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Abstract

Background: Evaluating environmental health risks in communities requires models characterizing geographic and
demographic patterns of exposure to multiple stressors. These exposure models can be constructed from multivariable
regression analyses using individual-level predictors (microdata), but these microdata are not typically available with
sufficient geographic resolution for community risk analyses given privacy concerns.

Methods: We developed synthetic geographically-resolved microdata for a low-income community (New Bedford,
Massachusetts) facing multiple environmental stressors. We first applied probabilistic reweighting using simulated
annealing to data from the 2006–2010 American Community Survey, combining 9,135 microdata samples from the New
Bedford area with census tract-level constraints for individual and household characteristics. We then evaluated the
synthetic microdata using goodness-of-fit tests and by examining spatial patterns of microdata fields not used as
constraints. As a demonstration, we developed a multivariable regression model predicting smoking behavior as a function
of individual-level microdata fields using New Bedford-specific data from the 2006–2010 Behavioral Risk Factor Surveillance
System, linking this model with the synthetic microdata to predict demographic and geographic smoking patterns in New
Bedford.

Results: Our simulation produced microdata representing all 94,944 individuals living in New Bedford in 2006–2010.
Variables in the synthetic population matched the constraints well at the census tract level (e.g., ancestry, gender, age,
education, household income) and reproduced the census-derived spatial patterns of non-constraint microdata. Smoking in
New Bedford was significantly associated with numerous demographic variables found in the microdata, with estimated
tract-level smoking rates varying from 20% (95% CI: 17%, 22%) to 37% (95% CI: 30%, 45%).

Conclusions: We used simulation methods to create geographically-resolved individual-level microdata that can be used in
community-wide exposure and risk assessment studies. This approach provides insights regarding community-scale
exposure and vulnerability patterns, valuable in settings where policy can be informed by characterization of multi-stressor
exposures and health risks at high resolution.

Citation: Levy JI, Fabian MP, Peters JL (2014) Community-Wide Health Risk Assessment Using Geographically Resolved Demographic Data: A Synthetic
Population Approach. PLoS ONE 9(1): e87144. doi:10.1371/journal.pone.0087144

Editor: Yu-Kang Tu, National Taiwan University, Taiwan

Received June 13, 2013; Accepted December 21, 2013; Published January 28, 2014

Copyright: � 2014 Levy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been supported by a grant from the U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) program. Although
the research described in the article has been funded wholly or in part by the U.S. Environmental Protection Agency’s STAR program through grant RD83457702,
it has not been subjected to any EPA review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jonlevy@bu.edu

Introduction

Evaluation of environmental health risks in communities has

increasingly focused on the combined risks to health from multiple

agents or stressors, defined by the United States Environmental

Protection Agency (US EPA) as ‘‘cumulative risk assessment’’ [1].

This is in part because of the growing recognition that background

exposures and susceptibility characteristics need to be considered

in developing appropriate dose-response models, but also relates to

environmental justice concerns and general decision relevance

[2,3]. This cumulative risk framework theoretically considers not

only multiple chemical exposures, but also the effects of social

stressors and other factors of the built and social environment that

operate at either individual or community levels [4].

While this framework is appealing, there are significant

analytical challenges. One such challenge is developing exposure

models, which must have sufficient geographic and demographic

resolution to provide relevant contrasts within the community and

to identify high-risk subpopulations given correlations (positive or

negative) among stressors.

It is impractical to gather detailed exposure measurements or

exposure-related information from all members of a community,

so in many cases investigators must leverage a limited number of

exposure measurements and develop broadly applicable exposure
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models. For air pollutants of ambient origin, monitoring networks

and public geospatial databases may be sufficient to evaluate

exposures, but for most other stressors, additional information

would be required. For example, mercury exposure is typically

dominated by fish consumption, which may be influenced by

income, race/ethnicity, and other factors [5]. Smoking has been

predicted by gender, age, income, race/ethnicity, education,

occupation, household configuration, and community-level factors

such as poverty rate and the presence of a state cigarette tax [6].

