
a trend toward increasing over time in the placebo 
group, while a reduction in GFAP was seen in the 
minocycline group despite higher baseline GFAP con-
centrations. GFAP is a marker of glia activity, and 
minocycline is known to inhibit astrocyte as well as 
microglia activity.17,18

The paradoxical increase of NfL in the minocycline-
treated group stands in contrast to recent studies 
showing that decreasing NfL may be a marker of 
treatment response with DMTs, although most studies 
have focused on RRMS instead of CIS.4,5 In RRMS, 
studies have shown an NfL reduction that is propor-
tional to the efficacy of the DMT, sustained over sev-
eral months, and also dependent on baseline NfL 
levels.4,5 In a recent small study, initiation of any 
DMT resulted in decreasing NfL levels after a mean 
of 12 months in a mixed population of CIS and early 
RRMS.9

There are several possible explanations for the NfL 
unexpected result. First, studies have shown that a 
reduction in NfL upon DMT initiation is evident after 
6 months or longer,4,5 while in our study, the early 
increase was seen at month 3 and seemed to eventu-
ally trend downward. Unfortunately, we did not have 
access to enough samples at months 12 or beyond to T
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assess this effect. Since there was no evidence of an 
increase in disability, cranial MRI activity or relapses 
after minocycline treatment it is unlikely that this 
increase in NfL reflects measurable neurologic 
impairment. Interestingly, a previous study in trau-
matic brain injury found that minocycline treatment 
increased NfL levels in the short term (3 months), 
despite an effect in reducing microglial activity,19 and 
NfL levels returned to baseline at 6 months. These 
authors hypothesized that minocycline might have 
inhibited the normally protective roles of resident 
CNS microglia activity.20 Nonetheless, a small study 
showed a reduction in NfL levels with minocycline 
treatment after spinal cord injury in patients with a 
motor complete spinal cord injury.21 A mild neuro-
toxic effect of minocycline cannot be ruled-out. For 
example, NfL increases at 3 months in patients with 
MS who undergo hematopoietic stem cell transplanta-
tion, despite a beneficial effect on disease activity.22 
This is thought to be due to procedure-related neuro-
toxicity, including the use of chemotherapy. More and 
longer studies will be needed to resolve this unex-
pected finding, as our previous results suggest that 
minocycline reduces clinical and MRI disease activity 
in early MS.

Baseline NfL was associated with MRI disease activ-
ity and was predictive of conversion to MS, although 
there was some overlap in NfL levels between con-
verters and non-converters. This is similar to what 

has been observed in several other studies of serum 
NfL in CIS and RRMS. In particular, the strongest 
association was between NfL and Gad-enhancing 
lesions at baseline, supporting the knowledge that 
acute lesions lead to most pronounced neuroaxonal 
injury.23 However, in our study, longitudinal NfL lev-
els in individual patients did not match subsequent 
disease activity (data not shown), likely due to small 
sample sizes in addition to paradoxical treatment 
effects. More data of NfL dynamics in association 
with disease activity (including understanding NfL 
clearance) are needed at the individual patient level. 
Furthermore, age, which has been associated with 
NfL in the RRMS literature, was not correlated with 
NfL in our study. Indeed, other studies focusing on 
CIS have also failed to find an age-NfL correlation.7 
Small sample sizes and a younger and more homoge-
neous group in CIS compared to other MS phenotypes 
could explain these results.

MMPs may be pathogenic in MS through disruption of 
the blood–brain barrier (BBB) and increasing inflam-
matory cell infiltration into the CNS.3,24 MMP-9 has 
been shown to be elevated in CIS, and to correlate 
with lesion burden.25 Moreover, minocycline is known 
to inhibit MMP activity, and it is one of the possible 
mechanisms by which it inhibits inflammatory demy-
elination.3,18 In our study, MMPs were not correlated 
with disease activity, but minocycline did signifi-
cantly decrease the concentrations of MMP-7 as early 

Table 3. Baseline MMPs and change at month 1.

Placebo Minocycline

 Baseline,  
median (IQR)

M1 change, median  
(95% CI)

Baseline,  
median (IQR)

M1 change,  
median (95% CI)

Paired samples 26 31

MMP-1 (pg/mL) 1238 (744 to 2832) −142.5 (−715 to −9.8) 1981 (1319 to 3277) −535.8 (−941 to −6.6)

MMP-2 (ng/mL) 90.8 (76.7 to 105.2) −0.63 (−7.4 to 4.7) 94.2 (79.35 to 113.6) −2.4 (−10.6 to 8.2)

MMP-3 (ng/mL) 11.4 (8.2 to 18.9) –0.2 (−3.7 to 1.29) 11.3 (6.9 to 19) −14.4 (−6.4 to 1.3)

MMP-7 (pg/mL) 1352 (714.7 to 1188) −186.7 (−484 to 134) 1222 (918.6 to 1460) −199.2 (−395 to 89)***

MMP-8 (pg/mL) 7694 (5812 to 14,641) −280 (−2289 to 1880) 8950 (5235 to 13,371) 313.8 (−2208 to 3731)

MMP-9 (ng/mL) 267 (187.6 to 400.8) −19.8 (−742 to 138) 286 (195.7 to 454.3) −2.7 (−75.9 to 78.4)

MMP-10 (pg/mL) 938.5 (714.6 to 1188) −41.6 (−144 to 256) 879.7 (643.8 to 1212) −99.5 (−321 to 53.69)

MMP-12 (pg/mL) 164.7 (79.2 to 193.2) 9.81 (0 to 45.2) 136.3 (75.96 to 193.2) 14.21 (0 to 44.9)

MMP-13 (pg/mL) 716 (435.7 to 998) 107 (−140 to 298) 716 (478.9 to 998.1) 70.2 (−48 to 149)

TIMP-1 (ng/mL) 127.8 (107.4 to 140.4) −9.2 (−27.2 to 6.9) 122.6 (107.4 to 133.1) −6.7 (−22.9 to 4.4)

TIMP-2 (ng/mL) 99.4 (90.7 to 112.8) −1 (−4.6 to 9.98) 95.59 (86.9 to 108) −6.22 (−9.1 to 962.5)

TIMP-3 (ng/mL) 23.3 (13.1 to 28.3) 3.3 (−12.2 to 15.3) 24.6 (16.58 to 34.28) −6.6 (−11 to 8.8)
TIMP-4 (pg/mL) 1485 (1170 to 20.34) −247 (−465 to 76.7) 1569 (1199 to 1834) 14.9 (−382 to 201)

MMP: matrix metalloproteinase; IQR: interquartile range; CI: confidence interval.
***<0.001 versus baseline based on the Wilcoxon Signed-Rank.

https://journals.sagepub.com/home/msj


Multiple Sclerosis Journal 28(13)

2088 journals.sagepub.com/home/msj

as 1 month after initiating treatment. MMP-7 is upreg-
ulated in active MS lesions26 and is one of the several 
proteins present in CSF that correlate to disease 
severity.27

A limitation of our study is that we did not study all 
participants in the original trial, as some patients did 
not have available serum samples. Furthermore, not 
all participants had samples available at every time 
point. However, restricting our analysis to only those 
participants with samples at all time points did not 
change our results. Another limitation is the short-
term nature of the study so the trajectory of the bio-
markers at longer follow-up times (12–24 months) is 
unknown. Finally, the MMP analysis was done in 
plasma, and it is unclear if this is reflective of what 
may be occurring in the CNS in terms of protease 
activity.
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