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Prostate cancer is the most prevalent form of cancer and the second most common cause of cancer deaths among men in the
United States. Accurate prognosis is important as it is the principal factor in determining the treatment plan. Prostate cancer is a
complex disease which advances in stages. While clinical failure (including metastasis) is a significant endpoint following a radical
prostatectomy, it can often take years to manifest, usually too late to be optimistically treated. In practice, the earlier endpoint of
PSA Recurrence is frequently used as a surrogate in prognostic modeling. The central issue in these models is managing censored
observations which challenge traditional regression techniques.The true target times of a majority of instances are unknown; what
is known is a censored target representing some earlier indeterminate time. In this work we apply a novel transduction approach for
semi-supervised survival analysis which has previously been shown to be powerful in medical prognosis. The approach considers
censored samples as semi-supervised regression targets leveraging the partial nature of unsupervised information. We explore the
use of this approach in building prostate cancer progression models from multimodal characteristics extracted from both biopsy
and prostatectomy tissues samples. In this work, the approach leads to a significant increase in performance for predicting advanced
prostate cancer from earlier endpoints andmay also be useful in other diseases for predicting advanced endpoints from earlier stages
of the disease.

1. Introduction

Prostate cancer is the most prevalent form of cancer and
the second most common cause of cancer morbidity among
men in the United States. The most common treatment is
the surgical removal of the prostate through a radical prosta-
tectomy (RP). Unfortunately, RP is no guarantee of a cure.
Approximately 3-5% of men after RP experience significant
clinical failure (CF) including metastasis and/or death-of-
cancer. While CF is a clinically meaningful endpoint, it can
often take years to present; and when it does the disease
may be too advanced for effective treatment. Therefore,
an earlier endpoint of prostate-specific-antigen-recurrence
(PSAR) after RP is frequently employed as a surrogate.This is
however a noisier endpoint, which 15-25% of men experience
after RP. Not everyone with PSAR progresses to the more
advanced stage of CF. Since PSARoccurs years earlier though,
a physician and patient can start to make complex decisions

about treatment options and impact on quality of life.
Accurate prognosis is important as it is the principal factor
in determining the treatment plan. In prognostic modeling,
PSAR data is frequently employed to predict CF [1–3].

While such time-to-event prediction can pose a regres-
sion problem, survival analysis is challenging since data in
such circumstances is characterized by censored observa-
tions. The term “censoring” in biostatistics describes the fact
that the target survival time is not known for all samples.
For instance, patients might not experience death or cancer
relapse during the course of a study or be lost to follow-up.
The only time known is their last record of being healthy;
hence the regression target time is uncertain and only known
“up-to-a-point.”This is distinctly different from the notion of
missing data [4–6].

Censored observations contribute incomplete informa-
tion since the event of interest may occur after patients are
lost to follow-up. Omitting the censored samples [7] and
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treating them as nonrecurring samples in a classifier [8] both
bias the resulting model and should be avoided. Additionally,
in healthcare diagnostics, due to the costs of identifying
acceptable patients who will provide consent for inclusion in
research, and then actively tracking them over a significant
period of time, the sample size is often small, in the tens
or hundreds. Since most of the samples may be censored
(91% in prostate cancer [2]) dropping such patients is a very
unattractive option and accounting for them is of crucial
importance. Survival analysis represents a special example of
the typical complexity in modeling noisy high-dimensional
biomedical data to predict complex medical phenom-
ena.

There has been extensive research into algorithms and
techniques for survival analysis [5, 6, 9, 10]. A recent
innovation has been to consider censored samples as semi-
supervised targets. While there has been significant work in
semi-supervised classification [11–13], there has been limited
work in semi-supervised regression [14]. Work has treated
samples as either fully labeled or unlabeled and did not take
into account the partial nature of unsupervised information,
as is the case in time-to-event medical prognosis problems.
We have recently proposed a novel framework which mod-
ifies survival analysis algorithms by transducing appropriate
target times in a semi-supervised regression context [4, 15].
This framework has already been employed tomodel prostate
cancer with multimodal imaging and clinical characteristics
extracted from both biopsy and prostatectomy samples [16,
17].

Until recently the approach has only been applied to
directly predict a medical prognostic endpoint. In the present
paper, we consider the interesting and practical problem
where an earlier disease endpoint is used to predict a later one.
We concentrate on the highly relevant prostate cancer space
as, unlike other cancers, prostate cancer has a long multiyear
horizon with multiple stages of the disease

2. Overview of Survival Analysis and
Semi-Supervised Regression

2.1. Overview of Survival Analysis. Healthcare data for prog-
nostic modeling is usually obtained by tracking patients over
the course of time in a well-designed study, perhaps lasting
years. Often a predefined event such as the relapse of a
disease or death due to disease is the focus of the study.
The major difference between survival analysis and other
regression problems is that the event of interest is frequently
not observed in many of the subjects. Patients who did not
experience the endpoint during the study or were lost to
follow-up for any cause (i.e., the patient moved during a
multiyear study) are considered as censored. All that is known
about them is that they were disease-free up to a certain
point, but what occurred subsequently is unknown. They
may have actually experienced the endpoint of interest at
a later time. Conversely, patients who have experienced the
endpoint of interest are considered as noncensored samples
or events. In many medical prognosis problems, the vast
majority of instances (as high as 96%) can be censored. The

incomplete nature of the outcome thus challenges traditional
regression techniques. Methods which can correctly account
for censored observations are essential [6, 9, 10, 15].

