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Abstract: One of the main current strategies for cancer treatment is represented by combination
chemotherapy. More recently, this strategy shifted to the “hybrid strategy”, namely the designing of
a new molecular entity containing two or more biologically active molecules and having superior
features compared with the individual components. Moreover, the term “hybrid” has further
extended to innovative drug delivery systems based on biocompatible nanomaterials and able to
deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest
in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent
and intriguing research advances in the development of hybrids based on the polyphenols curcumin
and resveratrol, which are known to act as multifunctional agents. We focused on two issues that
are particularly interesting for the innovative chemical strategy involved in their development. On
one hand, the pharmacophoric groups of these compounds have been used for the synthesis of
new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid
nanomaterials based on gold nanoparticles, which have many potential applications for both drug
delivery and theranostics in chemotherapy.

Keywords: hybrid compounds; hybrid nanosystems; curcumin; resveratrol; anticancer activity

1. Introduction

Despite enormous drug discovery efforts, cancer continues to be one of the leading
causes of death worldwide. It currently ranks second in terms of mortality and, according to
WHO reports, accounted for nearly 10 million victims in 2020 [1]. The difficulty in treating
this disease is due to its multifactorial and polygenic nature, involving multiple organs,
tissues, and biochemical pathways [2]. Therefore, as with many other complex diseases,
the standard single drug treatment has proven to be ineffective over time. Strategies
to overcome the multifactorial nature of this disease include the administration of drug
cocktails (complex therapy) or drugs in a fixed dosage ratio (combined therapy) aimed at
different targets to obtain a synergistic effect and reduce the spread of drug resistance [3].
Nevertheless, several issues related to this mixed chemotherapy treatment of cancer, such as
the possibility of unforeseen drug–drug interactions, poor patient compliance, insurgence
of severe side-effects, and non-selectivity toward cancerous cells, remain unresolved [4].
In the last few years, the combination strategy shifted swiftly to the “hybrid strategy”,
namely the design of a new molecular entity (the hybrid molecule) containing two or
more biologically active molecules [5]. The term “hybrid” has been invariably used as
a synonym by the scientific community to identify a codrug (two identical or different
pharmacophores/drugs joined by means of a cleavable linker), a fused drug (the same as a
codrug but joined without a linker), a conjugate (bioactive compound(s) covalently linked
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to a functional molecule), a chimeric drug (two or more pharmacophores/drugs merged in
a new chemical entity), and a multifunctional/multimodal/multipotential (and so forth)
drug [6]. Furthermore, the hybrid strategy (hence the term hybrid) implies that this new
therapeutic entity has superior features compared with the individual components (e.g.,
toxicity and bioavailability). Based on this last (and more important) consideration, the
term “hybrid” has been further extended to nanotechnology, with special regard to the
development of drug delivery systems in which the bioactive component(s) are embedded
or conjugated to biocompatible nanomaterials. The hybrid nanosystems are generally
classified on the basis of the structural components (e.g., inorganic/organic building blocks),
accessory moieties (e.g., crosslinkers, stimuli-responsive moieties, and antibodies), and
the architecture of hybridization (e.g., nanoclusters, nanoparticles, nanotubes, nanoshells,
nanorods, nanocrystals, nanocages, etc.) [7]. The hybridization process can take place at the
level of the delivery platform, or it can be directly carried out by coating the nanomaterial
with bioactive compounds. The use of these smart nanomaterials represents a new trend of
pharmaceutical research, as they may offer a plethora of advantages compared with mere
drug therapy, including the possibility of achieving targeted chemotherapy with specific
release to cancer cells and metastasis sites [8,9].

Naturally occurring products have been used for the treatment and prevention of
a variety of chronic pathologies, including cancer, and there is an increased interest in
plant-derived compounds due to the necessity to find alternative sources of new drugs with
beneficial health properties. In particular, polyphenolic compounds, one of the most diverse
groups of plant secondary metabolites, are known for their health-promoting properties
and have attracted attention as promising antitumor agents and also because, generally,
they are able to act as multifunctional agents. Thus, nanoscale formulations have been
developed to ameliorate not only their pharmacodynamic profile but also to improve their
solubility, stability, and bioavailability to address and overcome their limitations [10–12].

The aim of the present review is to report the most recent and intriguing research
advances in the development of hybrids (in the broad sense of the term) encompassing
the common feature of containing a plant-derived bioactive component for the potential
treatment of various types of cancer. Given the vastness and complexity of this topic,
as well as the large number of plant polyphenols that have been considered as potential
substrates for the design of hybrid products, we focused our attention on two polyphenols,
curcumin (Cur) and resveratrol (Res), which possess unique physicochemical features
and are well-known for their wide spectrum of biological activities, including anticancer
properties. Polyphenols may be categorized primarily into flavonoids and nonflavonoids.
The basic skeleton of flavonoids (flavonols, flavones, flavan-3-ols, anthocyanidins, fla-
vanones, and isoflavones) can have numerous substituents, and the water solubility of
flavonoids increases with the presence of sugars and hydroxyl groups as substituents on the
skeleton. The nonflavonoids include diverse classes of polyphenols, such as stilbenes and
curcuminoids. The curcuminoid Cur and the stilbene Res have been extensively studied
for their beneficial properties against human chronic diseases, such as cancer [13], and are
representatives of the group of polyphenols with poor bioavailability. In fact, polyphenols
can be generally classified into three categories: (1) high solubility and poor cell membrane
permeability, (2) low solubility and poor cell membrane permeability, and (3) low solubility
and high cell membrane permeability [14,15]. The polyphenols Cur and Res examined
in the present study belong to types 2 and 3, respectively. Cur is insoluble in cold water,
and Res also shows a very low solubility (about 0.03 g/L). Furthermore, Res is stable at
an acidic pH, while its degradation increases exponentially at a pH above 6.8 [15]; Cur is
highly susceptible to chemical degradation in alkaline aqueous solutions (pH ≥ 7.0) but
can promote crystallization in aqueous systems under acidic conditions [16]. Thus, it is
obvious that efforts to outcome their limits and improve their potential applications must
be made.

The review is focused on two kinds of hybrid nanoproducts that appear particularly
interesting because of the innovative chemical strategy involved in their development. As
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described in the first part of the paper, Cur and Res have been used for the synthesis of
new hybrid compounds characterized by better chemico–physical and pharmacological
properties compared with the parent drugs [17]. On the other hand, these two molecules
can be introduced in the development of hybrid materials based on gold nanoparticles, a
material endowed with extraordinary biocompatibility and physicochemical properties,
and they consequently have many potential applications in the pharmaceutical industry
for drug delivery in chemotherapy [18–20].

2. Chemical Features and Anticancer Effect of Curcumin and Resveratrol

Cur (diferuloylmethane; Figure 1) is one of the bioactive components of Curcuma longa
Linn., and has been used for the management of multiple diseases in different cultures. Its
application is limited by its low water and plasma solubility, chemical instability under
alkaline conditions, poor oral absorption, and rapid metabolism. In addition, the polyphe-
nol Res (3,4′,5-trans-trihydroxystilbene), a phytoalexin produced by several plant species,
possesses a wide variety of biological properties that have been extensively studied both
in vitro and in vivo. Unfortunately, Res, like Cur, shows low aqueous solubility and poor
chemical stability, as well as low bioavailability, all factors limiting its clinical effectiveness.
Both Cur and Res are claimed to possess significant anticancer properties due to their
capability to act as multifunctional agents.
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The imbalance between cell death and cell proliferation is one of the major factors
involved in cancer development. First, the antioxidant properties of Cur and Res, because
of their capability to modulate antioxidant enzymes activity, can likely contribute to the
anticancer effects of these polyphenols. However, in some experimental studies on cancer
cells, Cur and Res appeared able to promote massive ROS production, which could lead to
cell death [21,22]. Cur and Res can inhibit cell survival signaling [23] and lead to apoptosis,
not only activating the extrinsic and intrinsic pathways but also inducing cell-cycle arrest.
Interestingly, there is evidence that Cur and Res can activate not just apoptosis but also
autophagic cell death [24]. Furthermore, Res was shown able to induce cancer cell death
by upregulating sirtuin 1 (Sirt1) [25].

The tumor microenvironment is a complex environment containing various cellular
components (e.g., stromal cells, immune cells, and vascular endothelial cells), multitudi-
nous factors (e.g., cytokines), abundant extracellular matrix (ECM), and their various
cross-talk networks. Cur and Res can have modulatory effects on the tumor microenviron-
ment [26]. In particular, Cur and Res can inhibit cancer growth through the inhibition of
pathways related to epidermal growth factor (EGF) and vascular endothelial growth factor
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(VEGF), pro-inflammatory cytokines, and pro-inflammatory enzymes [27]. Finally, the
invasion and metastasis of cancer cells involve the destruction of the ECM and basement
membrane by proteolytic enzymes, such as matrix metalloproteinases (MMPs), in particu-
lar MMP-9, which have been shown to be inhibited by Cur and Res in several experimental
models [25,28].

Finally, both Cur and Res were shown to play a significant role in tumor treatment
through targeting microRNA (miRNA) acting as tumor suppressors and oncogenes [29],
and acting as modulators of the epithelial-to-mesenchymal transition [30].