Cord blood polychlorinated biphenyl (PCB) levels have been

related to factors such as maternal age, country of origin, and

dietary patterns [7]. Blood lead has been associated with income,

race, and age of home [8]. A common feature of these models is

that they use multivariable regression to explain exposure

variability, generally using predictors that could be obtained from

public databases or approximated using standard assumptions.

A significant barrier in applying these models to specific

communities is the lack of geographically resolved multivariable

data on key predictors. For example, the US Census provides the

distribution of home age and the distribution of household income

at the census tract level, but not the cross-tabulated distribution of

home age by household income. If attributes are correlated with

one another, which is generally the case given strong socioeco-

nomic interdependence for many attributes, the lack of this

information will lead to erroneous exposure models. Census

microdata provide the detailed individual-level data needed to

determine these interdependencies, but only at very coarse

geographic resolution, because of the need to limit potential

identifiability. Most exposure regression models involve a blend of

geographically resolved (i.e., proximity to sources, home attributes)

and demographically resolved (i.e., age by income by race/

ethnicity) predictors, but it is not possible to obtain multivariable

Figure 1. Map of the New Bedford study area.
doi:10.1371/journal.pone.0087144.g001
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demographic information with high-resolution geographic data

from public data resources.

Simulation approaches can be used to construct geographically

resolved microdata, using optimization techniques to maximize

the fit between individual-level microdata lacking geographic

resolution and aggregated census data at high geographic

resolution [9,10]. Synthetic microdata have been developed for

a variety of applications, including transportation planning [11],

micro-marketing [12], and health behavior modeling [13].

However, to our knowledge, these methods have never been used

for community-scale modeling of environmental health risks.

In this paper, we develop synthetic microdata for a low-income

community living near a Superfund site (New Bedford, Massa-

chusetts), where these synthetic microdata include multivariable

individual-level attributes and spatially resolved geographic

assignment. We then constructed a new model of the individual-

level likelihood of smoking in New Bedford as a function of the

microdata characteristics. We linked this model to the synthetic

microdata as a demonstration of the usefulness of developing

synthetic microdata in providing insight about the geographic and

demographic patterns of exposure to a key risk factor for the

residents of New Bedford, which can have further implications for

use in characterizing multi-stressor exposures.

Methods

Location
New Bedford, Massachusetts is a diverse urban city with

approximately 95,000 residents in 2010 (Figure 1). The New

Bedford Harbor was designated a Superfund site in 1982, related

to PCB contamination, and New Bedford contains a number of

hazardous waste sites, industrial sources, and nearby major

roadways [14]. Of the 233 census-designated places in Massachu-

setts in the 2006–2010 American Community Survey (ACS), New

Bedford had the 14th-lowest median household income. Residents

had elevated rates of adult diabetes, hypertension, high cholesterol,

smoking, and obesity [15,16], as well as elevated rates of low birth

weight, inadequate prenatal care, and high childhood blood lead

[17]. New Bedford is therefore a highly vulnerable and susceptible

community, for which cumulative risk assessments can be

informative.

Figure 2. Approach to generate geographically resolved synthetic microdata and estimate geographic and demographic smoking
patterns in New Bedford.
doi:10.1371/journal.pone.0087144.g002
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Simulation methodology
Two general approaches have been used in the literature to

generate synthetic microdata [10] - reweighting, in which the

existing microdata are assigned sets of weights for each small area

to best match the aggregate distributions, and synthetic recon-

struction, in which the microdata are probabilistically generated

given the aggregate distributions. We focus on reweighting

approaches in this analysis, given our interest in characterizing a

large number of population characteristics that may predict

exposure or vulnerability.

