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Interdependence of metals and its binding proteins in
Parkinson’s disease for diagnosis
Athira Anirudhan1, Paramasivam Prabu2, Jaya Sanyal3, Tapas Kumar Banerjee4, Gautam Guha5, Ram Murugesan6 and
Shiek S. S. J. Ahmed6✉

Metalloproteins utilizes cellular metals which plays a crucial function in brain that linked with neurodegenerative disorders.
Parkinson’s disease (PD) is a neurodegenerative disorder that affects geriatric population world-wide. Twenty-four metal-binding
protein networks were investigated to identify key regulating protein hubs in PD blood and brain. Amongst, aluminum, calcium,
copper, iron, and magnesium protein hubs are the key regulators showing the ability to classify PD from control based on thirty-
four classification algorithms. Analysis of these five metal proteins hubs showed involvement in environmental information
processing, immune, neuronal, endocrine, aging, and signal transduction pathways. Furthermore, gene expression of functional
protein in each hub showed significant upregulation of EFEMP2, MMP9, B2M, MEAF2A, and TARDBP in PD. Dysregulating hub
proteins imprint the metal availability in a biological system. Hence, metal concentration in serum and cerebrospinal fluid were
tested, which were altered and showed significant contribution towards gene expression of metal hub proteins along with the
previously reported PD markers. In conclusion, analyzing the levels of serum metals along with the gene expression in PD opens up
an ideal and feasible diagnostic intervention for PD. Hence, this will be a cost effective and rapid method for the detection of
Parkinson’s disease.

npj Parkinson’s Disease             (2021) 7:3 ; https://doi.org/10.1038/s41531-020-00146-7

INTRODUCTION
Parkinson disease (PD) is one of the most common neurodegen-
erative disorders affects elderly populations. Over 10 million
people are affected by PD world-wide1. The major hallmark of PD
is an irreversible loss of dopaminergic neurons at substantia nigra
region of the brain. Loss of dopaminergic neurons exhibit cardinal
symptoms such as tremor, rigidity, and bradykinesia. Diagnosis of
PD relies on medical history and radiological imaging2,3. Currently,
there is no molecular markers are available to detect PD. Several
epidemiological studies suggest multiple risk factors for PD, which
includes aging, genetic mutation, and environmental exposure of
metals and pesticides4,5. The genetic association of PD is well
established, which reports PARK loci in most of the GWAS studies6.
In contrast, the mechanism of metals and pesticide exposures
contributing PD is largely unknown.
Emerging metallomic approach helps to investigate the role of

metals in a biological system 7.
Metallomics is the large scale analysis of metals in cells,

biofluids, or tissues. It uses high throughput the techniques such
as atomic absorption spectroscopy, inductively coupled plasma
mass spectrometry (ICP-MS), and inductively coupled optical
emission spectrometry for the detecting and estimating the metal
concentration in the biological system. Particularly, metallomic
analysis of cerebrospinal fluid (CSF), serum, urine, and saliva has
proven useful to identify metal biomarkers for several diseases.
Additionally, metallomics provide a functional insight on metal
interacting molecules such as DNA, RNA, protein, and metabolites.
Of metal interacting molecules, metal-binding protein (metallo-
proteins) cover almost one-third of the human proteome8. Metal
act as a cofactor that activates protein for basic molecular and

cellular function9. Also, metal take part in stabilizing the
conformational state of a protein in response to the substrate.
Alternatively, metal generate oxidative stress, which serves as a
major causative factor for most of the neurological diseases like
Alzheimer’s, Parkinson’s, and Huntington’s disease10,11. In recent
times integrating metallome with other omics data using systems
biology has gained a better understanding of metal-mediated
pathogenesis in various complex diseases12,13.
This study implement a systems biological approach (Fig. 1) to

dissect the complexity of the metal-binding proteins involved in
the pathogenesis of PD. Our approach integrates data mining of
metal-binding protein, interactome, and meta-analysis to reveal
the significant metal-associated protein hubs in PD. Additionally,
we use classification algorithms in detecting highly contributing
protein hubs, that classify PD from normal based on gene
expression data. Further, the significant metal of each protein hub
was measured in blood serum and CSF. Simultaneously, the gene
expression of functionally important protein in each hub was
analyzed, that reveals the interdependency between metal
concentration and gene expression in PD pathogenesis which
facilitate the application of metals and its genes as a biomarker in
a clinical setting.