The chemical features of Cur consist of two symmetrical feruloyl moieties connected
through a methylene group. Its overall structure includes a linear seven-carbon chain
with a 1,6-heptadiene motif in E-configuration, a central 1,3-diketone component, and two
external aryl moieties (Figure 1). However, computational studies have shown that the
1,3-diketone component of Cur is more stable in the 1,3-ketol-enol tautomeric form (as
depicted in Figure 1) [31]. This latter feature, coupled with the unsaturated nature of the C7
chain with trans C=C, gives rise to a planar and linear structure for Cur with the methoxy
groups pointed out in the opposite direction with respect to the 1,3-keto-enol group,
according to prior crystal X-ray diffraction studies [32]. Moreover, the presence of the
1,3-ketol-enol group fosters the formation of stable metal–Cur complexes, which have been
recently comprehensibly reviewed elsewhere [33]. As said before and recently reviewed
by several authors [21,24,34,35], Cur has been shown to target all the main steps of cancer
development, being capable of interfering with several biochemical pathways involved
in the proliferation and survival of cancer cells as well as directly and indirectly binding
different targets. In this view, essentially all the chemical parts of the structure of Cur are
considered vital for the activity. The two feruloyl moieties play a critical role in binding
to protein targets (H-bonding and π–π stacking interactions). Successful modifications
include a variation of the phenyl substitution pattern, mostly halogens or other H-bond
acceptors and, in a few cases, bioisosteric replacement of the phenyl group with equivalent
(hetero)aryl rings. Furthermore, the two phenolic -OH groups may be exploited for the
development of a wide variety of bioconjugates. The 1,3-keto-enol moiety is also very
important for the biological activity of Cur, but it is also responsible for its instability in
an alkaline medium (which already occurs at pH above 6.5). In order to overcome such
instability problem, fruitful modification of this structural motif includes the development
of mono- and di-carbonyl analogs (symmetrical and asymmetrical), heterocyclic analogs (to
embed the 1,3-diketo-enol moiety), and the insertion of bulky substituents at the methylene
group. The length of the C7 chain is normally kept unchanged, as attempts to shorten or
extend it in most cases lead to less biologically active derivatives (Figure 1) [34,36].

In addition, Res, regarding its antitumor activity, is known to affect a variety of
cancer stages, from initiation and promotion to progression, by affecting the diverse signal-
transduction pathways that control cell growth and division, inflammation, apoptosis,
metastasis, and angiogenesis [22,37–41]. In particular, the anticancer properties of Res seem
related to its capability to modulate the cell redox status both by acting as an antioxidant
and by promoting ROS production. The extraordinary antioxidant potential of Res relies
on its unique structural motif that entails the presence of a double-bound C=C united
to a p-phenol group and a resorcinol group; both aromatic groups are able to provide
several resonance structures upon radicalic hydrogen abstraction of the -OH in the para
and meta position, respectively (Figure 2). Therefore, modifications of this small molecule
usually lead to compounds with reduced antioxidant properties, although some Res-
like derivatives with improved pharmacokinetic and/or pharmacodynamic parameters
have been developed. The structural changes mostly include alkylation, halogenation,
glycosylation, and further hydroxylation [42–44].
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3. Hybrid Compounds Containing Curcumin and Resveratrol

The synthesis of Cur- and Res-based hybrid compounds represents an innovative
approach for drug discovery in the field of anticancer chemotherapy. This strategy is
based on the possibility to connect, via covalent chemical bonds, two or more bioactive
scaffolds endowed with pharmacological activity [6,45–47] so that the fusion of different
pharmacophores in a new multifunctional compound is aimed to obtain a better effi-
cacy in comparison with the parent drugs in terms of improved pharmacokinetic and
pharmacodynamic properties and decreased toxicity [45] (Tables 1 and 2).
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Table 1. Hybrid molecules derived from Res and designed for potential employment in human cancer.

Pharmacophore 1 Pharmacophore 2 Hybrids Pathology In Vitro Cell-Free or In Silico
Model In Vitro Cell-Based Model In Vivo Model Ref.

Res ebselen Benzoselenazole–stilbene hybrids cancer inhibition of TrxR human liver carcinoma Bel-7402 [48]

Res cinnamic acid Res linked to cinnamic acid through an acyl
ester group cancer tubulin polymerization assay;

molecular docking with tubulin

lung cancer A549, MCF-7, hepatoma
HepG2, cervical cancer HeLa, and

breast cancer MDA-231 cells
[49]

Res salicylate
addition of a carboxylic acid or its methyl ester

attached ortho to one of the phenol groups
present in hydroxystilbene

cancer molecular docking with human
DNMT

human colorectal adenocarcinoma
HT-29, hepatoma HepG2 cells, and

mammary gland/breast SK-BR-3 cells
[50]

Res caffeic acid Res-caffeic acid hybrids possessing an amide
linker or an ester linkage breast cancer molecular docking with STAT3

protein
human breast cancer MDA-MB-231

cells and colonic carcinoma HT29 cells
female Kunming mice bearing

breast cancer 4T1 cells [51]

Res obhs conjugation of Res with OBHS breast cancer estrogen receptor ERα
antagonistic activity

human breast cancer
MCF-7 cells

female Balb/c nude mice
inoculated with MCF-7 breast

cancer cells
[52]

Res Cur

an o-substituted conjugated-phenyl system from
Res linked to a 3-methoxy-4-hydroxycynamoil
subunit, with a hydrazone functionality as a

spacer

breast cancer estrogen-positive human breast cancer
MCF-7 cells [53]

Res Cur Res linked to a 3-methoxy-4-hydroxycynamoil
subunit from Cur colonic cancer human colon adenocarcinoma SW480

and SW620 cells [54]

Res Aspirin addition of a carboxylic acid group adjacently to
one of the phenols in the Res structure

colonic cancer and
intestinal

inflammation

normal mouse intestinal ModeK cells
and human colon cancer HCT116 cells

C57BL/6 mice bearing HCT116
colon cancer cells;

DSS-induced colitis in male
C57BL/6 mice

[55]

Res coumarin a substituted trans-vinylbenzene moiety on a
coumarin backbone cancer

human lung carcinoma H460,
squamous carcinoma A431, and

melanoma JR8 cells
[56]

Res: resveratrol; Cur: curcumin; OBHS: oxabicycloheptene sulfonate; TrxR: thioredoxin reductase; DNMT: DNA methyltransferase; STAT3 protein: signal transducer and activator of transcription 3 protein; DSS:
dextran sodium sulfate.
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Table 2. Hybrid molecules derived from Cur and designed for potential employment in human cancer.

Pharmacophore 1 Pharmacophore 2 Hybrids Pathology In Vitro Cell-Free or In Silico
Model In Vitro Cell-Based Model In Vivo Model Ref.

Cur ligustrazine
substituting one of the two aromatic rings

of Cur
analogs with ligustrazine

lung cancer inhibition of
TrxR

human lung cancer A549, drug-resistant
human lung cancer A549/DDP cells

athymic BALB/c nude mice
inoculated with A549/DDP cells [57]

Cur coumarin monocarbonyl Cur linked to coumarin with
a trizole as spacer cancer molecular docking with tubulin

human leukemia THP-1, colon
adenocarcinoma COLO-205, colorectal

cancer HCT-116 cells
[58]

Cur Isatin monocarbonyl Cur linked to isatin with a
trizole as a spacer cancer tubulin polymerization assay;

molecular docking with tubulin

human leukemia THP-1, colon
adenocarcinoma COLO-205, colorectal

cancer HCT-116, prostate cancer PC-3 cells
[59]

Cur sulfonamide introduction of sulfanilamide unit into the
methylene part of Cur cancer molecular docking with EGFR

TK
human gastric adenocarcinoma AGS and

lung cancer A549 cells [60]

Cur steroids pyrazolocurcumin-pyrimidinyl androstane
derivative breast cancer human breast cancer MCF-7 cells [61]

Cur quercetin or
genistein

ester of (1E,4E)-1,4-penta-dien-3-one (from
Cur) and chromone (from quercetin or

genistein)
prostate cancer

human prostate cancer
androgen-independent PC-3b and DU-145

cells, and androgen-dependent LNCaP cells
[62]

Cur myricetin monocarbonyl analogs of curcumin linked
to myricetin gastric cancer human gastric cancer SGC-7901 cells [63]

Cur artesunate linkage of Cur with two artesunate
molecules melanoma melanoma SK-MEL3, SK-MEL24, and

RPMI-7951 cells [64]

Cur thalidomide
thalidomide linked at the methylene

position between the two carbonyls of Cur;
monoketone Cur linked to thalidomide

multiple myeloma human multiple myeloma MM1S,
RPMI8226, U266 cells [65]

Cur: curcumin; TrxR: thioredoxin reductase; EGFR TK: Epidermal Growth Factor Receptor tyrosine kina.
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For example, to overcome the negative physicochemical properties of Cur, some Cur-
based hybrids have been projected starting from Cur monocarbonyl analogs by deleting
the reactive β-diketone moiety, which is an unfavorable feature for the real bioavailability
of this polyphenol (e.g., [58,59]). On the other hand, this technique can improve the
interaction with specific targets critical for the regulation of a cellular process. For example,
tubulin is the globular protein constituting microtubules, which play a key role in cell
division. Cur-based hybrids developed by Sharma et al. [59] and Singh et al. [58] are
more efficient tubulin polymerization inhibitors, targeting the Cur-binding site close to the
vinblastine binding site. Yin et al. [49] developed Res–cinnamoyl derivates as new tubulin
polymerization inhibitors able to target the colchicine binding site. Furthermore, the
monocarbonyl ligustrazine–Cur hybrids synthesized by Ai et al. [49] are better inhibitors
of thioredoxin reductase (TrxR), a fundamental enzyme for the regulation of the cell redox
balance often overexpressed in cancer cells. The Res–caffeic acid-based hybrids developed
by Li et al. [51] can simultaneously target both acetylated and phosphorylated STAT3, a
cytoplasmic protein that plays a fundamental role in oncogenic signaling pathways, while
Res targets only acetylated STAT3.

