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Abstract

Patient similarity networks (PSNs), where patients are represented as nodes and their similarities as weighted edges, are being
increasingly used in clinical research. These networks provide an insightful summary of the relationships among patients and can be
exploited by inductive or transductive learning algorithms for the prediction of patient outcome, phenotype and disease risk. PSNs
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can also be easily visualized, thus offering a natural way to inspect complex heterogeneous patient data and providing some level of
explainability of the predictions obtained by machine learning algorithms. The advent of high-throughput technologies, enabling us to
acquire high-dimensional views of the same patients (e.g. omics data, laboratory data, imaging data), calls for the development of data
fusion techniques for PSNs in order to leverage this rich heterogeneous information. In this article, we review existing methods for
integrating multiple biomedical data views to construct PSNs, together with the different patient similarity measures that have been
proposed. We also review methods that have appeared in the machine learning literature but have not yet been applied to PSNs, thus
providing a resource to navigate the vast machine learning literature existing on this topic. In particular, we focus on methods that
could be used to integrate very heterogeneous datasets, including multi-omics data as well as data derived from clinical information
and medical imaging.

Keywords: patient similarity networks, biomedical applications, multimodal data, data fusion

Introduction
In the last decades, medical research has begun to move
from a population-based perspective to a personalized
one, often referred to as precision medicine, where
patients’ biomedical characteristics are leveraged for
diagnosis, prognosis and choice of appropriate treatment
[1, 2]. In this context, it is widely accepted that if
two patients share similar clinical variables and omics
profiles, their clinical outcomes should also be similar.
Pairwise similarities between patients have a natural
representation as graphs—Patient Similarity Networks
(PSN)—where nodes represent patients and edges
represent the similarity between patients calculated
using their clinical and/or biomolecular features. In
this framework unsupervised clustering methods and
supervised classification models that leverage similar-
ities between patients have been successfully applied
to stratify patients and to predict their phenotype or
clinical outcome [3–8]. Representing data as graphs
provides several advantages, including interpretability
and privacy [9], as patient-specific information cannot
be recovered from the similarity measures.

The increasing availability of high-throughput tech-
nologies able to generate high-dimensional, distributed
biomedical datasets, ranging from multi-omics [8] to
imaging [10], clinical and demographic data [11], calls for
approaches to mine and aggregate salient information
[12] with the ultimate aim of building PSNs integrating
such diverse datasets. However, the majority of PSNs
that have been proposed are built using only one source
of information. At the same time, several methods that
can integrate heterogenous sources of information into
graph structures have appeared in the past decades in
the biomedical and machine learning literature.

In this article, we review existing methods for integrat-
ing multiple biomedical data views to construct PSNs.
Since the type of data being integrated and the specific
integration method must be coupled with an appropriate
choice of similarity measure, we will also discuss
different similarity measures. Importantly, this paper
also reviews methods for integrating information into
graph structures that appeared in the machine learning
literature but have not yet been used for PSNs. We believe
that this will be beneficial for the reader, providing a
resource to navigate the vast machine learning literature
existing on this topic, and possibly inspire the use and

development of novel techniques of data integration
for PSNs. Moreover, unlike earlier reviews (see e.g. [8,
13–16]), we focus on methods that may be used for
patients’ classification and clustering that integrate
not only multi-omics data, but also clinical and image
sources.

We propose a taxonomy that groups existing methods
for building PSNs into three main categories. ’PSN-fusion
methods’ [3, 6, 17] build different PSNs, one for each
data source, that are then fused together into a single
PSN. ’Input data-fusion’ methods [18–21] combine the
different data sources into a single dataset that is then
used for building a single PSN. Finally, ’Output-fusion
methods’ [22–24] build different PSNs, one for each data
source, that are analyzed separately, and results are then
combined.

Other multimodal data-fusion surveys not specific
for PSNs have been proposed in the bioinformatics
field by adopting different taxonomies (schematized in
Figure 1, Appendix A). Some taxonomies focus on the
type of multi-datasets being integrated, thus identifying
’horizontal integration techniques’ [25] (top of Figure 1-
yellow box) and ’vertical integration techniques’ [25]
(top of Figure 1-light blue box). While the former
fuse ’homogeneous multisets’ [26], i.e. ’multimodal
datasets’ where each view produces the same data
type under different settings, the latter integrate the
classic ’heterogeneous’ [26] multimodal datasets. Ver-
tical integration techniques are further classified into
methods applying a ’hierarchical (alias ’multi-staged’
[27]) integration’ flow, where ground knowledge about
the relationships between the different views is con-
sidered during the integration, and methods applying a
’parallel (alias ’meta-dimensional’ [27]) integration’ flow
(bottom of Figure 1-red-dashed box), where each view
is processed in a similar but independent way. Parallel
integration methods are the most diffused in literature
given their generalizability. For this reason several
reviews concentrate solely on them and introduce
taxonomies that distinguish, e.g. ’model-agnostic’ versus
’model-dependent’ methods [28], or exploit an ’early–
intermediate–late’ taxonomy [27, 29–33] (described in
detail in Appendix A).