RESULTS
Data collection and PPI
We implement a systems biological workflow (Fig. 1) to illustrate
the mechanism of metal mediating metalloprotein, a causative
factor for PD. The metal-binding proteins were collected from
various biological databases and curated to have 41 metals that
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bounded to 5368 proteins. Among which twenty-four metal-
binding proteins groups were selected containing a minimum of
ten proteins for each metal. For instance, zinc acts as a cofactor for
1637 proteins, whereas tungsten was noticed with minimum of 11
proteins (Fig. 2). Each metal-binding proteins group was subjected
to protein–protein interaction to construct metal protein network
(metalPN). For instance, copper was the cofactor for 45 proteins
that form copper metalPN containing 4384 interacting proteins (see
Supplementary Fig. 1). Overall, 24 metalPNs were constructed,
which explicates the complex behavior of the metalloproteins
with its interacting proteins (Fig. 3). Of every 24 metalPNs, 24
randomized, and 24 molecular-pathway networks were generated
and subjected to topological analysis as described under the
methodology section. Seven important topological parameters
were determined for all 72 networks, which describes their
network properties (see Supplementary Table 1).

Principal component analysis (PCA), clustering, and text mining
An unsupervised PCA was performed to check the grouping ability
of 24 metalPNs with randomized and molecular-pathway networks
based on the topological parameters. Two distinct classification

groups were noticed in the PCA model (see Supplementary Fig. 2)
group 1—random networks; group 2—molecular pathway net-
works and metalPNs. The principle component 1 (PC1) accounts for
56.6% and component 2 accounts for 15% of the total variance.
Together both the components explain around 71.6% of the data
variability. All 24 metalPNs were grouped with 24 molecular-
pathway networks indicating that the constructed metalPNs are
biologically meaningful. Whereas, the 24 randomized networks
were distinctly separated in PCA plot (see Supplementary Fig. 2).
Further, the top-ranked protein hub was identified for each

metalPN using ClusterONE algorithm. Among 24 over-representing
hubs, 18 showed the association with PD containing minimum of
one text-mined PD protein. For example, the hub derived from
copper metalPN contains six proteins of which all were previously
reported in PD confirming the copper association with PD.

Meta-analysis
To determine the regulation of selected 18 hubs in PD brain and
blood tissue. The gene expression data of brain (GSE7621,
GSE8397, GSE19587, GSE20141, GSE20146, GSE20163, GSE20164,
GSE20168, GSE20186, GSE20291, GSE20292, GSE20295, GSE28894,
and GSE49036) and blood (GSE6613, GSE22491, GSE54536,
and GSE72267) were retrieved from NCBI-Geo Dataset and

Fig. 1 Systems biology framework describing the workflow of data collection, integration and analysis of metals and metal-binding proteins
in Parkinson’s disease.

Fig. 2 The Bar diagram indicating the number of metal-bounded
proteins collected for each metal from the protein database.

Fig. 3 The Bar diagram indicate number of interacting protein in
each metalPN.
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EBI-ArrayExpress databases, covering the inclusion criteria of our
meta-analysis. The dataset include (normal vs. PD) 291 vs. 304 and
53 vs.104 participants in brain and blood, respectively. The meta-
analysis of 302 proteins encoding genes of 18 hubs were analyzed
using integrative meta-analysis of gene expression (INMEX),
considering the primary goal to identify differentially expressed
genes between control vs. PD in brain and blood, respectively. Of
302 genes, 75 were significantly differentially expressed (39 over
and 36 were under expressed) in PD brain, which attributed to 16
metalPN hubs. Similarly in blood, five genes were upregulated and
86 were downregulated, that attributed to 17 metalPN hubs. The
genes of these hubs were mapped with their appropriate gene
expression data of the brain (normal= 291; PD= 304) and blood
(normal = 53; PD= 104) and subjected to the classification
algorithm.