A representative and extensive study on the design of hybrid molecules that can be
categorized as codrugs was carried out by Wang et al. [63]. The authors synthesized 20 Cur–
hybrids containing the flavonoid myricetin or coumarin, two phytochemicals endowed
with proven anticancer properties [66,67], as potential anticancer agents targeting the en-
zyme TrxR, whose overactivity is associated with the development and progression of dif-
ferent types of aggressive cancers [68]. Biological assessments of anticancer activity showed
that the myricetin-Cur hybrid compound 5,7-dimethoxy-3-(3-(2-((1E,4E)-3-oxo-5-(pyridin-2-
yl)penta-1,4-dien-1-yl)phenoxy)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one
(Figure 3) is able to induce gastric cancer cell (SGC-7901) apoptosis by the accumula-
tion of ROS, repressing mitochondrial function and inhibiting TrxR activity. Moreover,
apoptosis and inhibition of proliferation of gastric cells were reversed in the assays wherein
cells underwent preincubation with N-acetylcysteine as a result of the decrease in ROS
formation and protection of mitochondrial function, underlining the importance of the Trx
system for anticancer therapy [63].
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A similar approach, which entails the use of the monocarbonyl pharmacophoric
framework for the construction of the hybrids, was previously undertaken by Bedi’s
research group [58]. In this case, the authors successfully obtained coumarin–Cur hybrids
by means of a triazole linker generated by a click chemistry reaction between an alkyne
moiety introduced at the -OH phenol group of Cur and an azide group appended to the
coumarin scaffold. These so-named C5-curcuminoid–coumarin hybrids showed significant
antiproliferative activity in vitro against different cancerous cell lines, such as the THP-1,
COLO-205, and HCT-116 cell lines, whereas the PC-3 cell line was resistant. The most
active compounds were selected for further testing as tubulin polymerization inhibitors,
and the mechanism was validated by docking studies. The structure of the most active
compound and structure–activity relationship (SAR) insights are depicted in Figure 4.
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Figure 4. Coumarin–Cur hybrids developed by Bedi’s research group [58].

The same research group previously designed and synthesized similar hybrids for
which they used the indole derivative isatin as an active component to join to Cur and
support the binding with tubulin. The hybrids were evaluated toward a wider panel of
cancerous cell lines and were found to be active against the THP-1, COLO-205, HCT-116,
and PC-3 cancerous cell lines [59]. In the context of the tubulin polymerization inhibitors as
potential anticancer agents, a recent study was carried out by Yin et al. [49]. The design of
these hybrids consists of the connection of Res with the pharmacophore of chalcone through
a flexible acyl ester group [49]. Chalconoids are known to exert anticancer activity targeting
tubulin polymerization [69]. The structure and activity of the most potent compound are
presented in Figure 5.
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Yan et al. reported an example of the design of chimeric hybrids, wherein they com-
bined in the same chemical entity the pharmacophores of Res and ebselen [48], a synthetic
organoselenium derivative (which essentially acts by mimicking glutathione peroxidase)
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endowed with a broad range of biological activities that can be exploited in anticancer
therapy [70]. The resulting benzoselenazole–stilbene hybrids exhibited remarkable antipro-
liferative activities against four human cancer cell lines, namely Bel-7402, A549, HeLa,
and MCF-7. Moreover, it has been demonstrated that these hybrids possess good TrxR
inhibitory activity (Figure 6). Cell cycle arrest and apoptosis studies were also performed
on Bel-7402 cells, indicating a significant increase in intracellular ROS [48].
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Figure 6. Structure and activity of the most potent chimeric compound developed by Yan et al. [48].

As the strategy to affect the Trx system turns out to be effective for a selective target-
based anticancer drug design, another research group aimed to hybrid molecules aimed at
this target. Ai et al. obtained chimeric hybrids by merging the pharmacophore of Cur with
ligustrazine (tetramethylpyrazine; Figure 7) [57], the bioactive ingredient of a Chinese herb
extract used for the treatment of cardiovascular and cerebrovascular diseases [71]. These
hybrids significantly inhibited the proliferation of drug-sensitive (A549, SPC-A-1, LTEP-G-
2) and drug-resistant (A549/DDP) lung cancer cells with negligible effects on non-tumor
lung epithelial-like cells (Human Bronchial Epithelial cells, HBE) (Figure 7). Furthermore,
they inhibited the Trx system, promoted intracellular ROS accumulation (as expected
because of the presence of the ROS promoting agent ligustrazine), and induced apoptosis
(assessed for the most potent derivative). Additional in vitro studies showed also that
these hybrids inhibit different tumor-related pathways, and in vivo studies (A549/DDP
xenografts) confirmed the antitumor efficacy [57].
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Res-based chimeric hybrids were also obtained by combining the pharmacophore
Res and the abovementioned coumarin. In this regard, Belluti et al. synthesized stilbene–
coumarin derivatives with excellent antiproliferative and proapoptotic activity against
a panel of tumor cell lines, namely H460, A431, and JR8 [56]. SAR analysis of this set
of compounds indicated that the 7-methoxycoumarin nucleus and the 3,5-disubstitution
pattern of the trans-vinylbenzene moiety of Res presented the most promising structural
features to achieve excellent antitumor and proapoptotic activity (Figure 8).
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Aldawsari et al. aimed to develop hybrid molecules by merging the pharmacophores
Res and acetylsalicylic acid [50]. The intended targets in this case were DNA methyltrans-
ferases (DNMTs), key enzymes involved in carcinogenesis whose expression is decreased
by Res [72]. These Res–salicylate hybrids showed considerable cytotoxicity against three
human cancer cell lines (HT-29, HepG2, and SK-BR-3; Figure 9) compared with Res, and
docking studies indicated selective inhibition of the isoforms DNMT3A and DNMT3B.
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Aldawsari et al. [50].

On this basis, and in the attempt to improve the bioavailability and reduce the
catabolism of this type of hybrid, Salla et al. more recently synthesized Res–aspirin
hybrid compounds, which showed antiproliferative and anti-inflammatory activities both
in vitro (HCT-116 cells) and in vivo (reduction of the intestinal tumor burden in a xenograft
murine model with HCT-116 cells). Additionally, the authors provided details on how
these hybrids inhibit the activation of several tumor signaling factors, such as nuclear
factor-κB (NF-κB), sirtuin, and AMP-activated protein kinase (AMPK) [55].

Another tumor target of growing interest is STAT3 [73]. Simultaneously disrupting
the acetylation and phosphorylation of this cytoplasmic protein was hypothesized to be
particularly effective in treating cancers [74]. Li et al. supported this hypothesis for the
first time by obtaining two series of Res–caffeic acid hybrids, aiming to regulate both
the acetylation (Res component) and phosphorylation (caffeic acid component) of STAT3.
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The two bioactive molecules were joined by means of a cleavable amide or ester moiety
(an example of a fused drug) with the aim of enhancing the bioavailability of the single
components. The most potent compound, (E)-N-(4-(3,5-dimethoxystyryl)phenyl)-3-(3,4,5-
trimethoxyphenyl)acrylamide (Figure 10), exhibited remarkable antitumor activity against
two cancer cell lines (HT29 and MDA-MB-231) and docking studies confirmed the binding
with the intended target. Furthermore, this compound was also effective in vivo in a mouse
xenograft model bearing breast cancer 4T1 cells [51].
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Banuppriya et al. proposed Cur–sulfonamide fused hybrids as inhibitors of the
tyrosine kinase domain of EGFR [60], another attractive target for the development of
novel anticancer agents [75]. These Cur-based hybrids were obtained by introducing the
sulfanilamide unit in the active methylene group of Cur and exhibited antiproliferative
activity against two cancer cell lines (AGS and A549) with remarkable antioxidant and
anti-inflammatory effects (Figure 11). The molecular docking performed against various
EGFR isoforms validated the interaction with the target [60].
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Figure 11. Structure and activity of the most potent hybrid compound developed by
Banuppriya et al. [60].

The reactivity of the methylene group between the two carbonyls of Cur was also
exploited by Liu et al. to connect thalidomide and Cur in a hybrid compound, which
showed in vitro antiproliferative activity against three multiple myeloma cell lines (MM1S,
RPMI8226, and U266) and inhibitory effects on NF-κB activation in A549 cells [65]
(Figure 12). Further studies also demonstrated that this compound induced apoptosis
in U266 cells via ROS production and G1/S cell cycle arrest. The authors also synthe-
sized other Cur–thalidomide hybrids, but the abovementioned fused hybrid was the most
effective anticancer agent.
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Figure 12. Structure and activity of the most potent hybrid compound developed by Liu et al. [65].