If 𝑇𝑖 denotes the actual target time, 𝐶𝑖 the censored time,
and 𝑈𝑖 the observed time for all patients, then for measured
events 𝑈𝑖 = 𝑇𝑖 and for censored cases 𝑈𝑖 = 𝐶𝑖 < 𝑇𝑖. The
survival outcomes for n patients are then represented by pairs
of the random variables (𝑈𝑖, 𝛿𝑖) for i = 1, . . ., n. 𝛿𝑖 indicates
whether the observed survival time 𝑈𝑖 corresponds to an
event (𝛿𝑖 = 1) or is censored (𝛿𝑖 = 0). Given a d-dimensional
vector 𝑥𝑖 L Rd, the data D for medical prognosis can be
represented as

𝐷 = {𝑈𝑖, 𝑥𝑖, 𝛿𝑖}𝑛𝑖=1. (1)

𝑈𝑖 = min (𝑇𝑖, 𝐶𝑖) (2)

𝛿𝑖 = 𝐼 (𝑇𝑖 ≤ 𝐶𝑖) = {{{
0, for censored observation,
1, for exact observation. (3)

2.2. Methods for Survival Analysis. The field of prognostic
survival analysis has been primarily of interest to biostatis-
ticians. The Cox proportional hazards model is the de facto
standard approach [9, 10]; it estimates the log hazard for a
patient as a linear combination of the patient’s features, plus
a baseline hazard. A patient’s individual predicted hazard
function predicts their survival time. A hazard function is
the instantaneous rate of decline in survival at a point in
time. The Cox model makes the assumption that the hazard
functions for any two individuals are proportional; their ratio
is constant over time. This assumption is reflected in the
formula for the approach:

hi (t) = exp( 𝑝∑
𝑗=1

𝑏jXij) h0 (t) (4)

where ℎ𝑖(t) is the hazard function for the ith individual, 𝑏𝑗 is
the slope term for the jth feature, 𝑋𝑖𝑗 is the value of feature
j for individual i, exp() refers to the exponential function
(exp(u) = e𝑢), and h0(t) refers to a hazard function for an
individual with zeros for all features. Regression parameter
estimates (the b terms) are obtained via maximum likelihood
estimation. The Cox model only employs censored patients’
data in calculating the hazard function up to the time of
censoring; afterwards they are excluded.

Widespread adoption of Support Vector Machines
(SVMs) has also led to recent applications for survival anal-
ysis [5, 6, 15]. One example is SVRc which adapts normal
support vector regression through an asymmetric loss-pen-
alty function depending on whether a patient’s observation
is censored or an event [5]:

min
𝑊,𝑏

12 ‖𝑊‖2 + 𝑛∑
𝑖=1

(𝐶𝑖𝜉𝑖 + 𝐶∗𝑖 𝜉∗𝑖 ) (5)
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given the constraints

𝑦𝑖 − (𝑊 ∙ Φ (𝑥𝑖) + 𝑏) ≤ 𝜀𝑖 + 𝜉𝑖
(𝑊 ∙ Φ (𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜀∗𝑖 + 𝜉∗𝑖

𝜉(∗)𝑖 ≥ 0, 𝑖 = 1 . . . 𝑛
(6)

where
𝑠𝑖 = 1 if censored,

𝑠𝑖 = 0 if event

𝐶(∗)𝑖 = 𝑠𝑖𝐶(∗)𝑐 + (1 − 𝑠𝑖)𝐶(∗)𝑛
𝜀(∗)𝑖 = 𝑠𝑖𝜀(∗)𝑐 + (1 − 𝑠𝑖) 𝜀(∗)𝑛

(7)

2.3. Overview of Semi-Supervised Regression. The basic idea
of transductive regression [14] is that, given m labeled data
and labels (x1, y1), . . ., (xm, ym) as well as u unlabeled
data points xm+1, . . ., xm+u, transductive regression learning
algorithms must accurately predict the labels ym+1, . . ., ym+u.
Reference [14] describes two basic steps for such algorithms.
The first is local estimation where labels of unlabeled points
are assigned based on their neighbors. In the second step,
through optimization, a hypothesis is selected that best
fits the known supervised labels and the estimated labels.
While these approaches work well for problems with fully
labeled and unlabeled instances, their direct adoption for
survival analysis is not ideal as they do not leverage the
partial information of true outcome in the censored times.
Additionally, classical semi-supervised regression does not
reflect the circumstances of survival analysiswheremore than
90% of the instances may be unsupervised but contain partial
information. The scarcity of neighboring events with known
target labels for censored instances challenges them.