Classification algorithm based metalPN classification
Thirty-four distinct classification algorithms were implemented on
each hub with their proteins as features, mapped with corre-
sponding gene expression of brain and blood as instances. For
example, the copper hub contains six proteins as features that
mapped with appropriate gene expression from the merged brain
datasets of 595 instances, normal = 291, PD= 304. Similarly for
the blood, the copper hub with the same features contains (53
normal and 104 PD 157 instances). The classification ability of
predicting normal or PD by each algorithm for brain and blood
was evaluated by accessing the output based on sensitivity,
specificity, accuracy and Matthews’s correlation coefficient. Based
on the performance, top five hubs showing better accuracy
between 34 algorithms were selected. For example in brain, iron
showed better performance with accuracies ranged between 50
and 91% in all 34 algorithms, whereas cesium hub showed least
accuracies between 44 and 56%. Of analyzed hubs, aluminum,
calcium, copper, iron, and magnesium were over represented in
most of the algorithm and commonly noticed in both brain and
blood contributing towards better classification of PD from normal
(see Supplementary Fig. 3). Further, the pathway enrichment
analysis of 132 proteins of these five hubs showed the association
with wide spectrum of molecular pathways related to PD (see
Supplementary Fig. 4 and Supplementary Table 2). Particularly, the
calcium, copper, iron, and magnesium hubs were commonly
regulates 29 molecular pathways (see Supplementary Fig. 5).
These pathways attributed to environmental information proces-
sing, immune, neuronal, endocrine, aging, and signal transduction
mechanism. Subsequent prioritization analysis of proteins in each
metal hub suggest EFEMP2, MMP9, B2M, MEAF2A, and TARDBP
are functionally important in aluminum, calcium, copper, iron, and
magnesium hub, respectively.

Metal concentration and gene expression
Estimating these metal concentrations in serum and CSF using
atomic absorption spectroscopy (AAS) showed a significant
increase in serum aluminum, calcium and magnesium and
significant decrease in copper and iron in PD (Table 1). In CSF,
significant decrease in aluminum, copper and iron and significant
increase in calcium and magnesium were noticed in PD compared
to control. The concentrations of analyzed metals were expressed
in µg/L with their mean and standard deviation (Table 1). Similarly,
the gene expression analysis of EFEMP2, MMP9, B2M, MEAF2A,
TARDBP, and hsCRP with qPCR showed significant upregulation,
whereas SOD1 was significantly down regulated in PD compared
to control (Fig. 4a–g). Further, the interdependency between
serum and CSF metal concentrations showed significant change in
correlation pattern suggest altered ion transports across blood
brain (BB) and blood CSF (BC) barrier in PD (see Supplementary
Table 3). Similarly, significant association between metal concen-
trations with gene expression showed influence of altered serum
metals regulates PD hub genes. Interestingly, these metals noticed
regulating the gene expression of known oxidative and inflam-
matory markers (SOD1 and hsCRP) of PD (see Supplementary
Tables 4, 5).