Each review paper focuses on different aspects of
the multimodal data integration. For example, some
works solely focus on integrative unsupervised clustering
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Figure 1. Schema of the main taxonomies proposed in literature for categorizing multimodal integration methods. Considering the data integration flow,
literature works identify two broad classes: ’horizontal integration approaches’ and ’vertical integration approaches’. ’Horizontal integration’ approaches
fuse ’multisets’ (i.e. datasets where each view is acquired by the same source under different conditions) by independently applying the same process
on each view and then pooling the individual results. On the other hand, ’vertical integration approaches’ fuse ’multimodal datasets’ (i.e. datasets
composed by semantically different views) through more complex techniques, further categorized as ’hierarchical–vertical integration’ methods and
’parallel–vertical integration’ techniques. The former fuse data views following a ’hierarchy’ driven by biological a priori knowledge whereas the latter
do not exploit knowledge-based dependencies between views. ’Parallel-vertical integration’ methods are the most diffused integration methods; they
are further classified based on the phase when the data ’integration-step’ is performed with respect to the model construction (red-dashed box). Thus,
methods are divided in (1) ’early approaches’, which integrate the data types before model construction, (2) ’late approaches’, which integrate the
results of models independently built on each data view and (3) ’intermediate approaches’ where intermediate models are obtained from each view and
subsequently integrated. Of note, the latter class of approaches is more dependent on the exploited learning model, which is the reason why they have
been also classified as ’model-dependent’ methods opposed to ’model-agnostic’ methods (blue-dashed boxes). We refer interested readers to Appendix A.

techniques [34] or supervised multi-omics prediction
models [29, 33, 35], or survey data-fusion techniques
that are either applied to multi-omics data [16, 25–
27, 36], or that apply specific data-fusion techniques
(e.g. integrative Bayesian models [13, 37] or multimodal
neural networks [38]).

Unlike previous reviews, this work specifically focuses
on integrative methods for PSN-based models integrat-
ing not only multi-omics data, but also clinical and
imaging sources. Each method is critically described to

highlight its main advantages and drawbacks, enabling
the reader to select the most appropriate approach to
answer her/his scientific questions.

Given a set of patients and their corresponding clinical
and biomolecular features, the topology of the corre-
sponding PSN depends crucially on how the similarity
measure is calculated. Therefore, we begin describing
the similarity measurement methods presented in the
literature. Our taxonomy of existing methods for building
PSNs is described in Sections PSN-fusion methods and
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Input data-fusion and output-fusion methods. Tables
3–8 summarize the most relevant methods we surveyed.

PSN construction
The construction of the PSN is a crucial step in PSN
analysis models, whose effectiveness mainly depends
on the available multimodal datasets from which sam-
ples are extracted and on the choice of the measure
exploited for pairwise similarity computation between
samples.

Several kinds of similarity measures have been
adopted in literature for PSN construction: classic
distance metrics tailored to the data type [39, 40];
kernel functions [41, 42] that substitute distance metrics;
‘kernels on graphs’ methods [43]. In the remainder, we
discuss their characteristics.

The usage of classic ’(opportunely inverted) distances’
or ’similarity metrics’ [39, 40] is often preferred when
the data types are normalized and homogeneous. As
an example, PSNs on continuous, normalized, data have
been constructed by using the cosine similarity [5, 44], or
the Euclidean [45] or Mahalanobis distance [45]; PSNs on
discrete data types have been built by exploiting the Chi-
squared distance [3, 6]; binary data have been handled
by using the Jaccard distance [46] or many other distance
measures (see [47] for a list of 76 metrics and measures
specifically designed for binary data).

When data-blocks with heterogeneous and/or nor-
malized variable types are available, more articulated
schemas [6, 48] have been proposed to integrate different
similarity metrics into a unique measure. As an example,
in [48] the authors proposed a supervised Cox regression
model to initially learn a weight for each variable; the
learnt weights are then used to compute a similarity
score as a weighted sum of individual similarities
obtained on each feature by using standard metrics.
In this way, different similarity metrics can be used
on the different variables based on their type, and the
influence of each variable to the global similarity score
is weighted on the prediction (e.g. survival time when
using a Cox regression model). On the other hand,
when dealing with datasets composed by continuous
non-normalized variable types, Pai et al. [6] propose
computing the average of all the normalized similarities
over each variable, where the normalization is essentially
a min–max normalization.