The reactivity of the β-diketone moiety of Cur was also exploited by Elmegeed’s
research group to achieve a hetero-steroid–Cur hybrid as an anti-breast cancer agent [61].
Specifically, the steroid scaffold was first functionalized at C17 with a pyrimidine nucleus
bearing a hydrazine moiety, which in turn was condensed with the dicarbonyl fragment of
Cur (Figure 13). The resulting hybrid showed in vitro cytotoxic effects toward MCF-7 cells
and downregulated the gene expression levels of CCND1, Survivin, BCL-2, CDC2, P21,
and P53 [61].
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Figure 13. Structure and activity of the hetero-steroid–Cur hybrid developed by Elmegeed’s research
group [61].

Chen et al. designed Cur-based chimeric hybrids containing the chromone scaffold,
a common pharmacophore for natural polyphenols endowed with anticancer properties,
such as the isoflavone genistein and the flavonol quercetin [62]. The work was inspired by
the synergistic antiproliferative effects of Cur and isoflavones in LNCaP human prostate
cancer cells [76,77]. The chromone unit was connected with the Cur-like framework
through an aldol condensation reaction, leading to monocarbonyl hybrids wherein the
(1E,4E)-1,4-penta-dien-3-one moiety took the place of the metabolically unstable diketone
linker of Cur, and the 1-alkyl-1H-imidazol-2-yl group was used as the bioisostere of the
terminal aryl group in Cur (Figure 14). For these chimeric hybrids, antiproliferative activity
was assessed against three prostate cancer cell lines (PC-3, DU-145, and LNCaP) with
remarkable IC50 values in the low micromolar range [62].
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Figure 14. Structure and activity of the most potent hybrid compound developed by Chen et al. [62].

Botta et al. synthesized a library of monomeric and dimeric fused hybrids by cou-
pling the semisynthetic derivatives of artemisinin, i.e., artesunate and dihydroartemisinin,
with various phytochemicals, i.e., Cur, eugenol, perillyl alcohol, tyrosol, and α- and δ-
tocopherol [64]. Artemisinin, as well as its semisynthetic derivatives with improved
pharmacological and pharmacokinetic profiles compared with the parent compound, is
a sesquiterpene lactone from Artemisia annua endowed with remarkable activity against
different cancer cell lines exerted by means of the iron-mediated cleavage of its reactive
1,2,4-trioxane ring [78]. Among the hybrids of this series, the dimer artesunate-Cur-
artesunate obtained by simple ester linkage between the -OH phenol group of Cur and the
-COOH group of artesunate emerged as the most interesting derivative in terms of biologi-
cal outcomes (Figure 15). Indeed, it exhibited notable antiproliferative (low-micromolar
range) activity against HeLa cells and three complementary metastatic melanoma cancer
cell lines (SK-MEL3, SK-MEL24, and RPMI-7951) without toxicity against normal cells
(human primary fibroblast cell line C3PV). Moreover, assays with the iron-chelating agent
deferoxamine surprisingly indicated that this dimeric hybrid does not exert anticancer
activity by means of the free radical formation variance exhibited by the other hybrids of
this series of derivatives [64].
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Botta et al. [64].

Ning et al. developed dual targeting conjugates by joining Res and oxabicycloheptene
sulfonate (OBHS), a structural motif of estrogen receptor (ER), with the aim of suppressing
estrogenic and anti-inflammatory activities in breast cancer cells (MCF-7) [52]. The rationale
of this design was inspired by evidence that ER/NF-κB interactions are implicated in the
progression of breast cancer [79,80]. The authors synthesized two series of OBSH–Res
hybrids via the Diels–Alder reaction of furan derivatives and various dienophiles. The most
potent compound was found among the type II series and showed remarkable stereospecific
binding to ER, excellent NO inhibition in macrophage RAW 264.7 cells, and cytotoxicity in
the low micromolar range against MCF-7 cells (Figure 16). In vivo experiments, performed
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in xenograft models of nude mice injected with MCF-7 cells, showed that this hybrid is
more potent than reference tamoxifen [52].
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Figure 16. Structure, activity, and SAR insights of the most potent conjugated hybrid derivative
developed by Ning et al. [52].

As both Cur and Res possess a plethora of tumor targets, a logical strategy of drug de-
sign has been to combine their pharmacophores in one motif in order to modulate the poor
ADME (absorption, distribution, metabolism, and excretion) profile of each component and
achieve more potent hybrid derivatives. In this context, de Freitas Silva et al. [53] carried
out a work in which they joined the two pharmacophores by means of a hydrazone moiety.
These Cur–Res hybrids inhibited mitosis progression in estrogen-positive MCF-7 cells
inducing G2/M cell cycle arrest and apoptosis without significant toxicity toward normal
cells (human normal control fibroblast, CCD-1059Sk) (Figure 17). The anticancer activity of
this type of hybrid was also validated in vivo, in which the hydrazone moiety played a
role in increasing the coefficient of solubility and absorption of these derivatives [53].
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Figure 17. Structure and activity of the most potent Cur–Res hybrid derivative developed by de
Freitas Silva et al. [53].

The same type of Cur–Res hybrids without the hydrazone junction were obtained more
recently by Hernández et al. in a study wherein they assembled the two pharmacophores of
the bioactive molecules by means of cross-coupling reactions between various styrenes and
a Br-substituted chalcone (obtained via Claisen–Schmidt condensation) under palladium



Molecules 2021, 26, 4665 16 of 34

catalysis (Figure 18). This set of derivatives was evaluated against colorectal cancer cells
(SW480 and its metastatic derivative SW620), for which they exhibited IC50 values in the
micromolar range [54].
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4. Gold-Based Hybrid Nanosystems

The design of nanomaterials based on metals may be a successful approach to over-
come the poor stability and solubility of Cur and Res.

First, a traditional approach is represented by the design of metal–polyphenol com-
plexes. This is easily evident for Cur, which bears an α,β-unsaturated β-diketo moiety with
keto–enol isomerization in its chemical structure and thus can readily form a complex with
many transition and nontransition metal ions, rare earth ions, and metal oxides, which may
help increase its solubility and stability [33]. Metals usually bind to the keto–enol group of
Cur by chelation, generally in the ratio 1:1 or 1:2 metal/Cur (although the binding of three
Cur molecules has also been reported). One must mention that Cur–metal complexes may
affect the biological properties of Cur but may also change those of metals (particularly
their toxicity). Metal–Cur complexes are known to have multiple capabilities and have
been investigated in cancer applications (copper, zinc, ruthenium, palladium, gallium,
nickel, platinum, iron oxide, etc.) [81]. Because of the properties of metals, some of these
complexes may be employed not only in cancer treatment but also in diagnosis, and they
can improve Cur’s capability to act as a photosensitizer under visible light [82].

However, given the vastness of the topic relating to innovative hybrid materials
based on metals and Cur/Res, we chose to limit the discussion to a specific topic that
brings together the possibility of pursuing different goals: (1) the design of new hybrid
nanosystems for delivery of one or more drugs, which are useful for improving their
bioavailability but also actively target a specific tumor cell/tissue and/or respond to
the characteristics of the tumor microenvironment; (2) the possibility of exploiting the
same system to attack tumor cells not only through chemotherapy but also with other
therapeutic strategies, such as photodynamic therapy (PDT); and (3) the preparation of the
pharmaceutical system by environmentally friendly (green) routes. As described below in
more detail, all these properties can be found in hybrid nanosystems based on gold.

Metallic nanoparticles have been of significant interest in the past two decades as a
result of their possible use in the pharmacological treatment of several diseases. Particular
attention was devoted to gold nanoparticles (AuNPs) which, because of their unique
optical, physical, and surface properties, together with their safety and biocompatibility,
are emerging tools for biomedical and pharmaceutical applications, particularly for drug
delivery (as drug delivery systems, DDSs), PDT, and photothermal therapy (PTT), as well
as for biological optical imaging, and are thus promising candidates for the diagnosis and
treatment of different types of cancer [83–90].

AuNPs typically enter cells via endocytosis, and their cellular uptake can be affected
by modifying their size, shape, and surface chemistry. Concerning the employment of
DDSs, AuNPs can increase the cellular uptake of some drugs and, especially in the case of
nanomaterial, are functionalized to target specific cells or tissues (Tables 3 and 4).
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Table 3. Hybrid systems based on AuNPs and Res and projected as potential candidates for the treatment of human cancer.

Cytotoxic Drug Hybrid Materials Aim Functionalization Pathology In Vitro Model In Vivo Model Ref.

Res Res-loaded Au nanospheres DD liver cancer Human liver HepG2 cells [91]

Res Res-loaded AuNPs DD liver cancer Human liver HepG2 cells 15 BALC/c nude mice
bearing HepG2 cells [92]

Res Res-conjugated AuNPs DD breast cancer TPA-induced migration and invasion in breast
cancer MCF-7 cells [93]

Res Res-conjugated AuNPs stabilized by
gum arabic DD cancer breast cancer MDAMB-231, pancreatic cancer

PANC-1, and prostate cancer PC-3 cells [94]

Res
Dox Res-stabilized AuNPs DD brain cancer human glioma LN 229 cells [95]

Res
Dox AuNPs capped with Res DD cervical cancer human cervical cancer (HeLa, HPV-18 positive, and

CaSki, HPV-16 positive) cells [96]

Res Res-loaded in chitosan modified
liposomes coated by gold nanoshells

NIR- and pH-responsive
system

AuNPs
Chitosan cervical cancer human epithelioid cervix carcinoma HeLa cells [97]

Res Hollow NPs based on
Au-Res complexes NIR responsive system AuNPs melanoma malignant melanoma A375 cells [98]

Res: Resveratrol; Au: gold; NPs: nanoparticles; AuNPs: gold nanoparticles; DD: drug delivery; Dox: doxorubicin; NIR: near infra-red; MRI: magnetic resonance imaging; TPA: 12-O-tetradecanoylphorbol-13-acetate.