DISCUSSION
Metal-binding proteins were collected from various biological
databases and grouped based on the metal cofactor to have 5368
proteins. For instance, copper acts as a cofactor for 45 proteins
(Fig. 2). Of these, α-synuclein is one of the copper-binding proteins
considered as a hallmark for PD, localized at presynaptic terminals
of neurons. Similar to copper, there are other metals such as
aluminum, calcium, chromium, iron, magnesium, lead, and zinc act
as a cofactor for several proteins involved in various pathological
process of PD. These proteins were grouped based on their
bounded metal and subjected to protein-protein interaction to
construct metal protein network metalPN. Further, the top-ranked
hub of each metalPN was selected which reveals its core functional
mechanism in the network. For example, copper metalPN was
dissected into six hubs among which the top-ranked hub contains
MAP1S, B2M, CD1A, CD1B, CD1D, and CD1E proteins (see
Supplementary Fig. 4). Of 24 identified top-ranked hubs, 18 hubs
contain minimum of one text-mined PD proteins. In copper hub
(see Supplementary Fig. 4), all proteins (MAP1S,B2M, CD1A, CD1B,
CD1D, and CD1E) were previously reported in PD14,15. Further-
more, the meta-analysis of 18 hubs showed 16 hubs in the brain
and 17 in blood were dysregulated in PD. In copper hub, B2M and
MAP1S were differentially regulated in both the brain and blood
confirming its impairment in PD. B2M is the members of major
histocompatibility complex-1 (MHC-1) molecules, widely
expressed in various regions of the human brain. Also, it is well
established that MHC-1 in neurons play a vital role in synaptic
input, synaptic plasticity, and regulates axonal regeneration16,17.

Table 1. Metal concentrations in serum and CSF determined using atomic absorption spectroscopy showing significant change in aluminum,
calcium, copper, iron, and magnesium in PD compared to control.

SERUM (Control = 87; PD= 87) CSF (Control= 42; PD= 42)

Metal Control (µg/L) PD (µg/L) P-value Control (µg/L) PD (µg/L) P-value

Aluminum 4.11 ± 1.52 4.755 ± 1.4 <0.02a 3.12 ± 0.886 2.43 ± 1.42 <0.03a

Calcium 64,825 ± 1514 72,303 ± 1720 <0.001a 26,291.15 ± 5411.9 28,447.38 ± 3378.10 <0.03a

Copper 1133 ± 127 909 ± 337 <0.001a 27 ± 4.78 24.4 ± 8.06 <0.029a

Iron 1265 ± 439 1091 ± 434 <0.009a 221 ± 28 172 ± 83.8 <0.002a

Magnesium 20,031 ± 1923 21,276 ± 1915 <0.0006a 23,030 ± 2659 25,466 ± 3512 <0.00055a

aStatistical significance (P-value ≤ 0.05) was calculated using t-test.
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The expression of MHC-1 is appeared to be influenced in various
neuronal pathways of the brain. Further, MHC-1 is involved in
cerebellum motor learning and cortical synapse function16–18.
Several reports suggest altered MHC-1 expression related to
neuro-inflammatory mechanism that implicates the immune

mediated neurodegenerative process in diseases, including
PD19,20. Evidence suggests that B2M has a strong association with
complex neurodegenerative diseases such as Alzheimer’s and
Parkinson’s disease21. In addition neuronal microtubule-associated
protein (MAP1S) in copper hub involved in axonal transport,

Fig. 4 Quantitative real-time gene expression analysis of hub proteins encoding genes in PBMCs from control vs. PD. a B2M, b TARDBP,
c EFEMP2, d MMP9, e MEAF2A relating copper, magnesium, aluminum, calcium, and iron, respectively. The gene expression of f SOD1, and
g hsCRP are the markers for PD. Bars represent the Average, standard deviation (SD) with *P value < 0.05.
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regional specialization, and synaptic function22. Similar to copper
hub, there are other metal hubs noticed to have significant
functional association with PD. However, we have tried to explain
the importance of our results using the copper hub.
Thirty-four classification algorithms were implemented on each

hub to identify the hub showing better classification ability that
differentiate PD from normal based on gene expression data. Of
analyzed hubs, aluminum, calcium, copper, iron, and magnesium
showed better performance in both the tissue for most of the
algorithms (see Supplementary Fig. 3). The proteins of these hubs
were subjected to enrichment analysis, which showed involve-
ment in immunological, neuronal, endocrinal, and aging process
that linked with PD pathogenesis. The proteins of copper hub
showed a significant involvement in tight junction, amebiasis and
MHC signaling pathways. Tight junctions between the cells
contribute fundamental structure of blood-brain barrier (BBB).
BBB play a crucial role in maintaining a stable environment of the
central nervous system. Altered tight junctions and BBB disruption
has been reported in the PD pathogenesis23. Overall, our pathway
analysis paves a way to understand the role of five significant
metal hubs in Parkinson’s disease (see Supplementary Table 2).
Dysregulating hub proteins imprint the metal availability in