When dealing with complex problems, literature
works often rely on ’Kernel functions’ [49] for PSN
computation. The rationale behind this choice is based
on the assumption that point separability is often
improved after a nonlinear projection of points into
a higher-dimensional space. Kernel functions are par-
ticularly appealing in this context since they express
pairwise distances in a higher-dimensional space by
directly using the (lower-dimensional) input samples,
therefore avoiding the expensive explicit computation
of a nonlinear higher-dimensional mapping followed

by pairwise similarity evaluation (using the well-known
’kernel-trick’). Even in this case the choice of the kernel
function must be tailored to the data type that is
crucial to obtain reliable results. In this context, PSNs
are often computed in literature methods working on
biomedical data by using classic parametric ’normalized
linear kernels’ [30, 50], ’polynomial kernels’ or ’Gaussian
kernels’ [51, 52], whose parameters are tuned to optimize
performance. As an example, the prognostic approach
presented in [30] obtains a set of unimodal PSNs by
applying normalized linear kernels on each of the data
sources containing clinical and multi-omics datasets.
In this case, the usage of the same kernel function
on different sources is appropriate because they are
characterized by the same data type (real-valued data
type).

In a subsequent work [53], the same authors extend
the dataset by including categorical and integer data
types; therefore, they substitute the linear kernels with a
set of kernels tailored on each data type being processed.
Of note, the kernels used in [30, 53] are always nor-
malized. This is a crucial characteristic when integrat-
ing multiple kernels because comparable kernel scales
are obtained, therefore facilitating the kernel integra-
tion. Moreover, in the case of kernel-aggregation sys-
tems exploiting weighted averages of the unimodal ker-
nels, normalization also improves the interpretability
of the computed integration weights, the latest being
directly related to the importance of their respective
kernel [53].

A recent advance in the field of PSN analysis is pro-
vided by unsupervised methods that compute the PSN
through the ’scaled exponential Euclidean kernel’ [3]
and its modifications [54, 55]. They essentially apply a
local normalization of the distance between a central
node and any of its neighbors, so that distances are
independent from the neighborhood scales. Their appli-
cation in the context of unsupervised patient clustering
through PSN analysis has obtained promising results [3]
(see Section SNF-based methods).

Given its effectiveness, the scaled Euclidean distance
has been extended in [54] to deal with heterogeneous
data types containing continuous and boolean variables.
More precisely, the similarity on boolean data is mea-
sured by using the weighted Hamming distance with
weights computed by supervised approaches or pre-set
based on existing knowledge. Further, in [55] the authors
propose adopting the Chebyshev distance instead of the
Euclidean distance.

Gliozzo et al. [7] extend to PSNs a previous ’kernel-
based’ approach originally applied to the semi-supervised
analysis of biomolecular networks [56]. More precisely,
the authors obtain promising outcome predictions on
unimodal PSNs by firstly using the filtered Pearson
correlation (by setting to zero all negative values) to
measure similarities between unimodal gene expression
profiles, and then applying a random walk kernel to
strengthen high similarities while diminishing low ones.
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Table 1. Similarity measures/methods used in literature to build PSNs. For notable works in literature the table reports: the reference
of the literature work presenting a multimodal PSN analysis method (column ’References’), the data types (column ’Data type’) of the
different sources (column ’Data’) used for the investigation, and the similarity measures/methods exploited for building the unimodal
PSNs

References Data type Data Similarity measure/method

[46] Binary ICD-9 diagnosis code Jaccard similarity
[44] Continuous, Clinical data Cosine similarity

Categorical, discrete
[5] Continuous Clinical data Cosine similarity

Categorical, discrete
[61] Continuous mRNA, PPI Pearson correlation
[7] Continuous mRNA Pearson correlation
[6] Continuous Clinical variables Mean of normalized difference

Individual gene Normalized difference
Genes in pathways/networks Pearson correlation

Discrete Categorical-ordinal variable Normalized difference
(e.g. tumor stage)
Unbinned counts Shared incidence
(e.g. mutation data) in a grouped unit
Matrix scores chi-square distance
(e.g. response to questionnaire)

[3] Continuous mRNA, miRNA, DNA methylation Scaled exponential kernel of Euclidean distance
Discrete chi-squared distance
Binary agreement-based measure

[54] Continuous binary mRNA, DNA methylation somatic mutation Scaled exponential kernel of weighted Euclidean
distance scaled exponential kernel of weighted
Hamming distance

[62] Continuous mRNA, miRNA, DNA methylation Scaled exponential kernel of Euclidean distance
[63] Categorical, discrete Demographic, APOE4 allele status, squared-exponential kernel

MRI
[55] Continuous Gene expression, Kernel of Chebyshev distance

miRNA,
Isoform expression

[48] Continuous, categorical, discrete Clinical data Weighted sum of distances
with weight determined by a scaled
Cox regression coefficient

ICD-9: International Classification of Diseases Version 9; CNV: copy number variation; miRNA: micro RNA; MRI: magnetic resonance imaging; mRNA: messenger
RNA; PPI: protein–protein interaction

The neighborhoods identified in the obtained PSN are
then used to compute a score for each patient, which is
thresholded to obtain the desired classification. While
unimodal PSNs are exploited in [7], the works proposed
in [57] and [58] exploit random-walks to compute
similarities in a multimodal setting.

To improve informativeness, Tables 1 and 2 sketch the
similarity measures/ methods used for PSN construc-
tion by notable literature works exploiting multimodal
datasets; for each paper we report the data types of the
different data sources exploited for the investigation, and
the similarity measures/methods used for building the
corresponding unimodal PSNs.