Table 4. Hybrid systems based on AuNPs and Cur and projected as potential candidates for the treatment of human cancer.

Cytotoxic Drug Hybrid Materials Aim Functionalization Pathology In Vitro Model In Vivo Model References

Cur Cur-conjugated AuNPs DD cervical cancer cervical cancer HeLa cells [99]

Cur Cur-capped AuNP-reduced graphene
oxide nanocomposite DD colon and liver

cancer human colon cancer HT-29 and SW-948 cells [100]

Cur

MUC-1 aptamer conjugated and
Cur-loaded PEGylated amine-terminated

generation 5 poly(amidoamine)
dendrimers/gold hybrid structures

active TDD MUC-1 aptamer colon
adenocarcinoma colon cancer HT29 and C26 cells C26 tumor-bearing

BALB/c female mice [101]

Cur
Lipoic acid

Lipoic acid-Cur and GSH attached to
gold-iron oxide nanocomposites

active targeted and
pH-responsive DD

MRI

GSH
Lipoic acid
Iron NPs

Brain cancer fetal human astrocyte and U87MG cell lines [102]

Cur Cur-loaded gliadin-stabilized folic
acid-functionalized Au quantum clusters

active targeted and
pH-responsive DD

Folic acid
Gliadin Cancer brain cancer C6 glioma cells and breast cancer

MDA-MB231 cells [103]
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Table 4. Cont.

Cytotoxic Drug Hybrid Materials Aim Functionalization Pathology In Vitro Model In Vivo Model References

Cur

Cur-loaded in protein polymer-Au NPs
(protein polymer based on

elastin-like peptide and the coiled-coil
region of Cartilage Oligomeric Matrix
protein, both bearing an N-terminal

hexahistidine group)

Breast cancer human breast cancer MCF7 cells [104]

Cur Folate-Cur-loaded
Au-polyvinylpyrrolidone NPs active targeted DD Folic acid breast cancer

human breast adenocarcinoma MDA-MB-231 and
MCF-7, epithelial MCF 10A cells;

mouse mammary carcinoma 4T1 cells

female Balb/c mice
bearing 4T1 cancer [105]

Cur

AuNPs immobilized on folate-conjugated
dendritic mesoporous silica-coated reduced

graphene oxide nanosheets loaded
with Cur

active targeted DD
NIR- and pH-responsive

system

AuNPs
Folic acid breast cancer human breast adenocarcinoma MCF-7 cells [106]

Cur chitosan-coated halloysite nanotubes
loaded with Cur-Au NPs

NIR- and pH-responsive
systems

AuNPs
Chitosan breast cancer human breast adenocarcinoma MCF-7 cells [107]

Cur Cur-loaded in gold-coated liposome NPs NIR-responsive system AuNPs melanoma mouse melanoma B16 cells C57BL/6 female mice
bearing B16 cells [108]

Cur Cur-loaded HSPC liposomes coated
with gold NIR-responsive system AuNPs melanoma mouse melanoma B16 F10 cells [109]

Cur Cur-Au-PEG-NPs NIR-responsive and
sonosensitive system AuNPs Ultrasounds melanoma mouse melanoma C540 (B16/F10) cells

inbred male BALB/c
mice bearing
B16/F10 cells

[110]

Cur PEG-Cur-AuNPs NIR-responsive system AuNPs melanoma mouse melanoma C540 (B16/F10) cells [111]

Cur PEG-Cur-AuNPs NIR-responsive system AuNPs melanoma mouse melanoma C540 (B16/F10) cells
male C57/inbred mice

implanted with
B16/F10 cells

[112]

Cur Cur-loaded Ag/Au bimetallic NPs coated
with polystyrene- and PEG-based gel layers NI- responsive system AuNPs melanoma mouse melanoma B16F10 cells [113]

Cur: curcumin; Au: gold; NPs: nanoparticles; AuNPs: gold nanoparticles; DD: drug delivery; TDD: targeted drug delivery; NIR: near infra-red; MRI: magnetic resonance imaging; HSPC: hydrogenated soya
phosphatidyl choline; PEG: polyethylene glycol; GSH: reduced glutathione.
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For example, the Cur and lipoic acid (LA) loaded gold–iron oxide nanocomposite
developed by Ghorbani et al. [102] has been functionalized with GSH to increase cellu-
lar uptake of the system in GSH receptor-positive astrocyte cells, thus ameliorating its
ability to bypass the blood–brain barrier. Mahalunkar et al. [105] and Mathew et al. [103]
employed folic acid (FA) in Cur-loaded systems projected to target cancer cells that overex-
press membrane-associated FA receptors in comparison with normal tissues. Conjugation
with the MUC-1 (mucin-1) aptamer has allowed the Cur-loaded system described by
Alibolandi et al. [101] to target colorectal adenocarcinoma cells since MUC-1 is overex-
pressed on several tumor cells and can modulate their invasive and metastatic potential.

In addition, the acidic tumor microenvironment is an important target for the delivery
of drugs to a wide variety of malignant tumors. The pH value is more acidic in tumoral tis-
sue (approximately 6.5–6.8) than in normal tissue, and an even lower pH (approximately 5)
can be found in tumor cells. The natural polysaccharide chitosan (CTS) has been used by
Wang et al. [98] and Rao et al. [107] for the development of AuNP-based DDSs to provide a
pH-responsive Cur or Res drug release since its amino groups can be protonated under
acidic conditions.

Generally, tumor cells are more thermally sensitive than normal cells because of poor
blood supply and irregular vasculature, so moderate hyperthermia can significantly inhibit
their growth without damaging healthy cells. As mentioned before, AuNPs are very
effective in PTT and PDT. In fact, their tunable surface plasmon resonance (SPR) property
allows AuNPs to absorb near-infrared (NIR) light and convert light into heat, further
inducing local hyperthermia and cell destruction. It is evident that the employment of
AuNPs has several advantages since the treatment can be efficiently targeted to specific
tissues and tumors in deep tissues and may be combined with drug therapy using AuNPs
as DDSs. Several NIR-responsive AuNP-based nanosystems were developed to deliver
Cur or Res to cancer cells for the treatment of malignant melanoma [97,98,108–113] and
breast and cervical cancer [105,107] (Tables 3 and 4).

Another alternative for cancer therapy is represented by ultrasound therapy (UST),
in which ROS generated by ultrasonic activation of a sonosensitizer are employed to
kill cancer cells. Nanomaterials such as AuNPs can work as novel sonosensitizers upon
exposure to ultrasound waves. The NIR responsive and sonosensitive system developed
by Kayani et al. [110] takes advantage of the sonosensitizer properties of AuNPs as well as
of Cur.

Beyond this, another important factor to consider is that several synthetic approaches
have recently been carried out to obtain AuNPs by environmentally friendly (green) routes
and economical large-scale methods allowing reduced use of hazardous chemicals and
improved material/energy efficiency [19,114–117]. These eco-friendly synthetic approaches
essentially entail the use of phytochemicals (plant extracts or plant-derived compounds) to
reduce auric compounds into elemental gold atoms, which bind together to form nanopar-
ticles. The byproducts of the redox reaction or the natural reducing agent itself eventually
stabilize the newly formed AuNPs by adsorption on their surfaces [118] (Figure 19).

An application example of a green and cost-effective synthesis of AuNPs functional-
ized with a natural anticancer agent was reported by Sindhu et al. [119]. To achieve the
hybrid system, the authors used Cur both as a reducing agent and a capping agent in a one-
step synthesis. The standard procedure for the synthesis AuNPs (Turkevich method) [120]
entails the employment of sodium citrate (alone or with the addition of another reducing
agent) [121] to afford the reduction Au3+ to Au0 starting from chloroauric acid (HAuCl4)
and to stabilize the newly formed AuNPs. Additionally, this method often entails the use
of surfactants and, in the case of the preparation of Cur-containing AuNPs (also indicated
as Cur@AuNPs), the use of solubilizing agents to favor the incorporation of the bioactive
component. However, it is known that citrate-coated AuNPs exert some degree of toxicity
attributable to citrate [122,123] and the use of surfactants such as quaternary ammonium
salts (e.g., cetyltrimethylammonium bromide (CTAB)) for AuNP synthesis may result in
toxic responses by cellular systems [124]. The authors solubilized Cur at an alkaline pH
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(9.2–9.6) and exploited the reducing properties of the three -OH groups (transformed in
two phenolate groups and one enolate group by adding K2CO3; Cur3−) of Cur to achieve
in sequence the reduction of HAuCl4, the nucleation of the Au0 atoms, the growth and
cleavage of the clusters, and the maturation of the stabilized form aided by ionic interaction
Cur3−/Au3+ at the surface of the resulting AuNPs. The pH range of 9.2–9.6 played a key
role in the achievement of the final Cur@AuNPs hybrid, as at higher pH values, Cur might
degrade to condensed products, whereas at lower pH values, it is not efficiently solubilized.
This Cur-conjugated AuNPs hybrid system showed good biocompatibility in vitro toward
human blood cells (RBCs and PBMN cells) and interesting prospects for application in
anticancer therapy [119].
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Another noteworthy approach that omits the use of both chemical reducing
agents and surfactants to obtain a Cur-conjugated hybrid nanosystem was carried out by
Govindaraju et al. [99]. This research group used bovine serum albumin (BSA) and Cur as
reducing and stabilizing agents. The synthetic procedure is similar to the one described
above; the alkaline medium to solubilize Cur and improve its reducing power was adjusted
by adding NaOH, and the presence of BSA promoted the formation of quantum-sized
Au nanoclusters during the nucleation and growth process [125]. Since clusters consist
of a small number of atoms compared with NPs and exhibit a strong fluorescence under
irradiation, this Au-based hybrid nanosystem (particle size of 1–3 nm) is suitable for both
bioimaging applications and anticancer therapy. As a matter of fact, the obtained results
evidenced that these Cur–Au nanoclusters exhibited a strong red fluorescence and high
toxicity in HeLa cancer cells and negligible toxicity toward COS-7 normal kidney cells [99].