biological system. Thus, metallomic approach was carried out to
estimate the concentrations of aluminum, calcium, copper, iron,
and magnesium in blood serum and CSF. The analysis of metals
showed significant variation in serum and CSF of PD (Table 1)
compared to control. All analyzed metals of controls were in
reference range of previously published literature24. Although, we
cannot rule out importance of hub proteins as a possible
biomarkers for PD. The hub proteins were prioritized to select
functionally important protein from each hub which showed
differential regulation in peripheral blood mononuclear cell
(PBMC) of PD compared to control (Fig. 4). Mohit Kumar et al.25,
observed the significant decrease in serum iron levels in PD
patients. Similarly, Logroscino et al.26, and Hedge et al.27, noticed
the decreased serum iron concentration and demonstrated its role
in PD compared to control. In addition, Jaya Sanyal et al.24,
showed the decreased copper and iron concentrations in CSF.
Similar, results were noticed in this study confirming the
importance of these metals in serum and CSF of PD pathology.
Also, significant change in serum-CSF metal interdependency of
aluminum, calcium, copper, and magnesium between CSF and
serum in PD, suggest the impairment of metal transport in BBB
and BCB (see Supplementary Table 3).
On the other hand, metal-gene interdependency (see Supple-

mentary Table 4) explores the influence of metals on gene
expression in PD. In copper hub, the expression B2M protein
encoding gene with the copper concentration showed negative
correlation which suggests that the decreased copper concentra-
tion increases the B2M gene expression in PD. Increased B2M has
been observed in patients with Alzheimer’s disease28 dementia29,
Parkinson’s diseases30, and Schizophrenia patients31. Also, Zhang
et al. showed B2M induced rat causes cognitive impairments,
depression, and anxiety that are closely linked with Parkinson’s
disease symptoms. Similar metal-gene interdependency was
noticed between magnesium-TARDBP, iron-MEAF2A, aluminum-
EFEMP2, and calcium-MMP9, suggesting its possible influence in
PD. In addition the association between metal with SOD1 and
hsCRP marker showed negative correlation which suggest
decreased copper concentration increase the expression of
SOD1 and hsCRP in PD (see Supplementary Table 5). Also,
comparing the interdependency between B2M (copper hub
protein) with SOD1 and hsCRP exhibits positive correlation (see
Supplementary Table 6). Trist32 reports that the maturation of
SOD1 is blocked by depletion in copper level in brain specific
region of PD33,34. This lead to decreased antioxidant property of
SNc dopaminergic neurons against oxidative stress. Hence,
inadequate copper concentration likely lead to the accumulation

of copper deficient wild type SOD1 in brain. Similar results also
obtained in our study that supports the decreased copper
concentration causes over expression of B2M, SOD1, and hsCRP
leading to PD pathogenesis.
Overall our finding provides an insight on the metals and metal-

binding proteins in PD pathogenesis. However, our studies have
few limitations such as (1) The samples included in this study are
south Indian population. Adding the sample from various ethnic
background and other neurodegenerative diseases will give more
support on reliability of identified metal and gene expression
based biomarker for PD. (2) Our study estimated the presence of
interdependency between metal and gene expression, having
protein expression will provide more information on this
association. On the other hand, the strength of our study need
to be acknowledged that, (1) This is the first study reporting the
metalloprotein network to describe the influence of metal-binding
protein in PD. (2) this study integrates metallomic and molecular
technique to identify an feasible biomarker from serum. (3) Also,
this study provide utilization of classification algorithm, which
further reduce complexity of PD diagnosis.
In summary, our study helps to understand the role of metals

