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Objective. +is study aimed to determine the active components of Zhinao capsule (ZNC) and the targets in treating Alz-
heimer’s disease (AD) so as to investigate and explore the mechanism of ZNC for AD. Methods. +e active components and
targets of ZNC were determined from the traditional Chinese medicine systems pharmacology database (TCMSP). +e target
genes of AD were searched for in GeneCards. Cytoscape was used to construct an herb-component-target-disease network. A
protein-protein interaction (PPI) network was constructed by STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were performed using the OmicShare. UCSF Chimera and SwissDock
were used for molecular docking verification. Finally, four key target genes were validated byWestern blotting. Results. In total,
55 active components, 287 targets of active components, 1197 disease genes, and 134 common genes were screened, which were
significantly enriched in 3975 terms of biological processes (BP), 284 terms of cellular components (CC), 433 terms of
molecular functions (MF), and 245 signaling pathways. Caspase-3 (CASP3) and beta-sitosterol, tumor necrosis factor-alpha
(TNF-α) and quercetin, vascular endothelial growth factor A (VEGFA) and baicalein, and mitogen-activated protein kinase 1
(MAPK1) and quercetin showed good-to-better docking. Moreover, ZNC not only downregulated CASP3 and TNF-α protein
expression but also upregulated the protein expression of VEGFA and MAPK1. Conclusions. +e active components of ZNC,
such as beta-sitosterol, quercetin, and baicalein may act on multiple targets like CASP3, VEGFA, MAPK1, and TNF-α to affect
T cell receptor (TCR), TNF, and MAPK signaling pathway, thereby achieving the treatment of AD. +is study provides a
scientific basis for further exploring the potential mechanism of ZNC in the treatment of AD and a reference for its
clinical application.

1. Introduction

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases, which is clinically characterized
by a progressive decline in cognitive function [1]. +e
histopathological hallmarks of AD are neuritic plaque and
neurofibrillary tangle (NFT) formation in the brain [2]. +e
cost of treatment continues to increase and results in a
significant burden on both families and society [3].

Currently, one effective treatment for AD is drug therapy,
which can slightly alleviate symptoms and prevent or slowAD
progression. Traditional Chinese medicine (TCM) formulas
have long been used to prevent and treat a variety of diseases,
including AD [4–6]. Unlike other drugs, TCM formulas have
multiple targets, low toxicity, and strong regulatory effects.
+erefore, they have attracted increasing attention [7, 8].

Zhinao capsule (ZNC), a Chinese patent medicine, is
mainly composed of Dangshen (DS, Codonopsis pilosula),
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Huangqi (HQ, Astragali membranaceus), Huangjing (HJ,
Polygonatum sibiricum), Rou Congrong (RCR, Cistanche
deserticola), Yujin (YJ, Curcuma wenyujin), Shi Changpu
(SCP, Acorus tatarinowii), Chuanxiong (CX, Ligusticum
chuanxiong), and Dilong (DL, Pheretima aspergillum) and
has good efficacy in treating AD [9]. Owing to the com-
plexity of Chinese patent medicines, it is challenging to
identify the mechanism of ZNC through conventional
pharmacological methods because of its multiple compo-
nents, multiple targets, and multiple pathways.

Network pharmacology is a systematic analytical method
based on systems biology that combines polypharmacology,
molecular network data, bioinformatics, and computer
simulations [10]. And it is a new method based on the
multidisciplinary fusion theory of “active ingredient-target-
disease” and interaction network [11]. In recent years,
network pharmacology has become a powerful tool that can
be combined with pharmacology [12]. +is method has been
shown to be an efficient way to explore the multiple com-
ponents, targets, and pathways of TCM formulas [13]. For
example, Cao et al. [14] applied network pharmacology and
demonstrated that the active components of Yinqiaosan,
that is, luteolin, naringenin, and farnesin, can act onmultiple
targets, such as tumor necrosis factor (TNF), mitogen-ac-
tivated protein kinase 1 (MAPK1), and Caspase-3 (CASP3),
to regulate signaling pathways, such as Kaposi sarcoma-
associated herpesvirus infection, advanced glycation end
products (AGE), and their receptors, thereby curing
COVID-19. Cui et al. [15] reported that the active com-
ponents of Huangqi Sijunzi decoction, including quercetin,
luteolin, kaempferol, and naringenin, might exert thera-
peutic effects against cancer-related fatigue by suppressing
inflammatory responses and the expression of tumor-related
genes such as vascular endothelial growth factor A (VEGFA)
and CASP3. Wang et al. [16] found via network pharma-
cology that the active components of Xiaokui Jiedu de-
coction, such as β-sitosterol and quercetin, may alleviate
ulcerative colitis by acting on multiple key targets to regulate
oxidative stress-related pathways.