Probabilistic reweighting using simulated annealing has been

shown to perform slightly better than alternative reweighting

approaches, such as deterministic reweighting or conditional

probability modeling [9]. As illustrated in Figure 2, this entails

selecting a random subset of households from microdata and

comparing to aggregate area-level constraints, sequentially replac-

ing individual households to see if the fit improves [18]. The

simulated annealing approach helps ensure that global rather than

local optima are obtained. We applied this methodology using the

software package CO [19], which has been tested in multiple

applications and considered to be more robust than alternative

algorithms [10].

Census data
Generating synthetic microdata using probabilistic reweighting

requires two basic types of data – multivariable individual-level

microdata lacking resolved geographic identifiers, and small area

constraints to place the individuals in appropriate locations. We

derived both from the ACS 5-year database (2006–2010). The

ACS surveys a fraction of the US population each year, and the 5-

year estimates are generally used to determine estimates for

smaller geographic areas (like census tracts). For the microdata, we

Table 1. Population characteristic examples and goodness of fit statistics for census tract level synthetic microdata with 13
constraints simultaneously imposed.

% population in each census tract for 3 example characteristics

Census tract Number of people
Overall total absolute
error per household % Portuguese % Cape Verdean % age 25+ , HS graduate

6501.01 5591 0.1 46% 5% 25%

6501.02 4666 0.12 43% 4% 24%

6502.01 3025 0.13 37% 2% 26%

6502.02 1973 0.15 35% 1% 31%

6503 3094 0.11 38% 3% 22%

6504 3420 0.11 48% 7% 43%

6505 3430 0.14 47% 2% 31%

6506 2788 0.17 37% 2% 45%

6507 2235 0.21 27% 10% 50%

6508 3306 0.11 41% 6% 45%

6509 3327 0.12 19% 12% 48%

6510.01 2857 0.24 41% 7% 24%

6510.02 4022 0.11 32% 6% 23%

6511 4053 0.11 22% 27% 34%

6512 1810 0.28 19% 11% 46%

6513 2268 0.25 17% 14% 31%

6514 3440 0.16 23% 14% 35%

6515 3326 0.14 23% 21% 22%

6516 4119 0.13 22% 32% 28%

6517 2235 0.27 16% 25% 38%

6518 1448 0.09 22% 16% 44%

6519 2419 0.4 14% 17% 49%

6520 2821 0.28 53% 10% 41%

6521 2799 0.2 40% 2% 22%

6522 2875 0.2 41% 8% 22%

6523 2916 0.14 48% 5% 42%

6524 2536 0.14 58% 5% 43%

6525 2426 0.19 52% 8% 49%

6526 2790 0.24 27% 16% 53%

6527 3381 0.13 39% 5% 42%

6528 3548 0.15 65% 1% 33%

All population characteristics in the table were identical for the synthetic microdata and the American Community Survey data.
doi:10.1371/journal.pone.0087144.t001
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used ACS data from the Public Use Microdata Sample (PUMS),

which provides geographic identifiers for Public Use Microdata

Areas (PUMAs) comprising at least 100,000 individuals. The

PUMA of interest for our analysis includes New Bedford as well as

bordering or nearby communities (Figure 1). Based on Census

2000 population estimates, 54% of the people living in this PUMA

reside in New Bedford. Of note, if the demographics differ

significantly between surrounding communities and New Bedford,

the simulation approach will preferentially select those microdata

surveys consistent with the small-area constraints for New Bedford,

reducing potential errors associated with PUMA resolution.

For small area constraints, we focused on the census tract as the

unit of analysis, because more candidate constraints were available

at the census tract level than at the block group level. There are 31

census tracts in New Bedford (Figure 1), with population by tract

ranging from 1,448 to 5,591. Candidate constraints were either

associated in the literature with exposures or health outcomes of

interest for our cumulative risk assessments, available in cross-

tabulations (i.e., age by household income, rather than only having

age and household income as separate constraints), or suggested by

community partners given insight about neighborhood differences.