and its binding protein in Parkinson’s disease. The significant
changes in CSF and serum level of metals opens up an ideal and
feasible diagnostic intervention for PD. Similarly, the interdepen-
dency between serum and CSF metal concentration of aluminum,
calcium, copper, and magnesium shows significant changes in PD.
This alteration makes dysregulation in ion transport across the
blood-brain and blood-CSF barrier, which may throw light towards
PD diagnosis. Although, the analyzed metals of CSF and serum
showed important contribution in PD pathogenesis our potential
interest is to identify a feasible markers for diagnosis. Considering
the feasibility of both the body fluids, serum holds good for
repeated evaluation of disease status and less invasive. Hence,
analyzing the levels of serum aluminum, calcium, copper, and
magnesium along with the gene expression may be useful in
detecting Parkinson’s disease.

METHODS
Data collection and protein interaction
The proteins containing metal as cofactors were retrieved from the protein
databases (http://www.rcsb.org, and http://metalweb.cerm.unifi.it). Among
the collected metal binding proteins, the membrane proteins were
excluded due its unbounding of metal at their functional active site
involving controlling membrane potential and ionic strength. Using the
UniProt mapping tool (www.uniprot.org), each protein ID was converted
into official protein symbol. Further, the collected metal-binding proteins
were grouped based on their bounded metal. The protein with multi-metal
was assigned to every group of its bounded metal. Twenty-four metal
groups were retained containing a minimum of ten proteins in each group.
The metal protein network (metalPN) was constructed using Cytoscape
software for each metal group by extending each metal-binding protein to
immediate neighbor interacting protein.

Principle component analysis based on network properties
To determine the biological significance of 24 metalPNs, the 24 randomized,
and 24 molecular pathway networks were generated. Each randomized
network was constructed using Erdos–Renyi model. Twenty-four rando-
mized networks were created containing an equal number of nodes
corresponding to every 24 metalPNs. Similarly, the 24 molecular pathway
networks were constructed by collecting proteins from the 24 randomly
selected molecular pathways available in the KEGG database. Seven
topological parameters were determined for each network using
Cytoscape network analyzer. Principle component analysis (PCA) was
performed using R-program, on the variables describing the topological
parameters of 72 networks to group them based on their network
properties35.
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Clustering, text-mining, and meta-analysis
ClusterONE algorithm was implemented on each metalPN to decompose
large network into dense protein hubs36. Each protein hub represents the
core functional component of metalPN. The top-ranked hub of each metalPN
was selected to determine its involvement in PD. For which, the text-
mining approach was carried out to collect the proteins reported in PD
from literature and mapped to each top-ranked hub of 24 metalPN to select
PD hubs.

Text-mining
Indigenous R-code was developed to retrieve the abstract for the key
terms related to Parkinson’s disease in conjunction with “Homo sapiens”
from the PubMed database, published between the years 1990–2017. The
collected 84,214 abstracts were examined for the presence of 22,853
protein symbols from the dictionary constructed by integrating various
proteome databases37–39. The R-code looks for the co-occurrence of the
terms “Parkinson’s disease” and protein symbol. We weigh the associations
of protein with the PD based on the occurrence of each protein symbol
and PD in the abstract based on the point-wise mutual information
method. Further, the frequencies of the collected PD proteins across the
abstracts were evaluated to have its presence in a minimum of three
abstracts. The identified PD proteins were mapped to the top-ranked hub
of each metal protein network (metalPN) to select PD associated hub.

Meta-analysis
To determine the regulation of selected hub in PD, the expression of
proteins encoding genes in the each hub was subjected to the meta-
analysis. For which, the microarray gene expression datasets were
extracted by two independent reviewers (AA & JS) from NCBI Gene
Expression Omnibus GEO (http://www.ncbi.nlm.nih.gov/geo/) and Arrayex-
press (https://www.ebi.ac.uk/arrayexpress/) using the keyword related to
Parkinson’s disease. The inclusion criteria were set for the selection of
dataset include (1) human case-control study, (2) dataset comparing PD
with other neurological disease and healthy control, (3) study conducted in
brain and/or blood tissue, (4) availability of raw or processed dataset. Also,
we exclude the expression dataset of (1) non-human study, (2) in vivo
study, (3) integrated and secondary analysis of expression data, and (4) the
microarray dataset with less than two replicate samples per type. Any
discrepancy in collected dataset was resolved by the third reviewer (SSJ),
while the group discussion. The Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines published in 2015 was
followed in the selection of datasets for this meta-analysis40.