Even if a wide range of similarity computation meth-
ods has been proposed in literature, a consensus on
which strategy performs better on specific data types and
problems in the context of precision medicine is still lack-
ing. Some tentative experiments have been conducted for
determining the best-performing strategies (see e.g. [59,
60]), but the lack of common benchmark datasets pre-
vents an unbiased comparison of the different proposed
approaches.

PSN-fusion methods

PSN-fusion methods have been specifically developed
to process a set of unimodal PSNs and produce an
integrated PSN. In Figure 2 we sketch the generic
workflow of the PSN-fusion methods. They start by
building unimodal PSNs on each data source or data
type (Figure 2A). Mind that the choice of the sim-
ilarity measure/kernel function used to build each
PSN (Section PSN construction) is crucial for obtaining
informative unimodal PSNs, which would otherwise
hamper the achievement of successful results. Next,
the aggregation of the unimodal PSNs (Figure 2B) is
performed by either Multiple Kernel Learning methods
(MKL, Section MKL-based methods, Table 3), which run
optimization algorithms inherited from the machine
learning field to find the optimal weights of an additive
unimodal kernel aggregation, or approaches stemming
from the seminal Similarity Network Fusion algo-
rithm (SNF—[3], Section SNF-based methods, Table 4),
which use different strategies to diffuse the similarity
information both between neighboring nodes in each
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Table 2. Similarity measures/methods used in literature to build PSNs. For notable works in literature the table reports: the reference
of the literature work presenting a multimodal PSN analysis method (column ’References’), the data types (column ’Data type’) of the
different sources (column ’Data’) exploiting for the investigation, and the similarity measures/methods exploited for building the
unimodal PSNs.

Reference Data type Data Similarity measure/method

[30, 53] continuous mRNA, clinical normalized linear kernel
categorical, discrete, binary clinical

[64] discrete MRI gaussian kernel
continuous CSF

[51] continuous mRNA, miRNA, CNV, gaussian kernel
DNA methylation,

discrete clinical
[50] continuous, mRNA, miRNA, CNV, linear kernel

DNA methylation, RPPA,
binary, discrete somatic mutations, clinical data

[65] continuous mRNA, CNV, DNA methylation normalized linear kernel,
normalized polynomial kernel,
normalized gaussian kernel

[53] continuous, categorical (ordinal) clinical variables absolute difference of values/ranks of two subjects
compared and rescaled using variable range

categorical (nominal) clinical variables kernel defined using Kronecker delta function
[57] continuous, binary mRNA, RPPA, somatic mutation novel graph kernel called SmSPK

CNV: Copy Number Variation; miRNA: micro RNA; mRNA: messenger RNA; RPPA: Reverse-Phase Protein Arrays; CSF: CerebroSpinal Fluid.

unimodal PSN and between corresponding nodes in
different PSNs, or other network-based approaches
(Section Other PSN-fusion methods and Table 5).

The integrated PSN may be finally used as input to
unsupervised clustering methods aiming at, e.g. identify-
ing patients’ subtypes, or supervised classification meth-
ods predicting, e.g. patients’ risk, prognosis or outcome
(Figure 2C).

MKL-based methods
Inheriting theories and algorithms from the machine
learning fields, MKL methods [17, 64–66] view the uni-
modal PSNs as kernels and propose their optimal addi-
tive combination, as a weighted sum of the available
unimodal kernels. In this context, ‘optimality’ refers to
either a ’supervised’ setting or an ’unsupervised’ one.

’Supervised MKL’ algorithms (e.g. simpleMKL [17])
exploit a supervised classifier model designed to work
on the fused kernel. Supervision is guaranteed by the
availability of a training set composed of samples
whose labels are known. Such training set is used
by the chosen supervised MKL method to solve a
constrained optimization problem that finds the kernel
weights and classifier hyper-parameters maximizing the
classification accuracy on the training set. On the other
side, ’unsupervised MKL’ methods make no use of labeled
samples, but instead solve an optimization problem to
find the weights that essentially lead to the maximum
alignment between the integrated kernel and any of the
input unimodal kernels.

Recent PSN-fusion methods exploiting a ’supervised
MKL’ strategy are those presented by [30, 50, 53, 64, 67].
The work proposed in [50] designs specific kernels for
each omic type in the The Cancer Genome Atlas (TCGA)
cancer dataset and then computes the kernel weights by

using the training set to optimize the fit of a Cox-survival
model.