We included 8 individual-level constraints (ancestry, sex, age,

educational attainment, sex by age, sex by educational attainment,

age by educational attainment, and sex by age by educational

attainment) and 5 household-level constraints (head of household

age, household income, rent/own, rent/own by head of household

age, household income by head of household age). Ancestry was

collapsed into 13 categories representing the main countries of

origin in the community and those previously associated with

environmental exposures of interest in New Bedford [7]. For all

other fields, categories were used as provided in the ACS.

Optimization approach
For a given set of constraints, the goodness of fit was evaluated

using the relative sum of square Z-scores associated with individual

constraint tables, in comparison with the chi-square critical value

(p , 0.05). As described by Williamson [19], this approach

minimizes the proportional differences between constraints and

weighted estimates, versus approaches that focus on the absolute

differences. We additionally examined the sum of the total

absolute errors across constraint tables, which is generally

considered to be problematic if the sum exceeds the number of

households in a given geographic area (i.e., if total absolute error

divided by number of households exceeds 1) [19]. Of note, if a

small number of relatively weak constraints are used, it will be easy

to match these constraints with limited error, but there may be

significant error in the distribution of other microdata fields. We

therefore attempted to impose the largest number of constraints

possible, without leading to excessive error.

Microdata evaluation and application
Synthetic microdata need to be evaluated across three major

dimensions to ensure that the individuals have been assigned to

appropriate geographic areas, therefore making the microdata

applicable to community-scale modeling of environmental health

risks.

Evaluation 1. First, the degree of error needs to be assessed for

the microdata fields included in the constraints (e.g., the total

absolute error divided by the number of households).

Figure 3. A) Percentage of multi-family homes and B) average number of rooms per household by census tract in New Bedford, as
reported by the American Community Survey and estimated by synthetic microdata.
doi:10.1371/journal.pone.0087144.g003

Table 2. Multivariable logistic regression model of smoking
as a function of demographic characteristics in New Bedford.

Covariate Beta Standard error p-value

Intercept –5.1 0.65 , 0.0001

Male 0.27 0.089 0.0022

Race/ancestry

White non-Hispanic 0.35 0.13 0.0095

Black non-Hispanic 0.27 0.21 0.20

Mexican –0.56 0.23 0.013

Dominican –0.71 0.45 0.11

Puerto Rican –0.72 0.69 0.30

Educational attainment

, 8th grade 0.36 0.19 0.056

9th–11th grade 1.1 0.17 , 0.0001

High school graduate 0.68 0.13 , 0.0001

Some college 0.49 0.14 0.0003

Employment status

Employed –0.30 0.11 0.0068

Unemployed 0.14 0.15 0.35

Household income

, 10,000 0.97 0.21 , 0.0001

10,000–14,999 0.89 0.22 , 0.0001

15,000–19,999 0.76 0.20 0.0001

20,000–24,999 0.69 0.19 0.0003

25,000–34,999 0.67 0.19 0.0003

35,000–49,999 0.50 0.17 0.0041

50,000–74,999 0.39 0.18 0.027

Marital status

Married –0.48 0.12 , 0.0001

Divorced 0.047 0.13 0.71

Widowed –0.21 0.18 0.24

Separated –0.060 0.20 0.76

Age

18–24 2.9 0.63 , 0.0001

25–29 3.6 0.62 , 0.0001

30–34 3.5 0.62 , 0.0001

35–39 3.5 0.62 , 0.0001

40–44 3.4 0.62 , 0.0001

45–49 3.7 0.61 , 0.0001

50–54 3.4 0.61 , 0.0001

55–59 3.1 0.61 , 0.0001

60–64 2.9 0.61 , 0.0001

65–69 2.3 0.61 0.0001

70–74 1.8 0.62 0.0038

75–79 1.4 0.64 0.027

80–84 0.79 0.69 0.25

References: female, other race/ancestry, college graduate, not in labor force,
household income . = $75,000, never married or unmarried couple, age 85+.
doi:10.1371/journal.pone.0087144.t002
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Evaluation 2. Second, the degree of error needs to be assessed