Meta-analysis of genes in metalPN hubs
The collected microarray datasets were subjected to INMEX41, and the
analysis was carried out by following the procedure of Jose et al.42. In brief,
each dataset was annotated by converting probe ID to Entrez ID. The gene
intensity was log-transformed and limma processed to determine the
significant genes P-value (≤ 0.05) dataset between control and PD. For
meta-analysis, the datasets were merged to apply combat to decrease the
batch effect. Further, Fisher’s statistical approach was used to combine
significant P-values of each dataset to determine the significant genes
from the merged datasets. For the collected 14 brain datasets, the meta-
analysis was conducted to determine the significant genes in PD with P-
value ≤ 0.05. Similarly, the significant PD genes in blood were identified
from the merged four datasets.

Classification algorithm to classify metalPNs hubs
Data classification was performed using Weka software (Waikato Environ-
ment for Knowledge Analysis)43. Thirty-four distinct classification algo-
rithms were used to classify each hub into PD from normal based on the
merged expression data of the meta-analysis. The protein of each hub was
considered as features with its corresponding gene expression value as
input for classification algorithm. The performance was evaluated based on
the ten-times, ten-fold cross-validation technique. The threshold indepen-
dent parameters such as sensitivity, specificity, accuracy and Matthews’s
correlation coefficient were calculated for each hub. Further, top five hubs
showing high classification accuracy between the 34 algorithms were
selected and their proteins were subjected to KEGG pathway enrichment
analysis44. For validation, the hub relating metal was analyzed using AAS in
serum of control and PD. Simultaneously, the proteins in each hub was
functionally prioritized using ToppGene tool45. In ToppGene tool, the text-

mined 2088 PD proteins excluding hub proteins were inputted as training-
set and the proteins of each hub was considered as test-set, to identify the
functionally importance protein in each hub. Further, the change in
expression of these proteins encoding genes were tested in peripheral
blood mononuclear cell (PBMC) using Real time qPCR along with the
previously known antioxidant (Superoxide dismutase; SOD1) and inflam-
matory markers (C-reactive protein; hsCRP) of PD.

Participant selection
The participants were recruited at the National Neuroscience Center (NNC)
and Nil Ratan Sircar Medical College and Hospital (NRS), Kolkata, India. The
protocol of this study, including sample collection, processing and analysis
was approved by the Research Ethics Boards Committee of the
participating centers (NNC: Ref.No.Ath/2013) and NRS: Ref.No.25062012).
The written informed consent was obtained from all participants prior to
sample collection. The PD patients were enrolled and diagnosed by the
neurologist based on neurological examination and medical history. To
have a true positive PD patients, Unified Parkinson’s Disease Rating Scale
(UPDRS) and Hoehn and Yahr scale were followed. For the comparative
analysis, the participants free from neurological or neuropsychiatric
disorders were taken and underwent neurological examinations similar
as the patient for confirmation. Additionally, the selected controls are
equally matched with the PD participants based on their age, gender, co-
morbidities such as diabetes, hypertension, and cardio vascular disease
(Supplementary Table 8).

Inclusion and exclusion criteria
Participants for this study were selected by following the inclusion and
exclusion criteria. Inclusion criteria: (1) ability to comply with study
procedures. (2) participants aged 45–65 years. (3) body mass index (BMI) of
18–35 kg/m2. For participants with PD: (1) drug naïve, (2) presence of
cardinal symptoms, (3) absence of secondary Parkinsonism because of
drugs, (4) no features of prominent oculomotor palsy, cerebellar signs,
vocal cord paresis, pyramidal signs, severe orthostatic hypotension,
amyotrophy, or apraxia. The exclusion criteria include: (1) history of
alcohol abuse or consumption, (2) smoker or tobacco user, (3) previous
history of severe systemic diseases, (4) intake of minerals and chelating
agents, and (5) acute infections, traumata or surgery in the last one year.