To the best of our knowledge, leveraging the partial
knowledge of true known outcomes in the encoded censored
times for survival analysis is a largely neglected area. One of
the first efforts [4, 15] developed a framework for transducing
the appropriate censored times in a medical survival analysis
problem.This framework is what we explore in this work

3. Materials and Methods

In this paper, we leverage the use of a transduction approach
for semi-supervised regression in survival analysis to build
prostate cancer models for PSAR which are used to then
predict the later, more clinically meaningful endpoint of CF.
Prostate cancer characteristics representing multiple modal-
ities including clinical characteristics, quantitative protein
biomarker expression, and microscopic image analysis are
employed.

3.1. Semi-Supervised Regression through Transduction. As
discussed, the ability to leverage the incomplete information
in the censored samples of time-to-event problems could
provide significant advantages. If the “true” target as opposed
to the censored target was known, the performance of
predictive models would be improved.

Reference [15] presents an innovative approach that is, in
essence, a wrapper around any regression function, whether
developed for survival analysis or not. For each censored case
(𝑈𝑖, 𝛿𝑖 = 0), it iterates through possible target values between𝑈𝑖 and T𝑚𝑎𝑥 (the maximum observed time U in the dataset).
It then transduces or chooses a new target time �̂�𝑇𝑖 which
improves accuracy,maximizing some criterion formeasuring
predictive performance. The approach is extremely flexible,
able to work with almost any regression function F() and
measure of accuracy Criterion (y, t). Given a dataset 𝐷 ={𝑈𝑖, 𝑥𝑖, 𝛿𝑖}𝑁𝑖=1, the algorithm can be described as

max
𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑦,𝑈),Û𝑇

𝑦 = 𝐹 (𝐷 = {𝑈𝑖, 𝑥𝑖, 𝛿𝑖}𝑛𝑖=1) (8)

given the constraints

𝑇𝑚𝑎𝑥 = max (𝑈𝑖=1,...,𝑛)
𝑈𝑖 ≤ �̂�𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥; if 𝛿𝑖 = 0

�̂�𝑇𝑖 = 𝑈𝑖; if 𝛿𝑖 = 1
(9)

A key issue is how to explore the space of possible target
values in an efficient manner. Semi-supervised classifica-
tion algorithms initially employed an exhaustive method
assigning each class label to every unlabeled instance, in
order to transduce the optimal label. Unfortunately, this
led to a transduction complexity of Cn where C is the
number of classes and n the number of unlabeled instances.
Accordingly, researchers began to develop computationally
more reasonable methods.

Our semi-supervised regression approach exploits a cen-
sored instance’s own partial information of true outcome
rather than its neighbor’s labels to transduce optimal target
times. The censored time represents the minimum possible
value of the true target. The optimal target for each censored
instance could thus be transduced by testing values in incre-
ments from the censored time.The initial ideawas to replicate
the exhaustive search of semi-supervised classification [11,
12], but this is impractical. In one sample dataset, an average
of 10 target values per each of the 340 censored cases would
result in a transduction complexity of 10340.

From a theoretical computer science perspective, the
algorithm would have logarithmic complexity of O (10n)
[18, 19]. To avoid this, the proposed technique is a singular
transduction procedure which avoids the exhaustive method.
Each instance is treated independently, and the best time
for each censored case is found independent of the other
censored cases. This results in a slight modification to (8) for
a singular rather than exhaustive transduction approach with
linear complexity O (10n):

( max
𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑦,𝑈),Û𝑇𝑖

𝑦 = 𝐹 (𝐷 = {𝑈𝑖, 𝑥𝑖, 𝛿𝑖}𝑛𝑖=1))
𝑛

𝑖=1

. (10)

One subtle but crucial point to note is that when evaluating
the fit of the model on the training data, the evaluation
should be done with the original censored times rather
than the new transduced times. Otherwise the resulting
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performance metrics may artificially be inflated as they will
be calculated on the discovered targets that were derived
precisely to improve performance. Subsequentlywhen testing
on an independent validation set where it is not possible
to transduce the times but to simply apply the model, the
resulting model would grossly overfit, as was observed by
the authors. This is exactly why in (8) and (10) we maximize
Criterion (y, U) with respect to known data rather than
Criterion (y, �̂�𝑇).

In this paper, we employ the framework for the applica-
tion of exploring subsequent disease progression from earlier
indications, a heretofore unexplored area of research. We
empirically study two applications of this framework which
have previously proven successful, for the Cox model and
SVRc [4, 15]

3.2. Performance Metrics. In conventional regression, a use-
ful accuracy metric is the error in predicting the targets.
However, in survival analysis this is not possible due to
censoring. For events, the prediction error can be assessed.
For censored records, predictions are wrong only if less than
the targets; otherwise the error, if any, is unknown. This
requires different performance criteria.