All the other works [30, 53, 64, 67] share the use of the
kernelized Support Vector Machine (SVM) classifiers [68],
opportunely modified as defined in [17] and [66] to work
on the kernel resulting from an optimal additive sum.
In particular, the works proposed by Daemen et al. [30,
53] aggregate specific kernels on each clinical data type
and uses a classic SVM optimization strategy to derive
the optimal weights, while the works proposed in [64]
and [67] use the easyMKL algorithm to optimize an svm
aggregating multiple kernels defined over multimodal
datasets also including opportunely coded imaging
sources. More precisely, in [64] authors use the same
Gaussian kernels to process both the real cerebrospinal
fluid (CSF) biomarkers features and the shape and
texture features extracted to code magnetic resonance
images (MRI). On the other side, the work proposed in [67]
improves upon the work presented in [69] and defines
specific kernels for the multi-omics data from the
TCGA cancer dataset and for the features automatically
extracted from histopathological images (Table 3). The
effectiveness of the simpleMKL strategy is witnessed
by its several extensions (easyMKL [70], SEMKL [71],
SpicyMKL [72]).

As expected, our literature search highlighted that
SVMs are the most widely used base-learner models
in conjunction with MKL in the context of biomedical
predictions; however, some authors have also presented
MKL methods using Multiple Kernel Fisher Discrim-
inant Analysis (MK-FDA [73]) or Kernel Regularized
Discriminant Analysis [74] as base learners where the
single kernel is substituted by multiple kernels. Though
these strategies have not been applied on patients’
data, their promising results on the protein subcellular
localization prediction task [73, 75] suggest they could be
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Table 3. MKL-based PSN-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference
paper; whether it requires the same set of patients across all data modalities (i.e. ‘Matched Samples’); the dataset used to develop and
evaluate the approach in the reference paper and the corresponding sample cardinality and data types composing the dataset; the
exploited integration method; the application task and the code availability (with link to the repository and programming languages
for which the code is available)

Name
Matched
samples Dataset

Sample
cardinality Data type

Integration
approach Task

Code and
Language

PAMOGK1 x TCGA KIRC 361 Somatic mutation MKKM Unsupervised Clustering MATLAB,
[57] NCI-PID at

NDEXBio
mRNA [77] (Patient subtype identification) Python code

RPPA
[64] x ADNI 120 CSF features MKL Supervised Classification

MRI [17] (HC versus MCI patients)
[69] x TCGA 585 Histopathological images simpleMKL Supervised Classification

Clinical data [17] (Patient’s Prognosis)
mRNA
methy
RPPA

[67] x TCGA GBM 125 Histopathological images simpleMKL Supervised Classification
CNV [17] (Patient’s Prognosis)
mRNA
miRNA

MK-FDA [73] x Protein dataset Not provided Protein sequences MKL Supervised Multiclass
Classification

[75] (Protein subcellular localization)
[50] x 14 TCGA

datasets
3382 Germline variants MKL Supervised Classification

Somatic mutation (Patient’s Survival)
CNV
mRNA
miRNA
methy

[52] x TCGA from 989 mRNA MKL Unsupervised Clustering
mixOmics miRNA (Patients’ subtype identification)

methy
rMKL-LPP x TCGA GBM 213 mRNA MKL Unsupervised Clustering
[76] TCGA BIC 105 miRNA (Patient subtype identification)

TCGA KIRC 122 methy
TCGA LUSC 106
TCGA COAD 92

ADNI: Alzheimer’s Disease Neuroimaging Initiative; CNV: Copy Number Variation; CSF: CerebroSpinal Fluid; HC: Healthy Control; MCI: Mild Cognitive Impair-
ment; methy: DNA methylation; miRNA: micro RNA; MKKM: Multiple kernel k-means clustering; MKL: Multiple Kernel Learning; MRI: Magnetic Resonance
Imaging; mRNA: messenger RNA; NCI-PID: National Cancer Institute—Pathway Interaction Database; RPPA: Reverse-Phase Protein Arrays; TCGA+cancer code:
The Cancer Genome Atlas+ link to complete cancer codes.

good options for developing a multimodal PSN analysis
task.

’Unsupervised MKL’ approaches are described in
the works of [52, 76, 77]. The regularized MKL with
Locality Preserving Projection algorithm (rMKL-LPP [76])
is an unsupervised, regularized MKL-based clustering
approach for the identification of cancer subtypes from
multi-omics data. It builds upon the MKL-DR model
proposed in [78] to constrain the optimization problem
by handling the ‘small-sample-size’ problems caused by
the high dimensionality of the input data sources and
exploits the theories at the base of the LPP algorithm
[79] to find the integrated kernel in a lower-dimensional
space that maintains the local neighborhoods relation-
ships. In other words, the model minimizes a function
that allows finding both the hyper-parameters of the
multiple kernels and their combination weights so that
patients that are similar according to ‘many’ input
sources (kernels) remain neighbors in the integrated

kernel. Further, to avoid restricting the usage of only
one kernel per data source or data type, authors add
a constrained regularization that avoids overfitting,
so that multiple kernels can be used for each source
without risking to overfit the data. Similar topological
constraints are used by [52] to compute kernel weights
such that the resulting integrated kernel maintains the
neighborhood relationship described above, and at same
time maximizes the alignment (similarity) to all the input
kernels.