Similarly to Cur, other (poly)phenolic phytochemicals can be employed as reducing
and capping agents for the green synthesis of AuNPs, leading to hybrid nanoformulations
with excellent bioavailability, anticancer activity, and cellular uptake properties [126]. For
instance, Park et al. [93] used Res to obtain Res-conjugated AuNPs with a remarkable ability
to suppress migration and invasion in breast cancer (MCF-7cells treated with the tumor
promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) compared with treatment with Res
alone. Furthermore, these Res@AuNPs turned out to be effective in downregulating the
enzymatic activity and/or expression of a panel of signaling targets involved in tumor
progression and metastasis, such as MMP-9, cyclooxygenase-2 (COX-2), NF-κB, AP-1
(activator protein-1), PI3K/Akt (phosphatidylinositol 3-kinase/protein kinase B), and ERK,
as well as in upregulating heme oxygenase-1 (HO-1) expression [93].

Wang et al. [98] proposed a surfactant-free synthesis of Res-conjugated hollow AuNPs
for anticancer theranostic applications by exploiting the unique plasmonic properties of
these Au-based nanocomposites and the synergistic effects of AuNPs and Res in this
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type of application [127]. The authors prepared these multifunctional nanocomposites
through the galvanic replacement reaction between HAuCl4 and preformed sacrificial
citrate-stabilized Ag seeds in the presence of Res as a reducing and coating agent. The
obtained Res@Au hollow NPs showed high photothermal performance in NIR (specifically
after 808 nm laser irradiation), good stability, biocompatibility, and a notable cytotoxicity
profile in malignant melanoma cancer cells (A375) [98]. Comparable outcomes in terms
of photothermal responsivity were obtained by Rahimi-Moghaddam et al. [112], who
employed the Cur@AuNPs hybrid system with an average hydrodynamic particle size of
25.8 nm as a photo–thermo conversion agent using diode lasers emitting at 808 nm and
650 nm as light sources. Their hybrid system proved to be much more efficacious in vitro
against 4T1 breast cancer cells after laser irradiation at 808 nm than after irradiation at
650 nm [112]. Previously, the same research group used a refined version of this hybrid
system for the PTT of melanoma tumors [111]. Specifically, they employed PEG as a coating
agent for the Cur@AuNPs because of its ability to improve biocompatibility, stability, blood
retention time, and tumor tissue accumulation of the delivery system, along with its ability
to positively affect the surface plasmon resonance properties of the AuNPs (e.g., shift to
NIR wavelengths, particularly suitable in PTT) [128,129]. Upon laser irradiation at 808 nm,
PEG–Cur@AuNPs showed in vitro efficacy against mouse malignant melanoma cell lines
C540 (B16/F10) and in vivo efficacy against implanted melanoma tumors in C57/inbred
mice [111]. More recently, Kayani et al. [110] optimized their own PEG–Cur@AuNPs hybrid
system for both the PTT and sonodynamic treatment (SDT) of melanoma cancer, whose
in vitro and in vivo efficacy was assessed using the same melanoma cell lines and animal
models. New PEG–Cur@AuNPs caused localized hyperthermia and apoptosis of tumor
cells upon PTT (laser irradiation 808 nm) and ROS production upon SDT (ultrasound
exposure at 1.0 MHz) with tangible synergistic effects [110].

In order to increase the corona of Res on AuNPs (and thus the therapeutic efficacy
of the Res@AuNPs hybrid system), Thipe et al. carried out a green nanotechnology
synthetic approach in which they used gum arabic as an encapsulating agent to increase the
conjugation of Res onto the surface of AuNPs and the overall stability of the resulting hybrid
system [94]. Gum arabic, being a complex polysaccharide with a highly branched structure,
provided an ideal support matrix for the loading and delivery of Res. This enriched hybrid
system was obtained by the simple addition of NaAuCl4 (in place of the classic HAuCl4)
to an aqueous solution of Res (the reducing and capping agent) and gum arabic under
vigorous stirring, and provided superior in vitro anti-tumor activity against human breast
(MDAMB-231), pancreatic (PANC-1), and prostate (PC-3) cancer cells with respect to the
parent Res@AuNPs system [94]. The therapeutic potential of the Res@AuNPs system can
be considerably increased by adding the non-ionic (and relatively non-toxic) surfactant
Tween-20 as a loading enhancer, as was recently demonstrated by Fadel et al. [91]. Tween-
20 binds to the hydrophilic surface of the AuNPs, then undergoes self-assembly in a bilayer
coating structure that functions as a reservoir for Res. The cytotoxicity of these Res-loaded
Au-based hybrid nanosystems toward HepG2 cell lines turned out to be ~nine times more
potent compared with free Res at the same concentration [91]. The large anti-hepatoma
effects of the Res@AuNPs compared to Res alone were further confirmed by Zhang et al.,
who enabled the transfer of these exceptional outcomes in vivo by means of xenograft
models of nude mice injected with HepG2 cells [92]. These xenografts studies evidenced
that Res@AuNPs inhibit tumor growth, promote apoptosis, and decrease the expression
of VEGF in tumor tissue without substantially affecting (as determined by hematoxylin
and eosin staining) vital organs such as the liver, heart, spleen, and kidney. The in vitro
antiproliferative activity of Res@AuNPs (synthesized without the use of surfactants) was
~6.5 times higher compared with Res (IC50 = 3.84 µg/mL vs. IC50 = 24.74 µg/mL in
HepG2 cells), with negligible toxicity toward healthy cells (L02). Additionally, the authors
demonstrated that Res@AuNPs upregulate the expression of the proapoptotic regulators
caspase-8 and Bax and downregulate the expression of procaspase-3, procaspase-9, and the
PI3K/Akt survival signaling pathways both in HepG2 cells and a xenograft model [92].
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A topical trend of nanomedicine is that of conjugating AuNPs with the antitumor
drug doxorubicin (Dox) to enhance its bioavailability and limit its side effects. Dox self-
assembles in an aqueous medium or PBS on the surface of AuNPs (colloidal solution) by
means of supramolecular interactions [130]. On the other hand, Res is known to exert
synergistic anticancer activity with Dox, reduce its toxicity, and reverse its multidrug
resistance in different cancerous cell lines [131–133]. In this regard, Tomoaia et al. prepared
nanocomplexes of Dox and Res@AuNPs, which were highly effective in vitro against two
human cervical cancer cell lines, namely HeLa (HPV-18 positive) and CaSki (HPV-16)
cells. The authors also proved that the Dox effects on cell viability were mediated by
both Dox@AuNPs and Dox-Res@AuNPs through an apoptotic mechanism [96]. Similar
results were obtained earlier by Mohanty et al. in research (which was likely inspired
by the Tomoaia group’s work) in which they obtained Res@AuNPs with high stability in
various aqueous media mimicking physiological conditions and biocompatibility (assessed
in fibroblast cells by MTT assay). These Res@AuNPs were eventually loaded with Dox
by the simple addition of the latter to the hybrid system and sonication, and the resulting
nanocomplexes Dox-Res@AuNPs were evaluated for their in vitro anticancer activity
against a human glioma carcinoma cell line (LN 229), showing clear efficacy [95].

The drug delivery and therapeutic potential of AuNPs can be greatly enhanced by join-
ing to these platforms another excellent drug delivery vehicle, liposomes (Lips) [134–136],
which can be triggered by various chemical/physical stimuli [137,138]. The resulting hy-
brid systems are multifunctional, as both AuNPs and Lips can be widely decorated on their
surface to achieve active/passive targeting delivery systems and/or stimuli-responsive
systems. An explanatory example of this is the multifunctional platform developed by
Wang et al. [97]. Starting from Res-loaded Lips, the authors first coated these amphi-
pathic and sphere-shaped vesicles using CTS, a positively charged and pH-responsive
polysaccharide that can adsorb on the negatively charged surface of Lips by electrostatic
interactions and reverse their surface charge [139]. CTS@Res–Lips were then added to
Au seeds (negatively charged) and incubated to present AuNPs on the surface of Lips
(CTS@Res-Lips@AuNPs). The AuNPs underwent nanoshell formation (AuNSs) by means
of a method known as the seed-growth method, which entails the use of AuCl3 (the growth
component) and ascorbic acid (the reducing agent). The final hybrid system (CTS@Res–
Lips@AuNSs) was thermo-pH dual responsive (on-demand drug release) and suitable for
chemotherapy and PTT (synergistic effect) assessed in Hela cells [97].