The concordance index (CI) is the standard metric used
for assessing the predictive ability of a survival model [5, 9].
The CImeasures the concordance between model results and
the survival times. Survival analysis is inherently a ranking
problem and the CI measures the accuracy of ranking a
model’s results against the actual survival times. It is the
probability that a patient with a shorter survival time will
have a smaller predicted value. It ranges from 0 to 1, with
0.5 indicating an absence of correlation, a random result. A
value of 0 indicates perfect negative correlation, and 1 perfect
positive correlation. The CI is a linear transform of Somers’
d statistic and is similar in interpretation to the area-under-
the-curve and the Mann–Whitney statistics [20].

A survival model inmedicine often helps stratify a patient
population into high and low risk groups.Diverse risk profiles
can lead to better targeted therapies and diseasemanagement.
For a specific time point, patients can be stratified into high
and low risk groups based on a model’s predictions. The
positive class identifies patients who were events prior to
this time point and the negative class of patients (events
or censored) with targets occurring after this time point.
Censored patients with targets prior to the time point are
excluded. Thus, in addition to the CI, the ability to correctly
identify high and low risk groups is measured via sensitivity
and specificity. Since censored patients earlier than the time
point are excluded, it is often a good idea to look at the CI and
the classification metrics at the same time.

Both the CI and the sensitivity-specificity pairing are
metrics independently used in the medical literature [1–3].
We employed a criterion to simultaneously assess the CI and
the product of the sensitivity and specificity. The product of
the sensitivity and specificity is a good measure that has the
same scale of accuracy as theCI.While, in absolute theory, the
CI may not have the same range as the product of sensitivity
and specificity because CI values less than 0.5 imply negative
correlation (similar to the AUC), since all useful models

must have CIs greater than 0.5, this is not problematic
from a practical perspective. Consequently, in all the pre-
sented experiments the performance criterion for evaluation
was

Criterion = CI + (Sensitivity ∗ Specificity) (11)

3.3. Prostate Image Analysis. For patients with prostate can-
cer, clinicians aim to develop an individualized treatment
plan based on a mechanistic understanding of the disease
factors unique to each patient. Key characteristics include
clinical measurements such as the level of PSA (prostate
specific antigen) and the Gleason Grade [21, 22]. Additional
characteristics can be extracted fromothermodalities such as
algorithmic analysis of various types of prostate images. Two
main information sources are the architecture of the tumor
morphology and biomolecular mechanisms of the disease as
assessed by biomarkers [3, 23–26].There has been significant
research in image analysis of prostate morphology as well as
automated quantification ofmolecular and protein biomarker
expression [24–26]. These quantitative image analyses from
multiple modalities have become prevalent, yielding not
only independent prognostic predictors of outcome but also
features which can be combined into multivariate models
[3]. In this work, we explore morphometric features from
H&E (Hematoxylin and Eosin) and IF (immunofluorescent)
images, as well as IF biomarker features [16].

3.4. H&E (Hematoxylin and Eosin) Metrics. Morphologi-
cal and architectural characteristics of the prostate tissue,
such as epithelial nuclei and cytoplasm, provide critical
information for the diagnosis, prognosis, and therapeutic
decision-making of prostate cancer.The subjective and highly
variable Gleason grade assessed by expert pathologists from
Hematoxylin and Eosin (H&E) stained specimens has been
the standard for prostate cancer diagnosis and prognosis.

There has been significant work in automatically approx-
imating the Gleason grade and quantifying other aspects
of prostate morphology [24, 27–29]. The majority of pro-
posed approaches consider various tissue components such
as lumens, nuclei, and cytoplasm independently. The entire
glandular unit of epithelial nuclei, cytoplasm, and stroma
around a lumen provides amore accurate and comprehensive
morphological assessment of disease severity.

Methods we leveraged include one proposed by Fogarasi
et al. [24] for automated analysis of gland unit features from
H&E images. The approach initially segments and classifies
primary cellular components such as cytoplasm, nuclei,
stromal fibroblasts, lumens, blood vessels, and artifacts. This
segmentation relies on cellular properties such as distance of
tumor cells from lumens, as well as color, shape, texture, and
neighborhood properties. The relationships between these
components are analyzed and leveraged to construct distinct
“gland units.” Biological characteristics such as logical and
relative object positioning are employed to develop initial
seeds which are optimized in an iterative classification pro-
cess [17]. Figure 1 illustrated these gland units in segmented
H&E images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Images representing prostate cancer grades 3 (a-c), 4 (d-f), and 5 (g-i). Images representing the original H&E stain (a, d, g), primary
object segmentation (b, e, h), and glandular object classification (c, f, i) are presented [24].

