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Abstract

The global efforts in the past year have led to the discovery of nearly 200 drug repurposing candidates for COVID-19. Gaining
more insights into their mechanisms of action could facilitate a better understanding of infection and the development of
therapeutics. Leveraging large-scale drug-induced gene expression profiles, we found 36% of the active compounds regulate
genes related to cholesterol homeostasis and microtubule cytoskeleton organization. Following bioinformatics analyses
revealed that the expression of these genes is associated with COVID-19 patient severity and has predictive power on
anti-SARS-CoV-2 efficacy in vitro. Monensin, a top new compound that regulates these genes, was further confirmed as an
inhibitor of SARS-CoV-2 replication in Vero-E6 cells. Interestingly, drugs co-targeting cholesterol homeostasis and
microtubule cytoskeleton organization processes more likely present a synergistic effect with antivirals. Therefore, potential
therapeutics could be centered around combinations of targeting these processes and viral proteins.

Key words: SARS-CoV-2; drug mechanisms; transcriptomics; drug combination

Jing Xing received a PhD in drug design from the University of the Chinese Academy of Sciences in 2018 and then pursued the postdoctoral training at
Michigan State University, focusing on drug discovery from the deep-learning and system biology perspective.
Shreya Paithankar received a master’s degree in medical and bioinformatics from Grand Valley State University in 2018. She is now a technical assistant
at Dr. Bin Chen’s lab, leading the efforts in RNA-Seq processing and integration.
Ke Liu received a BA in computer science from Shandong University in 2008 and a PhD in biology from Tsinghua University in 2014. He is now an assistant
professor at Michigan State University.
Katie Uhl received a master’s degree in cellular and molecular biology from Grand Valley State University in 2017. She is now a lab manager at Michigan
State University College of Human Medicine.
Xiaopeng Li received a PhD in Physiology from Michigan State University, followed by postdoctoral training at the University of California San Francisco
and the University of Iowa. He is now an associate professor at the Department of Pediatrics and Human Development at Michigan State University.
Meehyun Ko is a scientist at Dr. Seungtaek Kim’s Lab at Institut Pasteur Korea. Her expertise is antiviral effect evaluation in cell models.
Seungtaek Kim received a PhD from Iowa State University in 2004 and then pursued the postdoctoral training at the University of Wisconsin-Madison and
University of North Carolina at Chapel Hill. He is now the head of Zoonotic Virus Lab, Institut Pasteur Korea. His research interest is in the virology of new
emerging viruses and therapeutics development.
Jeremy Haskins received a master’s degree in radiation physics and radiation cancer biology from Colorado State University in 2017. He is now a research
assistant at Michigan State University.
Bin Chen received a PhD in informatics from Indiana University, Bloomington and pursued the postdoctoral training at Stanford University. He then joined
the University of California San Francisco as a faculty member in 2015. He is now an assistant professor at Michigan State University.

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab249
http://orcid.org/0000-0003-4726-8525
http://orcid.org/0000-0003-3190-1656


2 Xing et al.

Introduction
As of 15 February 2021, SARS-CoV-2 has infected 108 million peo-
ple and claimed 2 million lives. In addition, a growing number
of researchers even speculate the society may have to endure
the current circumstances implicated with SARS-CoV-2 for an
extended period. Vaccines are promising for a cure, yet the
emerging mutations of SARS-COV-2 impose challenges to target
the viral proteins; thus, targeting host cells remains a viable ther-
apeutic approach. The global efforts in the trailing months have
led to the discovery of at least 184 drug repurposing candidates in
vitro (Supplementary Data 1). For example, Jeon et al. [1] screened
a panel of 48 FDA-approved drugs against SARS-CoV-2, which
were preselected by an assay of SARS-CoV-1, and found several
candidates with very low IC50 values, including niclosamide and
ciclesonide. Riva et al. [2] screened the ReFRAME library with
approximately 12 000 bioactives and identified 21 candidates.
Among all the repurposing hits, a few were verified to target
host processes, such as the eIF4A inhibitor zotatifin [3] and the
eEF1A inhibitor plitidepsin [4] that disrupt the cap-dependent
mRNA translation of coronaviruses. However, the majority of the
repurposing hits only exhibited moderate antiviral potential, and
their mechanisms of action (MoA) remain largely unelucidated
because of the haste to test candidates for clinical trials. The
following disappointing results of chloroquine, ivermectin and
others suggest that additional insights into their mechanisms
may facilitate an enhanced understanding of infection and the
development of better therapeutics for COVID-19.

Compared to the sparse drug-target matrix, transcriptomic
profiles induced by individual perturbagens provide a full-
matrix of drug-gene relations that could be explored to under-
stand drug mechanisms. Furthermore, these profiles are widely
used to evaluate the mimicking or reversal effect between drugs
and diseases, under the assumption that drugs with similar MoA
present similar effects on gene expression profiles, or effective
drugs likely restore the gene expression dysregulated in the
disease state [5–8]. Through integrative bioinformatics analyses
of transcriptomic profiles and in vitro experiments, we found
that those positive compounds regulate cholesterol homeostasis
and microtubule cytoskeleton organization pathways, which
also align with COVID-19 patients’ severity, compound efficacy
and synergism with antiviral drugs (Figure 1A). Therefore, we
propose that potential therapeutics could be centered around
combinations of targeting these processes and viral proteins.