By contrast, Liu et al. [77] leverage the standard kernel
k-means clustering [80], which applies k-means in the
kernel space, to a ’multiple kernel k-means clustering’
(MKKM) that considers the relationships between all
the input kernels. The optimal clusters are found by
minimizing a loss that measures the intraclass sample
distance as a function of the cluster assignment matrix
and the kernel weights. However, differently from other
multiple kernel clustering models, the MKKM loss

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Table 4. SNF-based PSN-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference
paper; whether it requires the same set of patients across all data modalities (i.e. ‘Matched Samples’); the dataset used to develop and
evaluate the approach in the reference paper and the corresponding sample cardinality and data types composing the dataset; the
exploited integration method; the application task and the code availability (with link to the repository and programming languages
for which the code is available)

Name
Matched
samples Dataset

Sample
cardinality Data type

Integration
approach Task

Code and
Language

SNF [3] x TCGA GBM 215 mRNA SNF Unsupervised Clustering MATLAB
code, R code

miRNA (Patient subtype identification)
methy

ANF [87] x TCGA LUSC 2193 mRNA SNF Unsupervised Clustering R code
TCGA Adrenal miRNA (Patient subtype identification)
TCGA Gland methy
TCGA KIRC
TCGA Uterus

HSNF [89] x TCGA BIC 105 mRNA SNF Unsupervised Clustering
TCGA GBM 215 miRNA (Patient subtype identification)
TCGA KIRC 122 methy
TCGA LUSC 106
TCGA COAD 92

SKF [90] x TCGA BIC 1071 mRNA SNF Unsupervised Clustering MATLAB
code

TCGA COAD 426 miRNA (Patient subtype identification)
TCGA KIRC 868 isoform level
TCGA LUSC 981
TCGA Stomach 377

ab-SNF [54] x TCGA LIHC Not provided somatic
mutation

SNF Unsupervised Clustering R code

TCGA KIRP mRNA (Patient subtype identification)
TCGA BIC methy

NEMO [93, 94] TCGA AML 3168 across mRNA SNF Unsupervised Clustering R code
TCGA BIC all datasets miRNA (Patient subtype identification)
TCGA COAD methy
TCGA GBM
TCGA KIRC
TCGA LIHC
TCGA LUSC
TCGA SKCM
TCGA OV
TCGA SARC

methy: DNA methylation; miRNA: micro RNA; mRNA: messenger RNA; SNF: Similarity Network Fusion; TCGA+cancer code: The Cancer Genome Atlas+ link to
complete cancer codes.

function includes a term that promotes the choice of
higher weights for uncorrelated kernels.

SNF-based methods
PSNs are similarity graphs by definition; therefore, recent
promising works apply graph-based algorithms and the-
ories to integrate them. In particular, some authors sim-
ply integrate the information from different similarity
graphs by using graph kernels [57] or by averaging [58,
81].

On the other side, SNF [3] exploits a nonlinear
message-passing algorithm [82] that diffuses the infor-
mation between all the unimodal PSNs constructed on
each data-block until they converge to the integrated
PSN. The diffusion process is designed so that the
similarity between any two points computed over a
specific source is updated and diffused if the two points
are neighbors or share common neighbours in the

other modalities. SNF has proven to be successful when
compared with relevant PSN-fusion methods [83] in the
unsupervised clustering task on three real, complex,
multi-omics datasets (murine liver—BXD [84], platelet
reactivity [85] and Breast Cancer dataset from TCGA—
BRCA [86]).

Several works extended SNF in different ways, thus
creating a group of algorithms (called SNF-based meth-
ods). As an example, Affinity Network Fusion (ANF) [87]
has been developed to diminish the computational costs
of SNF, by reducing the iterative integration strategy of
SNF to a unique step. To this aim, authors design a
multigraph where each layer corresponds to a source-
specific PSN, and then apply the one-step random walk
kernel, where user-defined parameters are the transition
probabilities between different layers, and the PSN for
a specific layer represents the transition probabilities
between nodes in that layer. When tested on multiple

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Table 5. Other PSN-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference paper;
whether it requires the same set of patients across all data modalities (i.e. ‘Matched Samples’); the dataset used to develop and
evaluate the approach in the reference paper and the corresponding sample cardinality and data types composing the dataset; the
exploited integration method; the application task and the code availability (with link to the repository and programming languages
for which the code is available)

Name
Matched
samples Dataset

Sample
cardinality Data type

Integration
approach Task Code and Language

netDx [6] x TCGA KIRC 150 mRNA Average score Supervised classification R code
TCGA OV 252 miRNA (patient’s survival)
TCGA GBM 155 methy
TCGA LUSC 77 CNV

RPPA
clinical data

RWRF, RWRNF [58] x TCGA ACC 76 mRNA RWR Unsupervised clustering R code
TCGA BLCA 396 miRNA (patient subtype

identification)
TCGA HNSC 469 methy
TCGA UVM 80
TCGA PAAD 175
TCGA THCA 492

MRF-MSC [95] x TCGA COAD 92 mRNA Maximization Unsupervised clustering
TCGA GBM 215 miRNA of alignment to

all
(patient subtype
identification)

TCGA BRCA 105 methy the unimodal
PSNs

TCGA KIRC 122
TCGA LSCC 106

CNV: Copy Number Variation; methy: DNA methylation; miRNA: micro RNA; mRNA: messenger RNA; PSN: Patient Similarity Network; RPPA: Reverse Phase
Protein Array; RWR: Random Walk Kernel with Restart; TCGA+cancer code: The Cancer Genome Atlas+ link to complete cancer codes.