Singh et al. reported the synthesis of Cur–Lips@AuNPs as in situ adjuvant for PTT
of skin cancer assessed in B16/F10 melanoma cell lines [109]. The authors employed
Lips made up of hydrogenated soya phosphatidyl choline (HSPC) (which shows superior
targeting properties compared with other classic phospholipids) [140] to load the bioac-
tive molecule. Then, Cur–Lips were coated with AuNPs by the simple and sequential
addition of HAuCl4 and ascorbic acid. The latter compound, a weak reducing agent,
determines the change of the surface charge of Lips because of the partial conversion of
Au3+ to Au1+, leading to enhanced stability and intracellular uptake of the final hybrid
system. Cur–Lips@AuNPs showed photothermal efficacy and triggered the release of
Cur in NIR (780 nm) [109]. The same research group elaborated this system and imple-
mented it in in vivo PTT studies performed in a murine model (C57BL/6 female mice) of
induced melanoma (B16 cells), obtaining a depot version of the drug delivery platform
with sustained and prolonged (>10 days) release of Cur in situ upon laser irradiation. This
is because of the occurrence of an in situ crystalline state transition of Cur, from nano
(within Lips) to micro (release of Cur from Lips and in situ coalescence of the nanocrystals),
upon photothermal triggering. The in vitro studies confirmed also the requirement of the
adjuvant (i.e., Cur) for an efficient therapeutic coverage (>1.5-fold) [108] (Figure 20).
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systems, allowing a synergic effect between drug chemotherapy and PTT/PTD in cancer cells.

Since cancerous cells overexpress specific receptors on their surfaces [141], another
widely exploited strategy of nanomedicine to further functionalize the extraordinary Au-
based hybrid delivery platforms discussed so far with appropriate ligands to achieve
systems for targeted therapy and/or diagnostics. FA, which has two free -COOH groups
and is a tumor-targeting ligand, is particularly suited for this type of functionalization [142].
Mathew et al. combined the targeting properties of FA and the excellent optical and delivery
properties of Au quantum clusters (AuQCs) in a Cur-containing multifunctional hybrid
system for anticancer therapy and bioimaging [103]. First, Au clusters of an average size
of ~2 nm were coated with gliadin, a class of Pro- and Gln-rich proteins present in the
wheat gluten with a high capability of binding hydrophobic molecules also due to the high
content of nonpolar amino acids in its primary structure [143]. Then, AuQCs@gliadin was
loaded with Cur, and the resulting hybrid AuQCs@gliadin@Cur was functionalized with
FA and conjugated with additional Cur by coupling reaction (EDC/NHS). The final hybrid
system AuQCs@gliadin–FA–Cur showed an encapsulation efficiency of Cur of 98%, pH-
stability (up to pH = 8.5), and pH-sensitivity (sustained and prolonged release of Cur up
to 60 h). Moreover, it was effective in vitro against breast cancer cells (MDA-MB239) with
the lowest toxicity against normal L929 cells (as they also express FA receptors). Cellular
uptake studies also showed high efficacy toward cancerous cell lines (MDA-MB239 and C6
glioma cells) with respect to normal L929-normal cells [103].

Mahalunkar et al. obtained a comparable tumor-targeting and pH-responsive (80%
drug release at a pH of 5.3) system by using polyvinylpyrrolidone (PVP) as a coating agent
for AuNPs [105]. PVP forms a thin layer around the AuNPs that can be activated to produce
free -NH2 groups on the surface. Activated AuNPs@PVP undergo conjugation in sequence
with Cur and FA (in turn separately activated at the -COOH groups with EDC/NHS) by
standard coupling chemistry. The resulting hybrid system AuNPs@PVP–Cur–FA showed
remarkable antiproliferative activity in vitro against different types of breast cancer cell
lines, namely human breast adenocarcinoma MDA-MB231 and MCF-7 cells and mouse
mammary carcinoma 4T1 cells, without harming normal cell lines (L929 and MCF 10A). The
antiproliferative activity was more pronounced toward estrogen/progesterone receptor
(ER/PR)-negative cells (MDA-MB231 and 4T1) than toward ER/PR-positive cells (MCF-7).
The anticancer efficacy of this hybrid system was also assessed in vivo by means of a breast
cancer orthotopic mouse model (tumors induced by 4T1 cells in Balb/c female mice) [105].

Inorganic–organic hybrid materials that can self-assemble into defined multifunctional
templates are also topical in the development of drug delivery nanosystems [144]. In regard
to AuNPs, a strategy often undertaken is to combine them with proteins because of the
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fine characteristics of the latter. Dai et al. proposed hybrid templates composed of protein
diblock copolymers, namely EC and CE (E: Elastin-like peptide; C: Cartilage oligomeric
matrix protein), and AuNPs. The two diblock copolymers EC and CE were each geneti-
cally engineered with a His6-tag at an N-terminus to allow the in situ synthesis of these
hybrid biomaterials via AuNPs template with the aid of the reducing agent NaBH4. The
hybrid nanocomposites were eventually loaded with Cur to afford systems with increased
drug loading capacity (> sevenfold), slower drug release profile (~50%), and enhanced
cellular uptake of Cur (>twofold) compared with protein polymers alone, as assessed in
MCF-7 cells [104]. Alibolandi et al. developed multifunctional inorganic–organic hybrid
platforms for theranostic applications in anticancer therapy by encapsulating AuNPs and
Cur in poly(amidoamine) (PAMAM) dendrimers [101], spherical and highly branched
macromolecules with an extraordinary capacity of loading hydrophobic molecules and
stabilized metal NPs. PAMAM first underwent PEGylation (EDC/NHS coupling chem-
istry) to further enhance the drug loading capacity of organic polymer; the PEG–PAMAM
conjugate was then added to HAuCl4 and NaBH4 (one-pot reduction chemistry as de-
scribed above), and the resulting hybrid PEG–PAMAM–AuNPs were eventually loaded
with Cur. Additionally, to impart tumor-targeting properties to the hybrid platforms, the
authors conjugated MUC-1 DNA aptamer to them via a thiolate–maleimide (aptamer–PEG)
reaction. The in vitro and in vivo biological assessments proved that these Cur-containing
multifunctional hybrid systems accumulate in two colon adenocarcinoma cell lines (human
HT29 and mouse C26 cells) and may serve as probes for CT imaging and versatile vehicles
for anticancer therapy (C26 tumor-bearing mice) [101].

Inorganic materials may also serve on their own as structural templates for substantial
upload of AuNPs and bioactive molecules to afford nanocomposites that combine different
moieties, producing hybrid systems for the anticancer therapy with superior features and
enhanced performance. In this regard, graphene (G) is one of the most renowned materials
because of its high planar surface area (suitable for a high rate of functionalization and
drug loading), hydrophobicity, and safe profile of G-cell interaction and cellular uptake
(particularly required in the design of passive targeting drug delivery platforms) [145,146].
However, the use of G as a raw material presents some limitations, e.g., excessive hy-
drophobicity and self-aggregation, which can be overcome by the functionalization of G
into graphene oxide (GO), which in turn may be further and more easily functionalized
and/or hybridized [147,148]. Al-Ani et al. developed a GO-based hybrid nanocomposite
containing AuNPs and Cur by a green one-pot synthetic method [100]. The -COOH groups
of GO ensured the initial ionic interactions with Au3+ (from HAuCl4) on the surface of the
material; the subsequent addition of alkaline Cur provided the concurrent reduction of
the auric salt (Au3+ to Au1+ and then AuNPs) and GO (GO to rGO) as well as the stabi-
lization of the newly formed hybrid system. The reduction of GO to rGO is an important
step to avoid uncontrolled oxidative stress and cellular damaging effects by GO [146,149].
The rGO@AuNPs@Cur hybrid nanocomposites showed high antioxidant and anticancer
efficacy in vitro against two human colon cancer cell lines (HT-29 and SW-948), coupled
with a high biocompatibility profile assessed in normal human colon (CCD-841) and liver
(WRL-68) cells [100]. A similar GO-based hybrid nanocomposite, obtained in a two-step
synthesis with the use of a CTS to achieve first the GO-Au nanocomposite using a surfactant
(Tween-80) to later enhance the loading of Cur, was obtained by Ramazani et al. [150]. The
authors provided a hybrid nanocomposite with notable cancer-specific toxicity evaluated
in vitro against breast cancer cells (MCF-7), with no detectable toxicity toward normal
healthy cells, namely HEK293 and RBC (hemolysis assay), or brine shrimp (Artemia salina
nauplii) larva [150]. Another outstanding GO-based hybrid nanocomposite with remark-
able anticancer activity in vitro against breast cancer cells (MCF-7) and carcinoma lung
cells (A549) was developed by Malekmohammadi et. al. [106]. This smart hybrid sys-
tem consists of a substrate of rGO nanosheets which underwent functionalization via
an oil-in-water stratification method with dendritic mesoporous silica (dMS) nanosheets
using a surfactant (cetylpyridinium bromide (CPB)), a silica source (tetraethylorthosili-
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cate (TEOS)), and a catalyst (triethylamine (TEA)), to produce the sandwich-like hybrid
platforms rGO@dMS. The latter were in turn functionalized by 3-(trimethoxysilylpropyl)
diethylenetriamine (Si-DETA) at reflux in order to achieve free -NH2 groups on the surface
(rGO@dAMS), which allowed conjugation with the active targeting agent FA by simple
coupling chemistry (DCC/NHS). The intermediate nanocomposites rGO@dAMS-FA were
eventually loaded with Cur and doped with AuNPs, which were separately prepared by a
method known as pulsed-laser ablation of an Au plate in water [151]. The final nanocom-
posite rGO@dAMS–FA@AuNPs–Cur showed a sustained release of Cur at a low pH under
NIR laser irradiation and enhanced tumor-specific cellular uptake, thereby acting as an
extraordinary stimuli-responsive and targeting platform [106].