Results
Identify anti-SARS-CoV-2 compound signature genes

Leveraging large-scale drug-induced gene expression profiles
from the Library of Integrated Network-Based Cellular Signa-
tures (LINCS) project [9], we computed the average expression
change of 978 landmark genes after treatment of 7879 com-
pounds individually across multiple cell lines. This collection
contains 97 anti-SARS-CoV-2 positive compounds. Then we
identified the differential gene expression induced by these pos-
itive compounds compared with the remaining 7782 samples.
This resulted in 63 genes specifically dysregulated, including
30 downregulated and 33 upregulated (Supplementary Data 2).
For example, NPC1, an intracellular cholesterol transporter,
showed a much higher expression induced by anti-SARS-
CoV-2 compounds than other compounds (P = 2.2E-09, Wilcox
rank sums test, Figure 1B). Particularly, it is highly upregulated
(z-score ≥ 2) by 17 positive compounds, such as pevonedistat and
cepharanthine. In addition, the expression change of NPC1 is

positively correlated with drug EC50/IC50 (Spearman Correlation
Rho = −0.44, P = 8.2E-05, Supplementary Data 2). An opposite
pattern exists in CCNA2, a G1/S and G2/M transition regulator
(Rho = 0.50, P = 6.69E-11, Figure 1B and Supplementary Data 2).
Among all the 97 positive compounds, 80 of them regulate at
least one of the 63 shared signature genes toward the proposed
direction (Supplementary Data 3). To quantify the regulation
effects of each compound on the 63 anti-SARS-CoV-2 signature
genes, we added up the expression Z scores of the 33 upregulated
genes, then subtracted the Z scores of the 30 downregulated
genes. As shown in Figure 1C and Supplementary Data 3, for
compounds with greatly changed (GC) profiles (more than 1%
of the genes in the transcriptomic profile were dysregulated
upon a specific compound treatment), the 63 signature genes
were more affected by the positive compounds than other
LINCS compounds. The separation of these two groups was clear
and significant (median values are 39.54 and 4.21, respectively;
P = 9.35E-18, Wilcox rank sums test). For the weakly changed
(WC) profiles, although their effects on the 63 genes are generally
minor, the difference is still significant (P = 3.11E-07, Wilcox
rank sums test). Non-human-targeting drugs like saquinavir
and amodiaquine might cause the weak change. These results
suggest the 63 genes’ expression change represents the
host-targeting anti-SARS-CoV-2 compound activity.

The differential expression of the 63 genes might serve as a
cellular response signature for anti-SARS-CoV-2 candidates. We
then validated this signature with five independent genome-
wide CRISPR screening datasets from [10–14]. These studies
identified 152 host factor genes critical in SARS-CoV2-infection
(Supplementary Data 4), termed pro-viral genes, among which
49 were mapped to the LINCS shRNA perturbagen collection.
Assuming that knock-down of individual pro-viral genes might
benefit the host cells to respond to the SARS-CoV-2 challenge,
we computed the mimic effect between the anti-SARS-CoV-
2 compound signature and the expression profiles perturbed
by shRNA of each pro-viral gene through a gene-set enrich-
ment analysis (adopted from RGES) [7]. The RGES values of 49
pro-viral genes knock-down are significantly higher than the
remaining 4321 genes (P = 7.38E-03, Wilcox rank sums test, one-
tailed, Figure 1D), suggesting inhibition of pro-viral genes has
similar effects with the active compounds, and the anti-SARS-
CoV-2 signature captures essential biological processes involved
in viral infection.

Key pathways targeted by anti-SARS-CoV-2 compounds

By incorporating gene co-expression knowledge, we performed
gene ontology (GO) enrichment analysis with a background
beyond LINCS 978 genes. For the 33 upregulated genes,
cholesterol biosynthetic and metabolic processes (‘cholesterol
homeostasis’ [15] hereafter) were enriched, with genes NPC1,
INSIG1 and HMGCS1 involved (Supplementary Figure S1A). For
the 30 downregulated genes, the ‘microtubule cytoskeleton orga-
nization’ process was enriched, with genes DAG1, CCNB1, AURKA,
PSRC1, STMN1, KIF20A, TUBB6 and MYBL2 annotated to this term
(Supplementary Figure S1B). Although pathways related to the
mitotic cell cycle were also significant, we did not further inves-
tigate them because of the biased distribution of the cancer-
enriched genes in the LINCS data. We also investigated whether
there were a few ‘druggable’ proteins that the anti-SARS-CoV-2
compounds commonly target on. The active compounds were
annotated and mapped to the drug repurposing list including
1824 bioactives from the Broad Institute Drug Repurposing Hub
(Supplementary Data 5). Then we calculated the enrichment
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Figure 1. Anti-SARS-CoV-2 compound signature gene expression change. A, The workflow of this research. B, Example genes were induced (SQSTM1 and NPC1) or

suppressed (MYBL2 and CCNA2) by anti-SARS-CoV-2 compounds. The y-axis indicates the LINCS z-score of a specific compound and a higher score means higher

expression change. P-values were derived from Wilcox rank sum tests, and further corrected across all LINCS 978 genes. C, A boxplot showing the comparison of the