TCGA datasets, ANF outperforms SNF both in terms of
clustering efficacy and computational costs.

By taking into account that the Euclidean distance
metric employed in SNF suffers the curse of dimen-
sionality [88] and may affect the results, [89] presented
HSNF (hierarchical SNF), which essentially runs SNF
several times, where each iteration uses a set of unimodal
PSNs, generated on each data-block by using a randomly
sampled feature set. At each iteration, the computed
PSNs are fused with the integrated network computed
in the precedent steps through SNF. The method is
evaluated by its capacity to identify cancer subtypes by
applying spectral clustering on the integrated matrix.
Though outperforming SNF on several cancer datasets,
HSNF has a higher computational cost because of the
iteration of SNF.

To reduce noise in the integrated network, the Similar-
ity Kernel Fusion algorithm (SKF) [90] multiplies the PSN
built by using SNF with a matrix of weights, where the
weight is higher if two samples are included in each other
neighbourhood. Moreover, different from SNF, a term in
the iterative update function is added to control the
amount of information to be retained from the integrated
kernel at the preceding step. When compared with SNF
and to a simple average fusion of different kernels, SKF
obtains comparable or even better performance in the
discovery of cancer subtypes from real cancer datasets.

The association-signal-annotation boosted similarity
network fusion (ab-SNF) method [54] tries to improve
SNF by considering a weighted version of distance
measures with the goal to upweight signal features and

downweight noisy ones. In this work, the weight for
continuous variables consists in a P-value computed by
the univariate t-test to assess the feature significance
in predicting the outcome variable; the weights for
binary features, such as mutation data, are obtained
by considering prior knowledge from databases (e.g.
1 for features related to cancer and 0 otherwise).
Given the computed weights, the unimodal PSNs are
obtained by using the scaled exponential kernel [3],
where the Euclidean distance is substituted by the
weighted Euclidean distance, for continuous variables,
or the weighted Hamming distance, for binary variables.
The use of feature-level weights leads to superior
performance in clustering accuracy with respect to SNF
on both simulated and real data, whereas subtypes
captured by ab-SNF are significant in terms of patient
survival on real cancer data.

Other PSN-fusion methods
NetDx [6] fuses unimodal PSNs by a simple weighted
network sum, where the weights for each network are
identified by ridge regression to a target network con-
structed on the training patients in order to enforce
higher similarities between positive nodes and lower
similarities between nodes belonging to different classes.

Some recent integration methods propose integrating
the different PSNs by using a graph-based construction
and then compute integrated similarities by visiting the
graph through random walk kernels. As an example, [58]
propose computing similarities over a multiplex graph
composed by a collection of PSNs (layers) each built

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Figure 2. High-level representation of PSN-fusion methods. (A) Given a set of matrices, each representing the patients vectors acquired from one source,
proper similarity measures or kernel functions are used to build a set of unimodal PSNs (one PSN per data source or data type); (B) all the PSNs are then
fused through either MKL methods, SNF methods or other PSN-fusion approaches; (C) the integrated PSN is processed either by unsupervised clustering
algorithms for solving, e.g. patients’ subtype prediction tasks, or by supervised classifier models for, e.g. patients’ outcome prediction.

on an individual data-block. The different layers share
the same set of nodes [91], and corresponding nodes in
different layers are connected to guarantee connectivity
across multiple layers, but are considered as different
entities to avoid disrupting the difference between the
multiple views available for each node/sample. Then,
authors use the random walk kernel with restart (RWR)
[92] to express the similarities as the probabilities of
reaching a node in a specific layer when another node
in the same or in another layer is used as the starting

point of the walk. To account for multimodality, that is
with the presence of multiple layers, the probability of
‘jumping’ to another layer during the walk is weighted
by a parameter λ. The probabilities are computed by
an iterative process that continues until a stationary
point is reached. RWRNF [58] is an extension of this
method that allows connecting multiple layers by also
using edges between neighbourhoods of corresponding
nodes. The use of many random walks, starting from
all the nodes in each layer, adjusts the weights of the
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multiplex network taking into account its global topology.
Finally, an integrated similarity network is computed by
averaging corresponding weights across different layers
of the network.

The efficacy provided by the use of similarities
computed across local neighborhoods is proven by its
use in simpler unsupervised PSN analysis methods.
As an example, NEMO (NEighborhood based Multi-
Omics clustering, [93, 94]) is an unsupervised clustering
approach where authors use a scaled normalized
euclidean kernel to compute similarities, which are
then made symmetric in a way very similar to SNF
and are designed to have values equal to zero for
nodes that are not neighbors. Extensive experiments
on simulated and real datasets showed the competitive
effectiveness and efficiency of NEMO with respect
to nine state-of-the-art methods among which one
MKL-based method, a spectral clustering method, the
classic k-means clustering approach and six clustering
methods exploiting an input data-fusion approach
(Section Input data-fusion and output-fusion methods).