3.5. Immunofluorescence Morphology and Biomarkers. In
multispectral immunofluorescence (IF) microscopy [25, 26,
30], multiple proteins in the tissue specimen are simultane-
ously labeled with different fluorescent dyes. Each dye has
a distinct emission spectrum and its associated antibody
binds to its target protein within a tissue compartment
(i.e., nuclei or cytoplasm). The stained slide is illuminated
under a fluorescence microscope with a light source for a
specific wavelength. This excitation light is absorbed by the
fluorescent dye causing it to emit light of a longer wavelength.
The intensity of the emitted light is a measure of the target
protein’s concentration. In multiplexed IF images, the tissue
is labeled with several antibodies at the same time. Each
antibody is labeledwith a unique fluorescent dye with distinct
spectral characteristics. The tissue is then imaged with a
multispectral camera and then spectrally unmixed, to yield
multiple images with one image per individual dye/antibody.

Two commondyes that reveal the tissue structure areDAPI (a
nuclear stain) and CK18 (which stains epithelial cytoplasm).
Nuclear objects are segmented and then separated using a
colocalization scheme into epithelial nuclei positive for both
DAPI and CK18 and stromal nuclei positive for DAPI but
not CK18. Subsequently prognostic biomarkers such as AR
(androgen receptor) are evaluated within each colocalized
compartment. Figure 2 illustrates a sample prostate gland
unmixed into DAPI, CK18, and AR specific images [16, 17].

This paper builds on previous work in IF biomarker
quantification [25, 30]. Specifically, we analyzed expression of
AR and Ki67 prostate biomarkers as proposed by Sapir et al.
[25]. Quantification of a biomarker is achieved in two stages.
First, a segmented tissue compartment is identified where
the biomarker is expressed. Then, the signal is separated
from the background within the compartment via inten-
sity thresholding. Following the definition of epithelial and
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Original Composite Image

DAPI (Nuclei) CK18 (Epithelial Nuclei) Androgen Receptor

Figure 2: Sample composite image of a prostate gland spectrally unmixed into individual images representing DAPI, CK18, and AR
biomarkers [17].

(a) (b)

Figure 3: A multiplex IF pseudocolor image consisting of the DAPI counterstain (blue) and the CK18 biomarker (green) and (b) segmented
epithelial nuclei (blue), stroma nuclei (purple), and epithelial cytoplasm (green) [17].

stromal nuclei, as well as epithelial cytoplasm, background
autofluorescence and nonspecific binding effects are filtered
out. An interactive model based thresholding technique is
used to classify whether each of the nuclei is positive for a
particular biomarker. The expression of each biomarker can
then be quantized and normalized (epithelial signal normal-
ized by stromal expression). Figure 3 illustrates a multiplexed
IF image and segmented epithelial versus stromal nuclei
due to DAPI and CK18 markers. Features representing the
relative rise of the biomarker in the epithelial disease specific
compartments were recognized to be prognostic since they
characterize the dynamic range of biomarker expression in
an image [16, 17, 25].

4. Results and Discussion

4.1. Experiments with Clinical Characteristics. We applied the
proposed transduction framework to build post-RP prognos-
tic models using PSAR outcomes to predict the subsequent
more advanced disease endpoint of CF. We analyzed three

prostate cancer datasets of patients who had undergone
radical prostatectomy. Dataset 1 [1] consisted of 262 patients
with 8 clinical features, 37 of whom experienced PSAR (14%
event rate). Dataset 2 [1] from a second institution consisted
of 342 patients, 58 of whom experienced PSAR (17% event
rate). Dataset 3 [1, 2] consisted of 340 new patients also from
the second institution. Dataset 3 was unique because both the
early PSAR endpoint and the later CF endpoint were available
for all the patients. 43 patients experienced PSAR (13% event
rate) and 12 experiencedCF (3.5% event rate). BothDatasets 2
and 3 had 9 clinical features. The goal was to assess in Dataset
3 PSAR models built with Datasets 1 and/or 2.

We layered the transduction framework on top of both
SVRc and the Cox Model and compared the performance
with and without the transductive semi-supervised regres-
sion.Weperformed two rounds of experiments. In Table 1, we
present the first where PSAR models were built with Dataset
1 and validated for both PSAR and CF with Dataset 3. In
Table 2 we present the second round where PSAR models
were built with Dataset 2 and validated for both PSAR and
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Table 1: Results of training on Dataset 1 and validating on Dataset 3.

SVRc SVRc with Transduction CoxModel Cox Model with Transduction
PSAR Training Performance

CI 0.79 0.81 0.80 0.80
Sensitivity 0.77 0.87 0.80 0.70
Specificity 0.76 0.72 0.73 0.85
Criterion 1.38 1.44 1.38 1.40

PSAR Validation Performance
CI 0.74 0.76 0.77 0.80
Sensitivity 0.79 0.90 0.79 0.69
Specificity 0.62 0.58 0.59 0.75
Criterion 1.23 1.28 1.24 1.32

CF Validation Performance
CI 0.76 0.78 0.79 0.79
Sensitivity 0.83 1.00 1.00 1.00
Specificity 0.58 0.53 0.57 0.72
Criterion 1.24 1.31 1.36 1.51

Table 2: Results of training on Dataset 2 and validating on Dataset 3.