In this study, we hypothesized that ZNC may exert a
therapeutic effect against AD development through the
ability of its key components to act on key targets and
signaling pathways. However, what are active ingredients,
critical targets, and signaling pathways of ZNC is still unclear
so far. +erefore, in order to explore this question, network
pharmacology was used to investigate the potential mech-
anisms of ZNC treatment of AD, which provides a scientific
basis for subsequent experimental research.

2. Materials and Methods

2.1. Screening of Active Components and Related Targets of
ZNC. +e traditional Chinese medicine systems pharma-
cology database (TCMSP) (http://lsp.nwu.edu.cn/tcmsp.
php) [17], which is a powerful knowledge repository and
analysis platform for Chinese medicines and related com-
pounds, was used to identify the active components in ZNC.
+e network between herbs and components is shown in the
UpSet plot. Based on the literature [18], an oral

bioavailability (OB) ≥30% and drug-likeness (DL) ≥ 0.18
were set as the screening criteria. Next, the normalized gene
names of the potential target proteins were obtained by
searching the UniProt database (https://www.uniprot.org/)
[19] for further analysis. +e network between herbs and
active components was visualized with Cytoscape 3.7.2 [20].

2.2. Screening of Disease-Related Targets. GeneCards
(https://www.genecards.org/) [21] is an integrative database
that provides a comprehensive map of human genes asso-
ciated with diseases.+e target proteins of ADwere searched
in GeneCards (https://www.genecards.org/) using “Alz-
heimer’s disease” as the keyword.

2.3. Filtering of Intersecting Targets and Protein-Protein In-
teraction (PPI) Network Construction. We input the active
components and AD-related targets of ZNC into the Venn
tool Venny 2.1.0 (http://bioinformatics.psb.ugent.be/
webtools/Venn/) to obtain intersecting targets. +e com-
mon targets of ZNC and AD were imported into the
STRING (https://string-db.org/) [22] platform, which is a
database that is used to show protein-protein interactions.
+en, we input the data from STRING into Cytoscape to
visualize the PPI network to screen key targets according to
the degree for further analysis.

2.4. GeneOntology (GO) andKyoto Encyclopedia ofGenes and
Genomes (KEGG) Pathway Enrichment Analysis. +e targets
were entered into the online software OmicShare (https://
www.omicshare.com/) [23] to identify the biological func-
tions such as molecular functions (MF), cellular components
(CC), and biological processes (BP) terms, and P value <0.05
indicated significant enrichment.

2.5. Molecular Docking. SwissDock (http://swissdock.ch/)
[24] was used to performmolecular docking of the key active
components of ZNC and potential therapeutic targets. To
carry out docking analysis, the structures of candidate
targets were downloaded from the protein data bank (PDB)
(https://www.rcsb.org/) [25], and water molecules and or-
ganics were removed using PyMOL (http://www.pymol.org/
) [26]. +e structures of output relative ligands were saved in
MOL2 format. After the ligand format and the target pro-
teins format were downloaded, molecular docking was
performed. UCSF Chimera software was used to visualize
and analyze the docking results. +e lowest binding energy
(kcal/mol) was used as the standard comparison.

2.6. Western Blotting. SPF-grade ICR mice were intraperi-
toneally injected with D-galactose and sodium nitrite once
per day for 6 weeks to establish an AD model [27]. From the
day of model induction, the mice were intragastrically ad-
ministered ZNC (3.90 g/kg) once per day for 6 weeks. +e
experimental protocol was approved by the Animal Ethics
Committee of Anhui University of Chinese Medicine and is
shown in Supplementary Material Figure S1.
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+e hippocampal tissue was lysed in RIPA buffer and
centrifuged at 12000 rpm for 10min to collect the super-
natant. +e protein samples were boiled for 5–10min,
separated on SDS-polyacrylamide gels, and transferred to a
PVDF membrane. +e membranes were blocked with 5%
skim milk powder for 2 h and then incubated with primary
antibodies (β-actin, CASP3, TNF-α, VEGFA, and MAPK1,
1 :1000) at 4°C overnight. +e membranes were washed with
TBST and incubated with the corresponding secondary
antibodies for 2 h at room temperature. +e proteins were
visualized with the ECL reagent, detected by an automatic
exposure instrument, and quantitatively analyzed by ImageJ
software.