effects on the 63 signature genes between active compounds and other compounds. The y-axis indicates an overall effect of a specific compound on the 63 genes, and

a higher score means a better alignment with the up/downregulation pattern. On the x-axis, the number of gene expression profiles in each group is labeled under

the group name. P-values were derived from Wilcox rank sum tests. D, A boxplot comparison between anti-SARS-CoV-2 CRISPR screening gene hits and non-hits. A

higher RGES score on y-axis indicates a query host cell shRNA knockdown-induced gene expression profile more closely resembles the summarized gene expression

signature of anti-SARS-CoV-2 active compounds. x-axis denotes whether a query host gene knock-out makes the cells resistant to SARS-CoV-2 infection. In the box

plot, the central line represents the median value, and the bounds represent the 25th and 75th percentiles. The whiskers are 25th/75th quartiles plus 1.5 times the

interquartile range.

of each MoA term pertaining to the active compounds using
the Fisher exact test (Supplementary Data 5). However, none
of the MoA terms were significantly enriched (false discovery
rate (FDR) < 0.05), which emphasized the necessity of decoding

drug mechanisms from transcriptomic data. Overall, 36% (35
out of 97) of the active compounds upregulate the expression of
the three genes mapped to ‘cholesterol homeostasis’ and/or
downregulate the expression of the eight genes mapped to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab249#supplementary-data
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‘microtubule cytoskeleton organization’ (average z-score ≥ 1.5),
whereas three randomly chosen drug profiles did not match
this pattern (Figure 2A). Strikingly, these active compounds are
not antivirals, and their primary mechanism of action varies.
Common mechanisms include NF-kB inhibitors, selective estro-
gen receptor modulators, and histamine receptor antagonists.
Therefore, their antiviral activity might be an off-target or
indirect effect on cholesterol homeostasis and/or microtubule
cytoskeleton organization.

Cholesterol homeostasis and Microtubule Cytoskeleton
organization gene expression indicates patient severity
and compound efficacy in vitro

Next, we examined the expression of the genes involved in the
two pathways using two independent COVID-19 patient cohorts,
including 33 samples from PBMC and 65 samples from leuko-
cytes. The gene expression differences were compared between
healthy (or non-COVID-19 donors) and COVID-19 patient
groups with different severity levels. As shown in Figure 2B,
Supplementary Table S1, and Supplementary Data 6 and 7, the
comparison between the patient and healthy group showed
a reversal pattern between disease gene expression and the
summarized gene expression of the active compounds, meaning
the three genes upregulated by anti-SARS-CoV-2 compounds
were strongly suppressed in patient samples, whereas the eight
genes downregulated by active compounds were mostly induced
in the infection status. We then designed the Cholesterol
homeostasis and Microtubule Cytoskeleton organization (ChoM-
Cyto) score to quantify the reversal (negative) or mimicking
(positive) pattern. This score associates with patients’ severity.
The ChoMCyto score successively dropped from −0.72 for
the moderate patient group to −1.05 for the severe group,
and then to −1.16 for the intensive care unit (ICU) group. In
another cohort, the ChoMCyto score significantly correlates with
patients’ sequential organ failure assessment (SOFA) (Spearman
correlation −0.52, P = 0.019, Figure 2C, Supplementary Table S2
and Supplementary Data 7). In addition to the severity, we
also investigated the effect of age or gender on the ChoMCyto
gene expression. The male patient group showed a more
negative ChoMCyto score than the female group in the first
cohort but not in the second one (Supplementary Figure S2A).
We did not find an association between ChoMCyto and
patient ages in both cohorts (Supplementary Figure S2A and B).
Together, cholesterol homeostasis and microtubule cytoskeleton
organization pathways are associated with COVID-19 severity,
suggesting that co-targeting these two pathways may improve
the outcome.

We then investigated if the ChoMCyto score has predictive
power on the anti-SARS-CoV-2 activity. Cortese et al. [16] found
SARS-CoV-2 caused cytoskeleton remodeling imperative for
viral replication. After testing a few drugs altering cytoskeleton
integrity and dynamics, the authors only observed withaferin A
had a robust antiviral effect. Gene expression profiles of these
drugs suggested they acted differently on ChoMCyto genes,
although all targeted cytoskeleton-related processes. Withaferin
A showed a similar pattern with the active drugs, whereas
paclitaxel showed a significantly opposite pattern (Figure 2D). In
addition, withaferin A also regulated cholesterol homeostasis,
whereas the other three only exhibited minor effects (Figure 2D
and Supplementary Table S3, P-values were one-tailed and
derived from randomly shuffled signatures permutation); thus,
withaferin A achieved a higher ChoMCyto score, explaining

its better antiviral effect. A stronger pattern was observed for
the positive control, cepharanthine (EC50 = 4.47 μM [1]). It was
reported to block cholesterol trafficking via targeting NPC1
[17]. Also, the qPCR experiment showed the actin expression
was undetectable after the human lung primary small airway
cells were treated with cepharanthine (Supplementary Table S4),
confirming its role on cytoskeleton organization.