SVRc SVRc with Transduction CoxModel Cox Model with Transduction
PSAR Training Performance

CI 0.78 0.79 0.80 0.81
Sensitivity 0.77 0.68 0.82 0.77
Specificity 0.73 0.83 0.71 0.75
Criterion 1.34 1.35 1.38 1.39

PSAR Validation Performance
CI 0.80 0.81 0.82 0.82
Sensitivity 0.74 0.69 0.79 0.79
Specificity 0.72 0.83 0.72 0.82
Criterion 1.33 1.38 1.39 1.47

CF Validation Performance
CI 0.88 0.88 0.88 0.88
Sensitivity 1.00 1.00 1.00 1.00
Specificity 0.68 0.78 0.68 0.75
Criterion 1.56 1.66 1.56 1.63

CF with Dataset 3. In developing medical prognostics, it is
necessary to maintain separate training and validation sets
(rather than combined cross-validation type approaches) due
to FDA regulatory requirements for independent testing and
validation. As noted, in all experiments the performance
metrics were assessed according to the original times; no
transduced targets were used in the accuracy assessments.

These prostate cancer experimental results appear to
confirm the value of transductive semi-supervised regres-
sion for predicting late stage disease endpoints from earlier
indications. For data from multiple institutions, existing
survival analysis methods manifest an increase in empirical
predictive accuracy when the transduction framework is
layered on top. In all the experiments, whether we consider
SVRc or the Cox model, in training and both validations, the

transduction framework improves performance as measured
by the defined Criterion in (11). While independent compo-
nents of the criterion do vary, the algorithm was designed
to optimize the overall criterion, and in this sense it has
performed outstandingly.

Not only is the accuracy for PSAR improved, but, more
importantly, CF is better predicted from the PSAR endpoint.
In Table 2 there is a significant improvement in validation
specificity due to the transduction approach. This makes
sense because all the CF patients experienced PSAR and the
PSAR assessment of high risk captures them, but it probably
also has a high number of false positives since PSAR is a
noisier endpoint and not all patients with PSAR experience
CF.The accuracy of predicting CF is higher since CF is amore
concrete and relevant endpoint.
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Table 3: Weights of features in models.

Cox Model Cox Model with
Transduction SVRc SVRc with Transduction

Feature Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Clinical Stage 0.314 0.217 0.355 0.316 -2.939 -0.12 -4.496 -0.197
PSA 0.743 0.513 0.818 0.728 -10.329 -0.423 -8.397 -0.368
Dominant Biopsy
Gleason Grade -0.198 -0.137 0.134 0.119 -3.909 -0.16 -8.193 -0.359

Biopsy Gleason
Sum 1.448 1 1.124 1 -24.394 -1 -22.826 -1

Dominant
Prostatectomy
Gleason Grade

0.872 0.602 1.002 0.891 -4.363 -0.179 -6.433 -0.282

Prostatectomy
Gleason Sum 0.073 0.05 -0.139 -0.123 -11.852 -0.486 -8.784 -0.385

Seminal Vesicle
Invasion 0.747 0.516 0.796 0.708 -23.926 -0.981 -25.963 -1.137

Surgical Margin
Status 0.306 0.212 0.261 0.232 -2.778 -0.114 -3.964 -0.174

Extra Capsular
Extension Status 0.198 0.137 0.161 0.143 -4.259 -0.175 -3.499 -0.153

Intuitively, the results when training on Dataset 2 and
validating on Dataset 3, captured in Table 2, are better since
both came from the same institution.

4.2. Deeper Dive on Features Driving Improvement. An inter-
esting question to pose is whether there are differences in
the features driving the improved prediction of validation
performance for both SVRc and the Cox Model in the semi-
supervised framework. We investigated the weights of all the
clinical features in the models. It is difficult to compare the
weights of feature across models; the magnitude of the weight
only makes sense within the context of a particular model.
Hence, we normalized the weights in each model accordingly
by the highest weighted feature, thereby enabling a relative
comparison of how important a particular feature is in a
model.

One interesting observation to note is that, for both
models with SVRc and the Cox Model, the dominant prosta-
tectomy Gleason grade [1, 2, 21, 22] has a much higher
relative weight in the transduction framework than in the
modelswithout the transduction framework.The implication
being that this feature particularly is perhaps leading to an
improved prediction. This is a noteworthy observation, since
the role of the dominant prostatectomy Gleason for pre-
dicting CF is very interesting to urologists and oncologists.
The status of seminal vesicle invasion also exhibits similar
behaviour. There may be something meaningful in the inter-
action of these characteristics. This study was not designed to
fully explore this insight, but it is worth considering in future
work.

4.3. Expansion with Multimodal Imaging Characteristics.
Since Datasets 2 and 3 were both from the same institution,
IF and H&E images had been captured after all samples were

similarly processed under an identical protocol. IF character-
istics for AndrogenReceptor (AR)were quantitated andH&E
properties were extracted through automated image analysis.
Models were again constructed for PSAR in Dataset 2 and
validated for bothPSAR andCF endpoints inDataset 3.These
results are presented in Table 4.