2.7. Statistical Analysis. All statistical analyses were per-
formed using SPSS 25.0 software. +e measurement data are
expressed as x ± s. One-way analysis of variance (ANOVA)
and Fisher’s least significant difference (LSD) were used. P

value <0.05 was considered statistically significant.
+e research process for exploring the potential mech-

anisms of ZNC treating AD is shown in Figure 1.

3. Results

3.1. Screening of the Active Components and Targets of ZNC.
A total of 853 components of ZNC were screened from the
TCMSP database. More than 10% of the components were
found in two or more herbs, and different combinations of
herbs may provide the greatest effect. Moreover, some herbs
have unique components. For example, 166 components
were found only in Yujin (Figure 2).

Among the components, there were 55 potential com-
ponents that met the screening criteria of an OB≥ 30% and
DL≥ 0.18 (Supplementary Table 1). In addition, 287 targets
of the active components were obtained from the TCMSP,
which were standardized using the UniProt database. +e
active components and associated targets were used to
construct a component-target network using Cytoscape
3.7.2 (Figure 3).

3.2. Collection of Disease Targets and Common Component-
Disease Targets. A total of 1197 AD-related targets were
collected from the GeneCards database. Among them, 134
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Figure 1: Technical scheme. Network pharmacology analysis of the mechanisms of ZNC in the treatment of AD.
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overlapping targets between ZNC and AD were obtained by
the Venn online tool. Subsequently, to determine the
mechanism by which ZNC can treat AD, an herb-compo-
nent-target-disease network was constructed (Figure 4).

3.3.PPINetwork. To further explore the associations between
genes, the common targets were imported into the STRING
database to construct a PPI network, which was visualized in
Cytoscape (Figure 5). +e resulting network included 134
nodes and 2682 edges. According to the screening threshold
of an average node degree of 40, 57 targets were identified,
which are ranked by degree in Table 1.

3.4. GO and KEGG Pathway Enrichment Analysis. GO and
KEGG enrichment analysis was performed using the
OmicShare online tool. GO enrichment analysis revealed a
total of 5764 enriched BP terms. Among them, 3975 terms
were significantly enriched. +e top 20 BP terms are shown
in Figure 6(a). +ere was a total of 726 enriched MF terms,
including 433 that were significantly enriched. +e top
20MF terms are shown in Figure 6(b). A total of 512 CC
terms were enriched, among which 284 were significantly
enriched. +e top 20 CC terms are shown in Figure 6(c).
Simultaneously, KEGG analysis showed that a total of 245
pathways were enriched, including 171 pathways that were
significantly enriched. +e top 20 pathways are shown in
Figure 6(d).

3.5. Molecular Docking Analysis. According to the PPI
network, 10 targets with higher degrees were used for
molecular docking analysis. Based on the SwissDock cal-
culation, those targets and respective components were
ranked by binding energy as shown in Supplementary Ta-
ble 2. +e binding energy was obtained by molecular
docking to estimate the interaction energy between the
active components of ZNC and the potential targets.

Finally, four key targets with a lower binding energy
were selected for further analysis. +e molecular docking
results of these targets (CASP3, TNF-α, VEGFA, and
MAPK1) are shown in Table 2. In addition, visualizations of
the most favorable binding modes of the four key targets are
shown in Figure 7.

3.6. Effects of ZNCAdministration on theProteinExpression of
CASP3, TNF-α, VEGFA, and MAPK1 in the ADModel Mice.
As shown in Figure 8, the protein expression levels of CASP3
and TNF-α in the model group were significantly higher
than those in the control group. However, the levels of these
proteins in the ZNC group were significantly lower than
those in the model group. Compared with those in the
control group, the protein expression levels of VEGFA and
MAPK1 in the model group were significantly decreased.
Compared with those in the model group, the protein ex-
pression levels of VEGFA and MAPK1 in the ZNC group
were significantly increased.