Iron oxide (Fe3O4) NPs also represent a valid inorganic substrate to build up DDSs for
theranostic applications in anticancer therapy. When combined with AuNPs, the resulting
nanocomposites usually possess more promising properties in terms of biocompatibility
and therapeutic efficacy compared with the pristine nanosystems [152]. A representative
study in this respect was carried out by Ghorbani et al. [102]. The authors developed
a multifunctional hybrid platform based on Fe3O4@Au NPs as a targeted and stimuli-
responsive DDS for brain cancer theranostics using GSH as a targeting agent and Cur as a
bioactive component. Fe3O4 NPs were obtained by a standard method and functionalized
at their surface with (3-aminopropyl) triethoxysilane (APTES) to present free -NH2 groups
(Fe3O4-NH2). AuNPs were obtained by classic procedures (citrate method plus NaBH4) as
well. Then, Fe3O4-NH2 NPs and AuNPs were combined to obtain the nanocomposite, with
Fe3O4 as the central core and the citrate-stabilized AuNPs as the coating layer. Then, the
hybrid Fe3O4@Au NPs underwent simultaneous conjugation with GSH and Cur through
ligand exchange of the thiol groups with citrate of AuNPs. To achieve this, Cur was
first conjugated with LA, another bioactive component endowed with antioxidant and
neuroprotective properties [153], bearing a disulfide functional group. The efficacy of
the Fe3O4@AuNPs–GSH–LA–Cur nanocomposites was evaluated against cancerous and
normal astrocytes (U87MG) showing an approximately twofold increased cellular uptake in
GSH receptor-positive astrocytes, an approximately ninefold lower IC50 values compared
with Cur treatment, high drug loading capacity (~70%) and release, and applicability as a
negative magnetic resonance imaging contrast agent [102].

Rao et al. proposed halloysite nanotubes (HNTs) as a delivery platform for the
development of Au-based hybrid systems containing Cur for the treatment of breast
cancer [107]. HNTs are naturally occurring and biocompatible aluminosilicates with a
hollow tubular structure that ensures a high surface of functionalization and loading ca-
pacity [154]. The hybrid systems were prepared using a biofriendly method that avoided
the employment of reducing agents. HNTS were simply dispersed in water and supple-
mented with Cur and HAuCl4 to promote the in situ formation of AuNPs (hexagonal and
rod-shaped structures) loaded with Cur both in the lumen and the surface cage of HNTs.
The hybrid systems were eventually coated with bio-adhesive CTS as a polysaccharide.
The HNTs@AuNPs@Cur/CTS hybrids showed notable anticancer activity in vitro against
MCF-7 cells (IC50 = 14.1 µM), much higher than that of Cur (IC50 = 47.8 µM). Moreover,
they were stimuli-responsive under an acidic environment (with greater Cur release at
pH = 5.5) and NIR irradiation, making them suitable for both targeted delivery of drugs
and NIR-imaging [107].

A unique, multifunctional, water-dispersible smart hybrid nanosystem was devel-
oped by Wu et al. [113]. It consists of Ag/Au bimetallic NPs with a core-shell structure in
which the NPs were coated with a gel layer polystyrene (PS; inner shell) to enhance the
loading capacity of hydrophobic drugs as Cur and subsequently coated with a gel layer of
hydrophilic nonlinear PEG (outer shell) to trigger the release of the pre-loaded Cur after
internal (temperature) or external (NIR) stimuli and enhance stability in aqueous media
and biocompatibility. The synthetic strategy to achieve these systems first entails obtaining
citrate-stabilized AgNPs by a standard reduction method (NaBH4); then, the sequential
coating of AgNPs with PS (via radical polymerization of styrene, divinylbenzene, and radi-
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cal initiator AAPH), and PEG (via cross-linking chemistry of the PEG-precursor MEO2MA-
co-MEO5MA and the linker PEGDMA) to produce Ag@PS–PEG hybrid nanogels, which
were converted into Ag/Au@PS–PEG hybrid nanogels by galvanic replacement reaction
between Ag and Au(III) (from HAuCl4). Finally, Cur was loaded to these hybrid nanogels
by the complexation method, and the resulting systems were evaluated for their in vitro
anticancer activity against B16F10 mouse melanoma cells, showing good drug release and
responsivity to NIR. Therefore, these hybrids might be particularly suitable for combined
chemo–photothermal treatment compared with chemothermal or photothermal treatment
alone [113].

5. Perspectives and Conclusions

In recent years, there has been growing interest in the development of hybrid products
based on plant-derived bioactive polyphenols, which are useful for the treatment of human
cancer. Cur and Res are gaining considerable attention because of their great therapeutic
potential, specifically their capability to act as multifunctional antitumoral agents, but their
use as drugs is still hampered by their poor bioavailability due to low water solubility,
stability, and bioavailability.

Taking this into account, this review systematically described two hybrid strategies
(hybrid molecules and hybrid AuNPs), which seem to be among the most promising
strategies to overcome the limitations of these polyphenols and at the same time offer
additional advantages. In fact, because of the extraordinary variability of the chemical
composition and the technologies employed, there is a possibility to obtain Cur- and Res-
compounds able to interact simultaneously with more than one cellular target, and this is
particularly important for the treatment of complex multigenic and multifactorial diseases
such as cancer. On the other hand, there is increased development of Cur- and Res-loaded
nanosystems targeted at specific tissues/cells and responsive to particular environmental
conditions, such as pH, and external stimuli, such as NIR, thus avoiding damage to
healthy cells and obtaining a synergic effect between chemotherapy and PTT/PTD, which
is useful in limiting the toxicity resulting from high dose chemotherapy. The present
review displayed the most recent innovative research on the design of Cur- and Res-based
hyd=brid products as potential candidates for employment in oncology.

These results are very promising, highlighting that rationally designed hybrid prod-
ucts based on plant polyphenols may have extraordinary potential in the treatment of
cancer (as well as of other multifactorial diseases), both used alone or in combination with
traditional therapeutic approaches. On this basis, we can suppose that the research on
hybrid nanoproducts based on Cur and Res, as well as other natural polyphenols, will
continue to increase in the coming years, especially for combined therapies.

However, it is also evident that the road that leads to the translation of these data from
the laboratory to the clinic is still very long.

First, one must point out that the efficacy of all the hybrid nanoproducts reported in
this review was demonstrated only in vitro; just a few of these studies were carried out
in vivo, but only in experimental animals. Thus, great caution should be taken in extrapo-
lating this experimental evidence from the cancer cell lines to complex biological systems
and then to humans, and further accurate studies are needed to understand the action
mechanisms of the innovative products and to verify their potential clinical employment.

Another aspect on which it is necessary to focus is that of safety and biocompatibility.
Cur and Res, as well as other natural polyphenols, are generally recognized as safe for
humans. However, they might have side effects if introduced at particularly high doses
or through formulations able to increase their bioavailability [155,156]. The problem of
their possible side effects might be reduced by using them as a component of new hybrid
compounds or, especially, in new active targeted delivery systems since this may allow
therapeutic effects to be reached at lower doses. On the other hand, it is also true that
when bioavailability is modified, the risk/benefit ratio has to be carefully re-evaluated to
avoid toxicity related to the drug and/or the entire delivery system. In particular, hybrid
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compounds are new entities, with pharmacodynamic/pharmacokinetic features different
from the drugs on which they are based, and thus not only their efficiency but also their
safety must be accurately investigated.

Finally, the increased intricacy of methodologies required to obtain the described
hybrid products can also introduce challenges in reproducibility, scale-up/out, and quality
control, as well as a significant rise in their cost that can be justified only by producing
clinically significant improvements.

In conclusion, hybrid products based on Cur and Res, and more generally on plant-
derived polyphenols, offer great promise for the development of new therapeutic ap-
proaches for cancer treatment, but further accurate studies are needed to demonstrate their
efficacy and safety as well as to optimize their formulation and process.
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Abbreviations

AuNP gold nanoparticle
CTS chitosan
Cur curcumin
Cur@AuNP Cur-containing AuNP
DDS drug delivery system
DNMT DNA methyltransferase
Dox doxorubicin
DSS dextran sodium sulfate
ECM extracellular matrix
EGFR TK epidermal growth factor receptor tyrosine kinase
ER estrogen receptor
FA folic acid
G graphene
GO graphene oxide
GSH reduced glutathione
HSPC hydrogenated soya phosphatidylcholine
LA lipoic acid
Lip liposome
MMP matrix metalloproteinase
MRI magnetic resonance imaging
MUC-1 mucin-1
NF-κB nuclear factor-κB
NIR near-infrared
NP nanoparticle
PAMAM poly(amidoamine)
PDT photodynamic therapy
PEG polyethylene glycol
PS polystyrene
PTT photothermal therapy
PVP polyvinylpyrrolidone
Res resveratrol
rGO reduced graphene oxide
ROS reactive oxygen species
SAR structure-activity relationship
SDT sonodynamic treatment
STAT3 protein signal transducer and activator of transcription 3 protein
TDD targeted drug delivery
TPA 12-O-tetradecanoylphorbol-13-acetate
TrxR thioredoxin reductase
VEGF vascular endothelial growth factor
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