To further evaluate its predictive power, we applied the
ChoMCyto score to all LINCS compounds (Supplementary Data 8).
Among the FDA-approved drugs, two top candidates, lomitapide
(Microsomal triglyceride transfer protein large subunit (MTTP)
inhibitor for hypercholesterolemia treatment) and monensin (an
ionophore with reported anti-MERS activity), were not evaluated
by published studies, thus selected to test anti-SARS-CoV-
2 activity in vitro. We found that monensin inhibited SARS-
CoV-2 replication in Vero-E6 cells [multiplicity of infection
(MOI) of 0.01] with IC50 of 11 μM, and its CC50 was >50 μM
(Figure 2E). Although lomitapide was inactive under this
experimental setting (Supplementary Figure S3), Mirabelli et al.
[18] recently reported its IC50 as 765 nM in Huh7 cells. In addition,
among the top 20 candidates, bazedoxifene, dronedarone and
osimertinib were already reported active [1]. To further confirm
the expression change upon drug treatment, the mRNA level
of NPC1, INSIG1 and HMGCS1 was measured in human lung
primary small airway cells after treated with cepharanthine,
lomitapide, and monensin, respectively. As shown in Figure 2F
and Supplementary Data 9, each compound induced a 3 ∼ 8-
fold change of NPC1 and HMGCS1 at 0.5 μM. In addition
to cepharanthine, lomitapide and monensin also inhibited
actin expression at 5 and 10 μM in human lung primary
small airway cells (Supplementary Table S4). This suggests
that regulating cholesterol homeostasis and microtubule
cytoskeleton organization might contribute to antiviral efficacy.
In addition, a comparison between cytotoxic (CC50 < 50 μM)
and non-toxic hits suggests that ChoMCyto genes expression
change does not significantly contribute to the cytotoxicity
(Supplementary Data 10).

ChoMCyto gene expression indicates synergistic effects
with antiviral drugs

Because the SARS-CoV-2 entry and infection of cells comprises
multiple critical biological processes inside infected cells,
we further evaluated the potential of the combination of
targeting ChoMCyto genes and other processes such as viral
replication in COVID-19 treatment. To do so, we elicited a
recent combination screening study from The National Center
for Advancing Translational Sciences (NCATS) [19, 20], where
15 host-targeting compounds were combined with at least
one of 11 antivirals [nine known antivirals, two potent SARS-
CoV-2 candidates nitazoxanide and hydroxychloroquine (HCQ)]
(Figure 3A, Supplementary Data 11). For each host-targeting
compound in the columns of Figure 3A, we summarized its
synergistic effect with the 11 antivirals (see Methods, Row ‘Syn-
ergism’ in Figure 3A) as well as the ChoMCyto score (the middle
row in Figure 3A). The drugs with higher ChoMCyto scores
are more likely to present a synergistic effect with antivirals
(Spearman correlation of −0.70, P = 1.96E-03, Figure 3A and B).
For instance, the mefloquine’s effect on ChoMCyto genes shares
a similar pattern with that from these reported anti-SARS-
CoV-2 active compounds, i.e., upregulation of NPC1, INSIG1 and
HMGCS1, whereas downregulation of the other eight genes,
and it strongly synergizes with arbidol, a viral envelope fusion
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Figure 2. Key pathways regulated by anti-SARS-CoV-2 active compounds indicate patients severity and compound efficacy in vitro. A, Expression change of genes

involved in cholesterol homeostasis or microtubule cytoskeleton organization induced by anti-SARS-CoV-2 compounds or three randomly selected compounds namely

heliotrine, telenzepine, and dipivefrine. B, The expression change of the selected ChoMCyto genes in different COVID-19 patient groups (Sequence Read Archive ID:

SRP267176). The bar plot shows the overall ChoMCyto scores. C, ChoMCyto scores correlate with patients’ SOFA (Sequence Read Archive ID: SRP279280). The P-value is

one-tailed. D, Drugs targeting cytoskeleton, and their effects on cholesterol homeostasis, microtubule cytoskeleton organization and ChoMCyto genes. Dashed rectangle

incorporates anti-SARS-CoV-2 active compounds. E, The dose–response (blue) and dose–viability (red) curves of monensin, with IC50, CC50 and selectivity index labeled.

F, mRNA fold changes (compared with TATA-box-binding protein (TBP)) of NPC1, INSIG1 and HMGCS1 induced by cepharanthine, lomitapide and monensin at 0.5 μM in

human lung primary small airway cells. Error bars denote standard deviations. For reference, the fold change of 1.0 is shown with grey dashed lines. In both heatmaps

and their labels, red indicates upregulation, and blue means downregulation. ∗P < 0.05; ∗∗P < 0.001.

inhibitor. On the contrary, leflunomide has a negative ChoMCyto
score and antagonizes with lopinavir or nelfinavir. Remdesivir
showed a synergistic effect with amodiaquine, nitazoxanide

and emetine; it might retain a potential synergistic effect with
triflupromazine, which was not tested yet, but with the highest
ChoMCyto score. Among the top of all repurposing candidates,
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cepharanthine (ChoMCyto = 9.44, Supplementary Data 8) was
also reported to present synergism with remdesivir. The
treatment of both compounds under the concentration of
2.5 μM could inhibit >95% cytopathic effect in vitro, whereas
the treatment of each under the same concentration could only
inhibit 35 and 10% cytopathic effect, respectively. [19]. Although
either agent alone only presented weak antiviral activity (EC50

at micromolar level), their combination exerted a marked effect.
This suggests the therapeutic potential of the anti-inflammatory
drug cepharanthine combined with antiviral treatment such
as remdesivir. Co-targeting the two pathways, especially the
ChoMCyto genes, might boost the efficacy of known antiviral
drugs for COVID-19 treatment.