4. Discussion

Network pharmacology is a modern approach for exploring
the potential targets of active components [28, 29]. It is well
known that TCM formulas have the advantages of multiple
components, targets, and pathways which are suitable for the
treatment of complex diseases [30, 31]. Network pharma-
cology is a new approach for studying TCM formulas and
identifying the “multicomponent, multitarget” potential of
TCMs as therapeutics [32, 33]. In this study, network
pharmacology, molecular docking, and animal experiments
were used to identify the active components, targets, and
signaling pathways of ZNC to explore its potential mech-
anisms in the treatment of AD.

First, 55 active components of ZNC with an OB≥ 30%
and DL≥ 0.18 were identified, including beta-sitosterol,
baicalein, and quercetin. One study showed that the synergy-
based combination of beta-sitosterol successfully enhanced
memory and learning by abating free radical and acetyl-
choline levels in memory loss rats [34]. Another study
demonstrated that beta-sitosterol has the potential to treat
memory decline similar to that observed in AD [35]. Some
studies have indicated that beta-sitosterol alleviates memory
and learning impairment in mice by decreasing amyloid-β
(Aβ) deposition [36]. Baicalein is an oral bioactive agent that
may be able to treat AD [37]. Evidence indicates that bai-
calein notably ameliorates behavioral and cognitive im-
pairment in AD rats [38]. An experimental study has shown
that baicalein improves Aβ-induced memory deficits and
neuronal atrophy via inhibition of phosphodiesterase 2
(PDE2) and PDE4 [39]. Quercetin protects against the ef-
fects of harmful substances and has multiple beneficial ef-
fects in AD [40]. Quercetin reverses the histological features
of AD and has a protective effect on the cognitive function in
older mice [41]. Evidence has shown that quercetin improves
cognitive impairment in aging mice by suppression of nod-
like receptor protein 3 (NLRP3) inflammasome activation
[42]. +erefore, beta-sitosterol, baicalein, and quercetin may
be the active components of ZNC in the treatment of AD.

+e PPI network contained 134 targets, which represent
the most likely core targets of ZNC in the treatment of AD.
KEGG pathway enrichment analysis showed that the T cell
receptor (TCR), TNF, and theMAPK signaling pathwaymay
play roles in ZNC-mediated treatment of AD. Many pre-
vious studies have shown that TCRmediates antigen-specific
Tcell responses, and TCRs are protein complexes formed by
six different polypeptides in the TCR signaling pathway
[43, 44]. In people with AD, T cells become more reactive to
Aβ [45]. Neuronal loss in AD is due to TNF-mediated
necroptosis rather than apoptosis [46]. Accumulating evi-
dence shows an important link between TNF and AD, and
the TNF-α signaling pathway predominantly mediates in-
flammatory and proapoptotic signaling pathways [47]. In
addition, TNF is involved in systemic inflammation; TNF
and TNF receptor type 1 participate in neuroinflammation
associated with AD and are also involved in amyloid-β
formation [48]. MAPKs are serine-threonine kinases in
eukaryotes that mediate a wide variety of intracellular
processes, including cell proliferation, differentiation,
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small to large.
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Table 1: Targets of above-average node degree ranking.

Name Degree Name Degree Name Degree Name Degree
AKT1 104 IL1B 75 PTEN 61 ADIPOQ 49
IL6 99 EGFR 75 RELA 60 CRP 48
TNF 95 CAT 71 ICAM1 59 CAV1 48
MAPK3 94 CCL2 71 ERBB2 58 STAT1 48
VEGFA 93 CXCL8 70 CASP8 58 IFNG 47
CASP3 90 CCND1 69 HMOX1 57 NR3C1 47
TP53 88 ESR1 68 SERPINE1 57 CDKN1A 47
JUN 88 PPARG 67 IL4 56 SOD1 45
MAPK8 83 MAPK14 67 AR 54 NFKBIA 45
MAPK1 83 CYCS 66 HIF1A 54 MMP3 44
EGF 80 NOS3 66 APP 53 NOS2 44
FOS 78 IL10 66 SPP1 53 MMP1 44
PTGS2 78 MMP2 65 MPO 51 -- --
MMP9 76 SIRT1 64 IL2 50 -- --
MYC 76 MTOR 63 CASP9 50 -- --
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Figure 6: Functional enrichment analysis. (a)+e top 20 enriched BPs; (b) the top 20 enrichedMFs; (c) the top 20 enriched CCs; (d) the top
20 enriched pathways.
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survival, death, and transformation [49]. Furthermore, the
MAPK pathway is involved in the pathogenesis of AD
through multiple downstream signaling pathways, including
the induction of neuronal apoptosis [50]. +e above findings
indicate that ZNC may ameliorate AD by regulating TCR,
TNF, and the MAPK signaling pathway.