Sample collection and processing procedure
The CSF and blood were drawn from the same patients and compared
with healthy controls. The demographic and clinical characteristics
of participants were recorded (see Supplementary Table 8). The CSF
(control = 42; PD= 42) and peripheral blood (control = 87; PD= 87)
samples were obtained from the participating centers. A few did not show
willingness to provide CSF samples. Hence, CSF obtained only from 42
control and 42 PD by following the BioMS-eu consortium guidelines. Ten
ml of CSF was obtained by lumbar spinal tap using a traumatic needle. The
CSF sample was then centrifuged at 1200 rpm for 10min at room
temperature to collect cell-free supernatant. Similarly, blood (10+ 3mL)
was collected, 10 mL were centrifuged for 10min at 3000 rpm to separate
serum and the remaining 3mL was used for PBMC isolation. The separated
samples were stored at −80 °C for further analysis.

Analysis of hub associated metals in serum and CSF
All precautions were taken following the NCCLS Guidelines to avoid
contaminants while sample collection and processing for the element
analysis. Nitric acid based microwave digestion was carried out46. For
calibration, NIST SRM 3100 series single-element standard solution was
used at various concentrations to have standard graphs. Also, the limits of
detection (LoDs) for the metals were determined by analyzing blank
solutions. The element concentration of aluminum and iron in serum was
analyzed using electrothermal (AAS SHIMADZU AA-6200, Kyoto, Japan).
Whereas, calcium, copper, and magnesium were analyzed using flame AAS
VARIAN AA-240, Varian Inc, (USA). The internal standards were run
between every six samples to determine the accuracy and quality of the
analysis.
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Gene expression analysis of clusters proteins, antioxidant, and
inflammatory marker
Peripheral blood mononuclear cell were isolated using Histopaque-1077
(Sigma-Aldrich) according to the manufacturer’s protocol. Further, the
TRIzol (Invitrogen) reagent was used for isolation of total RNA from PBMC.
The isolated RNA was quantified using Nanodrop 2000 (Thermo Scientific)
to construct cDNA from total RNA47. Quantitative real-time PCR was
performed to determine the expression of protein encoding gene in each
metal hub and antioxidant and inflammatory marker between PD and
control. The expression analysis was executed using ABI-7000 (Applied
Biosystems) with SYBR green master mix (Takara) and gene specific
primers (see Supplementary Table 7). The expression of targeted gene was
normalized with β-actin housekeeping gene and relative expression was
calculated following the 2−ΔΔCt method.

Statistical analysis
The statistical analysis was performed using SPSS software. The student t-
test was performed to determine the statistical difference (P ≤ 0.05)
between the control and PD for the measured metals and PBMC gene
expression, respectively. Further, correlation analysis was carried out to
determine the interdependency of (1) Metal concentration between serum
and CSF, (2) PBMC gene expression with serum metal concentration, (3)
PBMC SOD expression with metal and metal hub protein, and (4) PBMC
hsCRP expression with metal and metal hub protein.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The raw gene expression data used in this study were obtained from the NCBI-GEO
DataSets (https://www.ncbi.nlm.nih.gov/gds). The gene expression dataset can be
accessed using accession IDs GSE7621, GSE8397, GSE19587, GSE20141, GSE20146,
GSE20163, GSE20164, GSE20168, GSE20186, GSE20291, GSE20292, GSE20295,
GSE28894, and GSE49036 for brain. Similarly for blood, GSE6613, GSE22491,
GSE54536, and GSE72267 can be used.

CODE AVAILABILITY
IBM SPSS package version 24.0 was used for the statistical analysis. The meta-analysis
based gene expression was executed using integrative meta-analysis of gene
expression (INMEX). The indigenous R-code was used for text-mining will be provided
on request.
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