Potential biochemical mechanisms of co-targeting

The aforementioned studies demonstrated that ChoMCyto
gene expression was closely associated with COVID-19 patient
severity and anti-SARS-CoV-2 activity in vitro. Next, we employed
compound-target and protein–protein interaction (PPI) data to
explore the biochemical mechanisms of co-targeting cholesterol
homeostasis and microtubule cytoskeleton organization. Thus,
the 35 positive compounds listed in Figure 2A were mapped
to their binding or functional target proteins, which were
then connected with the ChoMCyto gene products in a PPI
network (Supplementary Figure S4 and Supplementary Data 12).
Interestingly, 15 out of the 35 compounds directly target
neurotransmitter receptors, including dopamine receptors,
serotonin receptors, adrenergic receptors, histamine receptors,
opioid receptors and muscarinic acetylcholine receptors, which
were densely clustered at one side of the PPI network. The
ChoMCyto genes were located on the other side. Between
them were a few hub protein targets which interact with many
other proteins, implying the potential PPI connections from the
compound primary targets to the expression of genes involved
in cholesterol homeostasis and microtubule cytoskeleton
organization. Among all the target proteins, TP53 interacts with
the most ChoMCyto genes, including INSIG1, MYBL2, AURKA,
CCNB1 and STMN1. It was also reported regulating the cholesterol
level and cytoskeleton remodeling [21, 22]. Thus, TP53 might
be a pivotal factor in co-targeting cholesterol homeostasis
and microtubule cytoskeleton organization. The ChoMCyto
genes could be regulated by prelamin-A/C and microtubule-
associated protein tau, which are the mutual targets of 10 and
6 positive compounds, respectively, through TP53. The other
two important hub proteins, STAT3 and EGFR, intermediate the
interactions between ChoMCyto genes and the neurotransmitter
receptors. This PPI network suggests that there are multiple
protein targets that directly or indirectly regulate cholesterol
homeostasis and microtubule cytoskeleton organization against
SARS-CoV-2 infection.

Discussion
Our survey of the positive hits from SARS-CoV-2 drug screenings
reveals 36% of them share common mechanistic effects through
the regulation of cholesterol homeostasis and/or microtubule
cytoskeleton organization. We designed a ChoMCyto score
to quantify this summarized drug effect pattern, which is
associated with COVID-19 patient severity. By applying the
ChoMCyto pattern to predict anti-SARS-CoV-2 efficacy, we
discovered monensin with EC50 of 11 μM in Vero-E6 cells.

Literature survey suggested the antiviral mechanism of mon-
ensin might be via blocking viral transport within the Golgi
complex [23]. This indirect antiviral mechanism inspired us
to investigate the synergism between established antiviral
drugs and repurposed drugs targeting host cellular ChoMCyto
genes.

Our findings corroborate the emerging evidence from other
studies. For instance, the analysis of clinical data reports
hypolipidemia is associated with the severity of COVID-19
[24]. Zang et al. [25] found that cholesterol 25-hydroxylase
suppresses SARS-CoV-2 replication by blocking membrane
fusion. In addition, its product, 25-hydroxycholesterol, was
elevated in a fatal COVID-19 patient and infected mice [26].
The large-scale profiling of SARS-CoV-2 virus-host interactions
found that viral proteins Orf8 and Orf9c directly bind to NPC2
and SCAP [3], important components for cholesterol transport
and monitoring. In addition, the ‘microtubule-based process’
is enriched in the host protein targets of viral NSP10 and
NSP13 [3]. In our recent work [27], 10 out of 11 ChoMCyto
genes showed a contrasting expression pattern with that
dysregulated by coronavirus infection. Together, we conclude
that cholesterol homeostasis and microtubule cytoskeleton
organization pathways are disrupted by the viral infection, and
one-third of the published anti-SARS-CoV-2 compounds tend
to restore these biological processes inside the host cells. Co-
targeting the two pathways might boost the efficacy of known
antiviral drugs for COVID-19 treatment.

Methods
Collect anti-SARS-CoV-2 positive compounds

By August 2020, 184 compounds with reported in vitro anti-
SARS-CoV-2 activity were manually collected from 14 studies
(Supplementary Data 1). These compounds could inhibit the
SARS-CoV-2 induced-cytopathic effect and/or SARS-CoV-2
replication in the host cells with EC50/IC50 less than 50 μM. The
compound name, efficacy, cytotoxicity, chemical structure, MoA
and source links were compiled into this positive compound
collection.