for microdata fields that are not included in the constraints but are

potentially important for evaluating environmental health risks in

the community. While greater error would be anticipated for fields

not included as constraints, it is important to know whether the

complete multivariable microdata reasonably reflect the spatial

and demographic patterns described in the ACS. For this second

evaluation, we focused on whether the geographically resolved

microdata reasonably predict the percentage of multi-family

homes and number of rooms per home by census tract. Both of

these variables are potentially relevant for housing-related

exposures and are not simply explained by the constraint variables

(i.e., while income and home type are clearly correlated, there is

inherent spatial patterning related to zoning and proximity to

commercial areas).

Evaluation 3. Third, the synthetic microdata must be able to

characterize geographic and demographic distributions for key

stressors of interest not available in the microdata, using regression

models explaining variability as a function of the microdata. These

distributions cannot be directly validated in the same manner as in

the first two evaluations above, because the lack of geographically

and demographically refined exposure data is the precise rationale

for this modeling approach. However, some of the aggregated

estimates can be compared with surveillance data or previous

models. To conduct the third evaluation, we developed a

multivariable regression model for smoking, given that direct

smoking and resulting environmental tobacco smoke are associ-

ated with multiple health outcomes of concern to the community.

We obtained 2006–2010 Behavioral Risk Factor Surveillance

System (BRFSS) data from the Massachusetts Department of

Public Health (MA DPH), which contains smoking status and

extensive demographic data for 4,348 individuals living in New

Bedford across the five study years. We constructed a multivar-

iable logistic regression to predict smoking status as a function of

demographic variables. We considered as candidate predictors

variables that had previously been associated with smoking in the

literature and were available from ACS-derived synthetic micro-

data, including age, gender, marital status, race, ancestry,

educational attainment, household income, and employment

status. All predictors were constructed to be identical in structure

as the covariates in the synthetic microdata, and both the

regression model and microdata are at the individual level,

allowing for direct model application. While formal validation is

not possible, we predicted smoking prevalence for demographic

Figure 4. Smoking rate by demographic group in New Bedford, as reported by the BRFSS and estimated using synthetic microdata.
doi:10.1371/journal.pone.0087144.g004
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subpopulations described in MA DPH reports [20] and compared

our estimates with reported values, noting that minor discrepan-

cies would be expected given differences in base years.

Because our simulation modeling involved multiple uncertain-

ties, we used Monte Carlo analysis to quantify these uncertainties

in the predicted geographic and demographic patterns of smoking

in New Bedford. We incorporated uncertainty at two levels. First,

we included uncertainty in the smoking regression model by

randomly sampling coefficient values given estimated means and

standard errors, using the variance-covariance matrix to account

for correlations among coefficients. This yields an uncertainty

distribution of smoking probabilities for each individual. Second,

we randomly assigned smoking status to individuals given these

probabilities, so that each individual had a binary (yes/no)

assignment in each of the 5000 realizations. This allowed us to

characterize uncertainties in estimated smoking rates for any

geographic or demographic subpopulation of interest.

Results

Evaluation 1
Applying all 13 candidate constraints yielded synthetic micro-

data for New Bedford which perfectly matched all univariate

constraints at the census tract level, with a good overall fit across

all constraints (Table 1). The last three columns in Table 1 are

examples of population characteristics estimated for each census

tract, including % Portuguese, % Cape Verdean, and % age above

25 years with less than high school education.

The overall total absolute error per household was well under 1

in all census tracts, exceeding 0.3 in only one census tract. For all

seven univariate constraints as well as four multivariable

constraints (sex by age, sex by educational attainment, age by

educational attainment, and rent/own by head of household age),

the relative sum of squared Z-scores never exceeded the chi-square

critical value, with zero or near-zero values. Only the two most

complex multifactorial constraints with many categories (sex by

age by educational attainment and household income by head of

household age, with 72 and 65 categories, respectively) displayed

enough error to exceed the chi-square critical value for some of the

census tracts. Examining the fits for those tables, differences were

generally modest and reflected small population numbers in

adjacent cells along at least one dimension. When the number of

constraints was loosened (i.e., by removing two-way person-level

constraints), the degree of error increased across both error

metrics. We therefore concluded that application of all 13

constraints yielded the most accurate synthetic microdata.