These results manifest that as new feature modalities are
added to prostate cancer prediction models, the transduction
framework continues to improve prediction performance.
The overall performance criterion with transduction contin-
ues to outperform the nontransduction results for both SVRc
and the Cox mode. Furthermore, the new feature domains
of IF and H&E features in Table 4 improve results over their
clinical only counterparts in Table 2. The only exception
is the validation for PSAR results in the Cox model with
transduction result.

Table 5 captures the original and normalized weights of
these models. When comparing with the clinical only results
in Table 3, it is evident that the new imagingmodality features
are now the most important ones in the models; they have
some of the highest weights. This is particularly true for the
SVRc results. Interestingly also, the dominant prostatectomy
Gleason grade and seminal vesicle invasion status features are
nowno longer consistently doing better with transduction. In
contrast, the PSA feature is now doing better with transduc-
tion for both SVRc and the Coxmodel.Thismay be due to the
interaction of the PSA feature with some of the features, par-
ticularly the quantitative AR feature as PSA is a downstream
marker of AR activity. Again, the study was not designed to
deeply elucidate these connections, but in light of existing
literature they are noteworthy and could be examined further.
Overall, the results suggest meaningful improvements in
performance with the transduction approach as multimodal
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Table 4: Results Training on Dataset 2 and Validating on Dataset 3 with Multimodal Characteristics.

SVRc SVRc with Transduction CoxModel Cox Model with Transduction
PSAR Training Performance

CI 0.80 0.81 0.81 0.82
Sensitivity 0.79 0.82 0.79 0.79
Specificity 0.75 0.78 0.80 0.82
Criterion 1.39 1.45 1.44 1.47

PSAR Validation Performance
CI 0.79 0.80 0.80 0.82
Sensitivity 0.79 0.83 0.78 0.78
Specificity 0.73 0.77 0.78 0.81
Criterion 1.37 1.44 1.41 1.45

CF Validation Performance
CI 0.9 0.9 0.92 0.93
Sensitivity 1 1 1 1
Specificity 0.70 0.81 0.73 0.76
Criterion 1.60 1.71 1.65 1.69

Table 5: Weights of features in models with multimodal characteristics.

Cox Model Cox Model with
Transduction SVRc SVRc with Transduction

Feature Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Clinical Stage 0.475 0.408 0.535 0.444 -3.083 -0.174 -6.658 -0.320
PSA 0.700 0.601 0.893 0.741 -9.763 -0.552 -15.587 -0.749
Dominant Biopsy
Gleason Grade -0.094 -0.081 0.039 0.032 -4.867 -0.275 -6.679 -0.321

Biopsy Gleason
Sum 1.164 1.000 1.205 1.000 -16.801 -0.949 -20.076 -0.965

Dominant
Prostatectomy
Gleason Grade

0.455 0.391 0.643 0.534 -7.005 -0.396 -7.460 -0.358

Prostatectomy
Gleason Sum 0.260 0.223 0.181 0.150 -14.282 -0.807 -7.011 -0.337

Seminal Vesicle
Invasion 0.842 0.723 0.846 0.703 -20.542 -1.161 -24.166 -1.161

Surgical Margin
Status 0.371 0.319 0.414 0.344 -4.788 -0.271 -6.757 -0.325

Extra Capsular
Extension Status 0.802 0.689 0.892 0.740 -6.217 -0.351 -6.485 -0.312

AR+ Area -1.099 -0.944 -1.026 -0.852 15.277 0.863 17.347 0.833
Cytoplasm
Texture -1.195 -1.026 -0.931 -0.773 17.699 1.000 20.814 1.000

Luminal Area -0.467 -0.401 -0.424 -0.352 10.264 0.580 12.092 0.581
Glandular Size 0.475 0.408 0.535 0.444 -3.083 -0.174 -6.658 -0.320

characteristics are fused together to predict advanced prostate
cancer from early PSAR.

4.4. Experiments withMultimodal Characteristics from Biopsy
Data. The results presented thus far in Tables 1 through
5 represent models being built on features after RP. They
represent clinical information known after surgical removal

of a prostate, such as margin status, seminal vesicle invasion,
and extracapsular extension status. Furthermore, imaging
characteristics are extracted from tissue where areas of tumor
have been definitively identified in the prostate specimen.
Consequently, these models can be very accurate due to the
relative wealth and robustness of disease specific information
available.
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Table 6: Results of training on Dataset 4 with multimodal characteristics from biopsy samples.