Summarize compound- or shRNA- induced gene
expression changes

The drug-induced gene expression profiles produced in the
LINCS L1000 project [9] are accessible in Gene Expression
Omnibus (GEO) with IDs GSE92742 (Phase 1) and GSE70138 (Phase
2). The level-5 profile derived from the comparison of gene
expressions between the perturbagen- or vehicle control-treated
samples represents gene expression changes upon compound
or shRNA treatment. Only 978 landmark genes and high-
quality profiles (is_gold = 1, annotated in the metainformation)
were included in the analysis. As one compound could be
profiled under different concentrations, treatment durations,
and cellular contexts, given a specific compound, we took the
median LINCS z-scores of its profiles measured at 10 μM of
drug treatment, regardless of the time and cellular context,
resulting in a matrix of 978 genes by 7879 compounds at the
end. Similarly, we took the median z-scores of each shRNA
across different treatment conditions. Of note, only consensus
gene (CGS) knockdown signatures were used unless no ‘CGS’
profiles were measured for a given shRNA perturbagen. This
resulted in 4370 different shRNA profiles after merging. A z-
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Figure 3. The drug effect on ChoMCyto genes correlates with antiviral synergism. A, heatmaps of synergism effects (top), ChoMCyto score (middle) and ChoMCyto

genes expression change (bottom). Heatmaps share drug columns. In the top panel, the row ‘Synergism’ summarizes the average synergistic effect of antiviral drugs

with each host-targeting compound in the x-axis. White: missing values, purple: synergism, orange: antagonism. The middle row illustrates the ChoMCyto scores

multiplied by −1, for a better color agreement with ‘Synergism’. In the bottom heatmap and gene labels, red indicates upregulation, and blue means downregulation. B,

ChoMCyto scores and average synergism effects of repurposed anti-SARS-CoV-2 candidates in a scatter plot. Each dot represents a compound. Spearman R correlation

and the P-value (one-tailed) are labeled.

score larger than 1.5 indicates that the drug can upregulate
the gene expression, whereas a z-score less than −1.5 means
downregulation. A larger absolute z-score means a higher

magnitude of expression change. The LINCS profiles have been
extensively explored for therapeutic discovery in our previous
works [7, 8, 28, 29].
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Evaluate genes expression affected by anti-SARS-CoV-2
active compounds

The compounds profiled in LINCS were divided into two groups:
anti-SARS-CoV-2 actives and others. The in vitro anti-SARS-CoV-
2 efficacy data (Supplementary Data 1) were collected from the
literature and the NCATS OpenData Portal (https://opendata.nca
ts.nih.gov/covid19/assay?aid=14, accessed by 2 July 2020). Given
the concern about data quality from high-throughput screen-
ings, for the efficacy data from NCATS, only compounds with
AC50 less than 5 μM were included as actives. The expression z-
scores of each landmark gene were compared between actives
and other compounds using both the Wilcox rank sums test
and Fisher exact test. For the Fisher exact test, the following 2
by 2 table was calculated to derive the one-tailed P-values of
up/downregulation, respectively.

[(Number of active compounds up/downregulating a gene,
Total number of actives),

(Number of other compounds up/downregulating a gene,
Total number of other compounds)]

The smaller P-value between up- and down- regulation was
selected as the final P-value for this gene. Then we used the Ben-
jamini–Hochberg false discovery rate to correct P-values derived
from the Wilcox rank sums and Fisher exact test, respectively.
The genes with both P-values less than 0.05 and both FDRs
less than 0.05 were chosen as significant genes affected by
anti-SARS-CoV-2 drugs.

Validate active compounds’ signature using CRISPR
screening datasets

We first compiled a pro-viral genes list based on five recent
studies on the CRISPR screening of anti-SARS-CoV-2 host factor
genes [10–14]. Based on the description from these papers, the
following criteria were applied to define hits: Daniloski et al.:
FDR < 0.1 and lfc (log2 fold change) > 1 for either MOI 1 or MOI
3; Hoffmann et al.: FDR < 0.1 with a positive z-score; Schneider
et al.: FDR <0.05 and z-score > 4; Wang et al.: score < 10E-04 and
Wei et al.: Cas9-v2 average > 3. These hits were mapped to the
LINCS shRNA collection. For each LINCS shRNA perturbagen, its
average profile was summarized, followed by the calculation of
RGES to evaluate whether it could mimic (a positive RGES score)
the effect of the anti-SARS-CoV-2 active compounds. Finally, the
Wilcox rank sums test was performed to compare RGES scores
between the knock-down of pro-viral genes and other genes in
the LINCS shRNA perturbagen collection.

Interpret gene expression signatures induced by active
compounds

To gain biological insights from the significant genes commonly
regulated by active anti-SARS-CoV-2 compounds, we investi-
gated their GO enrichment in STRING-db [30] (https://string-
db.org/). Enrichment analyses for up- or down- regulated genes
were performed separately. As the LINCS profiles only measured
the expression change of 978 landmark genes, which cover a
small part of the whole transcriptome, we incorporated the gene
co-expression knowledge to overcome this limitation. For each
part of the dysregulated gene set, a co-expression network was
retrieved from STRING-db with the highest confidence inter-
action scores and no more than 50 interactors of the second
shell included. Then the GO enrichment analysis was performed
on the interaction network with the whole transcriptome as
background.

Evaluate genes expression affected by anti-SARS-CoV-2
active compounds in human lung primary small airway
cells

Human small airway epithelia at the air-liquid-interface were
cultured using the same protocol for pig small airway culture as
published before [31]. Human donor lungs were collected from
Spectrum Health Accelerator of Research Excellence protocol
with institutional review board approval. All human samples
were de-identified and without personal health identifiers.