Evaluation 2
To determine whether the synthetic microdata appropriately

assigned individuals to census tracts, we also evaluated the

percentage of multi-family homes and average number of rooms

per home by census tract, as predicted by the synthetic microdata

and as reported in the ACS. As shown in Figure 3, the synthetic

microdata reasonably reproduced the spatial patterns of these

covariates, with a high correlation by census tract (0.96 for

percentage of multi-family homes, 0.91 for average number of

rooms per home). Some modest bias existed in the estimated

percentage of multi-family homes (69% in the ACS, 61% in our

synthetic microdata), potentially related to the inclusion of some

suburban households outside of New Bedford in the synthetic

microdata. There was no appreciable bias in the number of rooms

per home (mean of 5.3 for both datasets).

Evaluation 3
To illustrate the application of the synthetic microdata, we

combined it with a multivariable regression model of smoking to

evaluate the resulting demographic and geographic patterns of

smoking for New Bedford. In our multivariable logistic regression

of smoking, all tested covariates were statistically significant (Table

2). Smoking rates were elevated among individuals who were

male, non-Hispanic, without a college education, unemployed or

out of the labor force, with lower household income, unmarried,

and working age. Age and educational attainment were the two

strongest predictors.

Applying this multivariable regression model to the synthetic

microdata, there was a wide range of predicted probabilities for

individuals, consistent with strong demographic patterning of

smoking behaviors – about 8% of the population had a mean

smoking probability above 50%, while 14% of the population had

a mean smoking probability under 10%. The smoking rates for key

demographic groups corresponded closely with reported surveil-

lance data as derived from the BRFSS (Figure 4), in spite of the

fact that the two sets of estimates are based on slightly different

underlying data. The linkage of this regression model with the

synthetic microdata also allowed us to estimate smoking rates by

census tract in New Bedford (Figure 5). Given demographic

patterns that vary across the city, the estimated smoking rates by

census tract ranged from a low of 20% (95% CI: 17%, 22%) to a

high of 37% (95% CI: 30%, 45%).

Discussion

Using simulation methods, we constructed geographically

resolved synthetic microdata for a high-risk community and

demonstrated its utility for predicting geographic and demograph-

ic patterns of smoking. The individual-level microdata were

statistically robust, with only minor misrepresentation of complex

cross-tabulated constraints at census tract resolution. Sensitivity

analyses showed that removing those constraints led to poorer

overall model performance, indicating the value of the cross-

tabulated constraints in providing a more accurate characteriza-

tion of the individual constraint variables. We were able to connect

these microdata with a strong predictive model of smoking

behavior as a function of multivariable demographic characteris-

tics, relying on local data to ensure that demographic variables

retain their local context. For example, general population

smoking regression models [6] would have greatly misrepresented

smoking rates in New Bedford, given some of its unique

demographics (e.g., large Portuguese and Cape Verdean popula-

tions) and its status as a city with high smoking rates located in a

state with low smoking rates. Our resulting small area estimates of

smoking prevalence are consistent with modeled patterns in other

studies [13,21], with significant spatial heterogeneity based on

underlying demographic patterns.