Molecular docking between 10 targets with a high degree
of PPI and their respective components was evaluated.+en,
four key targets with low to high binding affinity according
to the measured ΔG kcal/mol, including CASP3, VEGFA,
MAPK1, and TNF-α, were validated by Western blotting. A
recent study revealed that CASP3 is the most important
enzyme in apoptosis, and when activated, Aβ can induce
neuronal apoptosis [51]. In addition, two other studies
showed that CASP3 mediates the cleavage of amyloid
precursor protein (APP) to yield neurotoxic peptide frag-
ments, which leads to an increase in production of beta-
amyloid [52, 53]. A previous study showed that VEGFA
plays an important role in angiogenesis, which has a

protective effect in people at high risk of AD [54]. Research
suggests that miR-132 may improve the cognition of rats
with AD by inhibiting the MAPK signaling pathway [55].
Furthermore, MAPK1 is related to the hyper-
phosphorylation of Tau protein, which is considered an
important factor leading to the neuropathological changes in
AD [56]. Another key target is the cytokine TNF-α, which is
involved in inflammation throughout the body [57]. Fur-
thermore, genetic and epidemiological evidence indicate
that an increase in TNF-α expression is a risk factor for AD,
and exacerbates Aβ and tau pathologies [58]. +erefore,
ZNC may act on targets such as CASP3, VEGFA, MAPK1,
and TNF-α to treat AD.

+e results of the validation experiment confirmed that
the expression of VEGFA and MAPK1 was significantly
upregulated after ZNC administration.+at finding suggests
that the active components of ZNC could prevent Aβ-in-
duced neuronal injury through the MAPK signaling path-
way. In addition, the expression of CASP3 and TNF-α was

(a) (b)

(c) (d)

Figure 7: Molecular docking of ZNC components and AD-related targets using the SwissDock server. (a) CASP3 and beta-sitosterol; (b)
TNF-α and quercetin; (c) VEGFA and baicalein; (d) MAPK1 and quercetin.

Table 2: Results of the molecular docking of four key targets with components.

Target Component MOL ID Binding energy (kcal/mol)
CASP3 Beta-sitosterol MOL002714 −8.15
CASP3 Naringenin MOL004328 −7.38
CASP3 Luteolin MOL000006 −7.34
CASP3 Quercetin MOL000098 −7.21
CASP3 Baicalein MOL002714 −7.12
CASP3 Kaempferol MOL000422 −7.08
TNF-α Quercetin MOL000098 −7.97
TNF-α Kaempferol MOL000422 −7.58
TNF-α Luteolin MOL000006 −7.56
VEGFA Baicalein MOL002714 −7.81
VEGFA Quercetin MOL000098 −7.56
VEGFA Diosgenin MOL000546 −7.39
VEGFA Luteolin MOL000006 −7.33
MAPK1 Quercetin MOL000098 −7.65
MAPK1 Luteolin MOL000006 −7.44
MAPK1 Naringenin MOL004328 −7.23
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significantly downregulated after ZNC administration. +is
finding suggests that the active components of ZNC may
inhibit apoptosis through the TCR and TNF-α signaling
pathways.

5. Conclusion

In conclusion, the active components of ZNC, such as
beta-sitosterol, quercetin, and baicalein may act on
multiple targets like CASP3, VEGFA, MAPK1, and TNF-α
to affect the TCR, TNF, and the MAPK signaling pathway.
With the help of network pharmacology and in vivo
verification experiment, it is useful for us to further
understand the influence of ZNC on AD and its potential
molecular mechanism. Nevertheless, there are still some
limitations in the study. First, the role of key active
components should be further validated. Second, data
sources mostly rely on specific databases, and frequent
updates of the databases are necessary. In future research,
our groups will carry out more comprehensive experi-
mental research on ZNC and fully analyze its mechanism
of action.
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Figure 8: Effects of ZNC on CASP3, TNF-α, VEGFA, andMAPK1 protein expression in vivo. (a)+e protein level of CASP3; (b) the protein
level TNF-α; (c) the protein level of VEGFA; (d) the protein level of MAPK1. Compared with the control group, ∗∗P< 0.01. Compared with
the model group, #P< 0.05, ##P< 0.01.
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