Briefly, small airway tissue is dissected from distal lungs
from within 2 cm from the edge of lung parenchyma. Small
airway tissue was digested with pronase and epithelial cells
were co-cultured with irradiated feeder cells. Expanded small
airway cells were seeded on transwells for at least 2 weeks
before it is ready for usage. Anti-SARS-CoV-2 active compounds
were added to small airway cells with different doses for 24 h,
DMSO was used as vehicle control. RNA was isolated based
on the TRIzol™ Reagent (Invitrogen, 15 596 026) protocol. To
the 1 ml of Trizol homogenized sample, 200 μl of chloroform
were added and thoroughly mixed by shaking before incubat-
ing on ice for 2–3 min. Samples were centrifuged for 15 min
at 12 000 × g at 4◦C. The aqueous phase was removed and
transferred into a new sample tube. One volume of 70% ethanol
was added to each sample, and the entire contents were used
for the RNA extraction process. RNA was extracted using the
PureLink™ RNA Mini Kit (Invitrogen, 12 183 020) and eluted in
30 μl of RNase-free water. Complementary DNA (cDNA) from
the extracted RNA was synthesized using the SuperScript™ IV
VILO™ Master Mix (Invitrogen, 11 756 050) with the recom-
mended ezDNase enzyme treatment. The resulting cDNA was
quantified and diluted to a concentration of 1 μg/μl. A master
mix was prepared for each set of primers by utilizing the TB
Green® Premix Ex Taq II (TLi RNaseH Plus) reagent kit (Takara
Bio, RR820A). Primers were designed and ordered through Sigma-
Aldrich (Supplementary Table S5). To prepare the reaction mas-
ter mix, the recommended protocol for the StepOnePlus Real-
Time PCR System in the product manual was followed. Briefly,
the TB Green® Premix Ex Taq II (TLi RNaseH Plus) was diluted
to a final concentration of 1X and the final concentration for
each primer was 0.4 μM. Except for the template, 18 μl of the
master mix was added to the appropriate well of a 0.2 ml Non-
skirted Black-Lettered 96-well PCR plate (Thermo Scientific, AB-
0600-L). Of the prepared 1 μg/μl template cDNA, 2 μl was added
to each well in the plate and mixed gently. The plate was covered
and centrifuged briefly to remove air bubbles from the wells.
The reaction was run using a QuantStudio™ 3 Real-Time PCR
System (Applied Biosystems™, A28567). Raw data were uploaded
to the Thermo Fisher Cloud Dashboard for data analysis. Gene
expression relative to the TBP housekeeping gene was calculated
using the ��CT method.

Process patient blood transcriptome samples and
compare between patient groups

Raw FASTQ files for SRP267176 (https://trace.ncbi.nlm.nih.gov/
Traces/sra/?study=SRP267176) and SRP279280 (https://trace.ncbi.
nlm.nih.gov/Traces/sra/?study=SRP279280) were downloaded
from public database NCBI SRA (https://www.ncbi.nlm.nih.
gov/sra). Data were processed using RNA-seq by expectation
maximization (RSEM) [32, 33] 1.3.1 + STAR [34] 2.6.1 pipeline.
Log2 transformed (addition of pseudocount 1) TPM values as
gene expression measures were used for analysis. The RNA-
Seq processing code is available at GitHub (https://github.com/

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab249#supplementary-data
https://opendata.ncats.nih.gov/covid19/assay?aid=14
https://opendata.ncats.nih.gov/covid19/assay?aid=14
https://string-db.org/
https://string-db.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab249#supplementary-data
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP267176
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP267176
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP279280
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP279280
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://github.com/Bin-Chen-Lab/chenlab_toil
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Bin-Chen-Lab/chenlab_toil). Sample metadata were obtained
from GEO (GSE152418 and GSE157103). For the first dataset,
gene expression differences were compared between healthy
donors (control samples) and moderate/severe/ICU patients
(case samples). For the second, gene expression differences
were compared between non-COVID-19 non-severe patients
with SOFA as ‘NA’ (control samples) and patient groups with
different SOFA scores (case samples). When evaluating the
relationship between ChoMCyto and patients’ age or gender,
samples in each dataset were grouped by age or gender instead
of their severity level. Then the gene expression differences
were compared between COVID-19 patients and healthy or
non-COVID-19 donors within the same age or gender group.
For example, fold change values of all genes were derived by
comparing COVID-19 patients aged 50–59 versus healthy donors
aged 50–59. The log2 fold change values were calculated using
the diffExp function in the open Cancer TherApeutic discovery
(OCTAD) [28] R package. For better visualization in a heatmap,
the log2 fold change values from different comparisons were
converted into gene rankings within a group.

Quantify the enrichment between a gene set
expression pattern and a disease/drug signature

Given the expression-changing pattern of a set of genes, i.e.,
significantly dysregulated genes together with their directions
of changing (up/downregulated), such as the ChoMCyto pattern,
we calculated how strongly it matched with a disease signature
(e.g. moderate patients versus healthy donors) or a drug profile
(e.g. the summarized LINCS signature of withaferin-A). In detail,
ESup was derived by averaging the log2 fold change or LINCS
z-score values of the genes expected to be upregulated in the
gene set of interest. Similarly, ESdown was derived by averaging
the downregulated genes of interest. Then the final score was
defined as ESup – ESdown. A positive score indicates the disease
signature or drug profile exhibits a similar pattern with the gene
set of our interest (e.g. ChoMCyto genes direction summarized
from active anti-SARS-CoV-2 compounds). In contrast, a negative
score indicates the reversal of this pattern. A P-value was derived
by scoring 5000 randomly shuffled signatures.