The multivariable demographic information and corresponding

regression models predicting exposures would allow us to rapidly

identify high-risk subpopulations for specific health outcomes. As a

simple example, previously-derived multivariable regression mod-

els constructed from New Bedford data [7] showed that cord

serum PCB levels are elevated among Cape Verdean women over

35 years of age. Our geographically resolved synthetic microdata

can be used to rapidly determine that approximately 0.9% of New

Bedford’s adult population consists of Cape Verdean women over

35 (but of childbearing age), with more than half of these

individuals clustered in five census tracts. Moreover, maternal

smoking has some cardiovascular and neurodevelopmental health

effects in common with PCBs, and smoking status may also predict

Synthetic Populations for Health Risk Assessment
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PCB levels. Our synthetic microdata allow us to determine that the

lower-income subset of this population would be at particularly

high risk given elevated smoking rates, with three of the five census

tracts displaying elevated predicted smoking rates among Cape

Verdean women over 35. While this is a somewhat stylized

example and prioritization would require formal characterization

of exposures and cumulative risks to multiple stressors, this

example illustrates how our synthetic microdata could allow for

targeted public health outreach and public policy development.

In spite of the strong model performance and potential

generalizability of our modeling strategy, there are some

limitations in our synthetic microdata and corresponding smoking

models, as well as in the general approach. While ACS microdata

include a large number of covariates, there remain gaps in the

individual-level information available, and the synthetic microdata

are ultimately built on a population sub-sample that may

contribute uncertainties in characterizing multiple exposures for

smaller (community-relevant) areas. With an average of 3,063

residents per census tract in New Bedford (range: 1,448 – 5,591),

the 5% sample of the population available in the ACS microdata

will not be able to fully capture all multivariable demographic

nuances. In addition, ACS microdata will underrepresent undoc-

umented populations that may be at particular risk.

Our modeling approach is also predicated on the assumption

that basic demographic characteristics are strong predictors of

environmental exposures. While this is clearly the case for

smoking, it may not hold more broadly. For example, for

pollutants with strong spatial gradients, we may not adequately

capture exposure contrasts using census tract resolution. However,

there is nothing in our analytical approach that requires census

tract resolution, and relying on individual-level data as the

foundation for our modeling affords flexibility for future applica-

tions. It may also be challenging to communicate our models and

findings to communities or policymakers, as the structure of the

models suggests that exposures are dictated by demographics

rather than being a function of complex behaviors and exposure

pathways.

Relatedly, there are a limited number of national-scale

environmental exposure studies with sufficient geographic resolu-

tion, so an analysis that extended beyond smoking or other survey-

derived behaviors in the BRFSS would need to rely on some

amount of local sampling or surveying. We focused on New

Figure 5. Smoking rate by census tract in New Bedford, estimated using synthetic microdata
doi:10.1371/journal.pone.0087144.g005
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Bedford in part because a long-standing pregnancy cohort study

[7,22,23,24] includes extensive biomarker data from which we can

develop predictive regression models as a function of variables

available in the synthetic microdata, but such data are not

available in all communities.

In spite of these limitations, our modeling approach offers some

significant advantages over other options. Geographically resolved

synthetic microdata provide community-scale detail that would

rarely be available for cumulative risk assessment models,

including exposure predictors and vulnerability attributes. By

building both the microdata and the smoking regression model at

the individual level, we yield robust spatial estimates and avoid

issues such as the modifiable areal unit problem. Subpopulations

at high risk across multiple exposures can be identified and

targeted for public health interventions. Our strategy would also

allow for any exposure characterization study to rapidly yield

community-scale conclusions, provided that the requisite demo-

graphic and geographic data were collected from study partici-

pants.

Conclusions

Our simulation approach provides a method to create detailed

and geographically resolved individual microdata for a low-

income population that can be used in community-wide environ-

mental exposure and risk assessment studies. We applied the

method to a regression model of smoking behavior to illustrate the

applicability of our approach. While our population characteristics

and resulting models were specific to New Bedford, all our

methods and input data generalize to any other city in the US,

providing a powerful mechanism to compare health risk factors

within and between major cities, and allowing for more targeted

public health interventions. In future studies, these microdata will

be connected with comparable regression models for multiple

environmental exposures to provide detailed characterization of

exposure patterns relevant to health outcomes of interest in New

Bedford.
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