SVRc SVRc with Transduction CoxModel Cox Model with Transduction
PSAR Training Performance

CI 0.69 0.69 0.69 0.69
Sensitivity 0.70 0.63 0.62 0.61
Specificity 0.61 0.73 0.71 0.76
Criterion 1.12 1.15 1.13 1.15

PSAR Validation Performance
CI 0.69 0.70 0.69 0.69
Sensitivity 0.70 0.61 0.61 0.59
Specificity 0.60 0.73 0.71 0.74
Criterion 1.11 1.15 1.12 1.13

CF Validation Performance
CI 0.60 0.60 0.6 0.61
Sensitivity 0.67 0.67 0.57 0.57
Specificity 0.54 0.62 0.63 0.66
Criterion 0.96 1.02 0.96 0.99

Earlier in the disease progression timeline, newly diag-
nosed patients with a positive prostate biopsy and their
physicians face a variety of potential treatment options
including surgery, radiation therapy, active surveillance, and
more. Which option is best for the individual patient is
not always clear, and there have been a number of assays
developed to analyze a patient’s tumor specimen and provide
amore personalized assessment of cancer severity and risk [3,
23]. Some of these assays employ image analysis algorithms to
extract morphometric and biomolecular characteristics from
the tumor specimen as features in predictive models for risk
assessment. A practical challenge however is that there is
often not enough tumor present in the biopsy specimen for
analysis. Even if sufficient tumor is present, the amount of
cancerous material may affect the accuracy of the predictive
models [16].

For such patients, prognostic information after definitive
therapy such as radical prostatectomy is still very useful in
designing a treatment regimen. For instance, patients with
poor predicted prognosis after RP would not be ideal can-
didates for active surveillance. Contrastingly, a patient with
a high PSA and Gleason grade but good post-RP prognosis
may be cured by a RP and is a likely candidate for surgery.
A patient with low PSA and Gleason grade and still a good
prognosis after RPmay not need to undergo invasive surgery
with all its complications and could be served by less severe
interventions.

Consequently, the availability of post-RP prognosis based
on clinical characteristics available at the time of biopsy, and
analysis of the biopsy tumor specimen, is a valuable resource.
These models are less accurate than the RP based models
since less clinical information is known and the variability
of the tumor is large, but they are still important. Similar
challenges exist where post-RP PSAR endpoints are more
readily available and can help predict more advanced CF.

Dataset 4 [3] consists of 1027 patients with 3 clinical
features available at the time of biopsy and 9 multimodal

characteristics extracted from quantitative image analysis
of the variable tumor in biopsy samples. These include
measurements of AR and Ki67 biomarker expression, as well
as H&E image analysis. Both the earlier PSAR endpoint and
later CF endpoints were available for all patients. The data
was split into 686 training and 341 validation patients. Models
were built for the PSAR endpoint and validated for both
PSAR and CF. Results are presented in Table 6.

With less information available at the time of biopsy, these
models are less accurate overall. However, the same pattern in
performance can be observed. The transduction framework
is improving prediction for both PSAR and CF in validation,
with SVRc and the Cox model. It is very interesting to note
that, for CF, there continues to be a noticeable improvement
in specificity rather than sensitivity. As presented in Table 7,
the Gleason sum appears to consistently be more important
in the transduction models.

5. Conclusions

This paper presents strong evidence supporting the value of
a novel transductive semi-supervised regression framework
for the challenging problem of predicting advanced prostate
cancer from earlier disease endpoints. In multiple experi-
ments from different datasets of both prostate biopsy and
prostatectomy cohorts, the transductive framework yields
improvements in the prognostic performance of prostate can-
cer prediction models. Prostate cancer prediction is rapidly
integrating different information domains such as clinical,
protein expression, and imaging characteristics together into
multivariate analyses. Overall, the results suggest meaning-
ful improvements in performance with the transduction
approach as multimodal characteristics are fused together
to predict advanced prostate cancer from early PSAR. This
work presents one of the first innovative applications of
this recently developed transduction technique for predicting
subsequent endpoints from earlier ones and may be useful in
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Table 7: Weights of features in models with multimodal characteristics from biopsy data.

Cox Model Cox Model with
Transduction SVRc SVRc with Transduction

Feature Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

Original
Weight

Normalized
Weight

PSA 1.715 1.000 1.720 1.000 -60.799 -5.430 -62.229 -6.859
Dominant Biopsy
Gleason Grade 0.565 0.329 0.467 0.272 -21.025 -1.878 -23.007 -2.536

Biopsy Gleason
Sum 0.476 0.278 0.586 0.341 -22.943 -2.049 -22.912 -2.525

AR Expression 0.251 0.146 0.185 0.108 -18.932 -1.691 -19.903 -2.194
Nuclear
Morphology -0.228 -0.133 -0.263 -0.153 -0.866 -0.077 -0.001 0.0001

Ki67+ Area 0.885 0.516 0.793 0.461 -28.498 -2.545 -28.366 -3.127
Luminal Area -0.171 -0.100 -0.159 -0.093 11.197 1.000 9.073 1.000
Epithelial Cells
Infiltration -0.127 -0.074 -0.161 -0.094 -2.226 -0.199 -3.040 -0.335

Glandular Size 0.088 0.052 0.019 0.011 -9.765 -0.872 -8.777 -0.967

other diseases aswell, not just prostate cancer. In the futurewe
plan to evaluate additional survival analysis algorithms and to
explore other performance criteria.
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