Evaluate inhibition of SARS-CoV-2 replication in vitro

We evaluated whether the proposed compounds could inhibit
SARS-CoV-2 replication in an immunofluorescence assay, as
previously reported [1]. In brief, Vero cells were seeded at
1.2 × 104 cells per well in the 384-well-plate 24 h prior to
infection. Cells were treated with different concentrations (0.1
to 50 μM, 10 points) of compounds approximately 30 min prior
to infection. Then the cells were infected with SARS-CoV-2
(strain: βCoV/Korea/KCDC03/2020, NCCP43326) at a MOI of 0.01,
followed with incubation at 37◦C for 24 h. After fixation at
room temperature for 30 min and permeabilization with 0.25%
tritonX-100 for 10 min, the primary antibody, anti-SARS-CoV-
2 Nucleoprotein (Sino Biological, 40143-T62), was attached at
37◦C for 1.5 h. Then the secondary antibody was attached using
goat-anti-rabbit-IgG-alexa-488 + Hoechst 33342, and nucleus
staining was conducted at 37◦C for 1 h. Then the assay plate
was submitted to the Operetta microscope (Perkin Elmer) for
imaging. The Columbus software (Perkin Elmer) was used to
calculate the infectivity and cell number. Cell viability was
measured by comparing the cell number to mock infection.
Finally, the dose–response curve was generated with Prism 7
(GraphPad) to calculate IC50 with the four-parametric nonlinear
fitting algorithm.

Associate drug combination synergism and
drug-induced gene expression

Bobrowski et al. [20] measured the anti-SARS-CoV-2 synergism
of 73 drug combinations in vitro. As they calculated synergistic
(HSA. Neg) and antagonistic (HSA. Pos) effects separately, we took
the one with a larger absolute value as the synergism score of
each drug combination. We investigated those pairs comprising
one known antiviral drug (e.g. remdesivir and arbidol) and one
non-typical-antiviral drug (e.g. amodiaquine and mefloquine).
For each of the latter drugs, its general synergistic ability was
summarized as an average synergism value across all the known
antiviral drugs tested. Accordingly, the ChoMCyto scores of these
non-typical-antiviral drugs were calculated based on their LINCS
profiles. Then we calculated the Spearman correlation between
their average synergism values and ChoMCyto scores.

Compare genes expression change induced by
cytotoxic and non-toxic compounds

The positive anti-SARS-CoV-2 hits from screenings were anno-
tated as cytotoxic if reported CC50 less than 50 μM. For each
landmark gene, its expression z-scores were compared between
cytotoxic and non-toxic compounds using the Wilcox rank sums
test. Then we used the FDR to correct P-values.

Build a PPI network containing positive compounds’
primary targets and ChoMCyto genes

First, from the ChEMBL [35] database, we retrieved the activity
records of the 35 positive compounds, which regulate cholesterol
homeostasis and/or microtubule cytoskeleton organization. The
activity records were filtered based on the following criteria: (i)
single protein targets, (ii) pChEMBL values ≥5, (iii) neither CYP450
nor HERG proteins and (iv) active to ≥3 query compounds accord-
ing to the second requirement. Of note, the pChEMBL value
is a number of roughly comparable measures of half-maximal
response concentration, potency or affinity to be compared on a
negative logarithmic scale. For example, an IC50 measurement of
1 nM would have a pChEMBL value of 9. Then the gene symbols
of these targets, together with ChoMCyto gene symbols, were
searched in the STRING-db [30] for their PPI connections with
the default setting.

Software tools and statistical methods

All analyses were conducted in Python v3.7.6 programming lan-
guage. Data matrices merging and basic statistics were per-
formed with the Pandas package (v1.0.1). LINCS compound pro-
file extraction was conducted using the cmapPy package (v4.0.1).
Wilcox rank sums test, Fisher exact test and Spearman corre-
lation were calculated with the Scipy package (v1.4.1). All P-
values were two-sided unless specified otherwise. FDR values
were calculated with the Statsmodels package (v0.11.0). Data
visualization was implemented with the Matplotlib (v3.1.3) and
Seaborn (v0.10.0) packages.

Key Points
• Published SARS-CoV-2 inhibitors share common

mechanisms of action, which are related to cholesterol
homeostasis and microtubule cytoskeleton
organization.

https://github.com/Bin-Chen-Lab/chenlab_toil
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• The transcriptomic pattern of these pathways corre-
lates with COVID-19 patients’ severity and indicates
anti-SARS-CoV-2 activity in vitro.

• The transcriptomic pattern led to the discovery of
monensin as an inhibitor of SARS-CoV-2 replication in
Vero-E6 cells.

• Compounds co-targeting cholesterol homeostasis
and microtubule cytoskeleton organization processes
more likely present a synergistic effect with antivirals.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.

Data Availability

The processed LINCS dataset is available upon request.
Other datasets are available in the supplementary data.
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