Finally, a noteworthy PSN-fusion method applied
for unsupervised patient subtype identification in the
TCGA dataset is Multi-view Spectral Clustering Based
on Multi-smooth Representation Fusion (MRF-MSC) [95].
MRF-MSC starts by individually processing each data-
block to obtain a smoothed similarity matrix where
strong/weak similarities are strengthened/eliminated;
this is obtained by solving a regularized optimization
problem that computes the similarity matrix in a feature
space that minimizes the point-reconstruction error
while strengthening the point groupings. Next, a fused
similarity matrix that minimizes the weighted distance
from all the smoothed source-similarity matrices is
obtained by integrating a self-weighting method [96]
into the distance minimization problem. Finally, the
clusters in fused similarity networks are strengthened
by applying the constrained Laplacian rank method and
Spectral clustering is then applied to solve the clustering
problem.

Input data-fusion and output-fusion
methods
Opposite to PSN-fusion models, the input data-fusion
and the output-fusion techniques reviewed in this sec-
tion integrate the information available either in the
multimodal input data (’input data fusion’ methods—
Figure 3) or in the output computed by a set of individual
unimodal PSN-analysis models (’output fusion’ meth-
ods—Figure 4).

’Input data fusion’ methods are schematized in
Figure 3. These approaches are based on the assumption
that the input samples originally lied in a latent (eventu-
ally orthogonal) space from which the multiple source-
views have been generated by unknown projections. This
results in data-blocks being expressed into separate
source-specific spaces that are characterized by: (1)

an individual source-specific structure generating an
individual variability within each data-block; (2) a
joint sample-specific structure [18] resulting in shared
variance (collinearities) between data-blocks. Therefore,
input data-fusion methods estimate the embedding that
back-projects the input data-blocks into a shared latent
space minimizing redundancy between the data-blocks
while maximizing the individual data-block variability. In
other words, all the methods find the ’joint components’
(Figure 3) allowing to capture the greatest amount of
shared variance; most of the methods also define ways
to identify the ’individual components’ capturing the
source-specific variability (Figure 3).

Depending on the technique used to project the
data into the shared latent space, we can distinguish
input data-fusion methods into PCA-based techniques
(Table 6) or Matrix Factorization (MF) or Blind Source Sep-
aration (BSS)-based methods (Table 7). One advantage of
solving the information-fusion in a preprocessing phase,
i.e. preceding the construction of an integrated PSN, is
that a standard unimodal PSN-analysis model can be
subsequently applied (Figure 3B) to deal with clustering
or supervised classification problems (Figure 3C). In
particular, the input data-fusion methods make the
choice of the similarity measure to be used for PSN
construction particularly easy, since they compute
normalized, a-dimensional, integrated point represen-
tations, whose pairwise similarities could be handled
by classic measures such as the cosine similarity or the
inverted euclidean distance. Moreover, a side-effect of the
estimated embedding is that the estimated component
loadings or factors may be analyzed for uncovering
hidden relationships between variables (data analysis
task in Tables 6 and 7 and in Figure 3).

The strategy applied by ’output-fusion’ methods is
sketched in Figure 4 and their experimental design
is summarized in Table 8. They apply individual PSN
pipelines on each data source to obtain individual
clustering or supervised prediction results (Figure 4A and
B). All the obtained results are then fused by aggregation
strategies that, acting as judges, compute a final decision
by considering all the individual decisions taken by each
unimodal pipeline.

Input data-fusion via PCA-based and CCA-based
methods
In the bioinformatics field, consensus PCA (CPCA [99]),
hierarchical PCA (HPCA [106]) and Multiple Factor Anal-
ysis (MFA [107]), are some of the most used PCA-based
integrative methods. They achieved interesting results on
multimodal datasets including different types of patient
data, from omics [18] to images [108–110].

Their effectiveness is due to their ability to project the
data-blocks into a lower dimensional space spanned by
not-correlated axis (principal components) maximizing
the within-block variances and between-block covari-
ances [111, 112]. By stretching the data along those axis,
they induce a natural separability that improves the
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Figure 3. Input data-fusion. (A) During the preprocessing phase the data are integrated by either a PCA-based integrative model or a MF-based model.
They estimate a shared latent space where the integrated, normalized point representations express the joint structure underlying all the data blocks
plus, eventually, the individual structures characterizing each data block (e.g. JIVE [18], aJIVE [97], iNMF [98]); (B) a PSN model is then constructed on the
integrated profiles by using a classic similarity measure; (C) a clustering or supervised classification model is applied to the computed PSN.

performance of the downstream algorithms, which are
mostly devoted to data exploration and unsupervised
clustering, though some exceptions using supervised
clustering exist [20] (Table 6).

The difference between the three approaches relies on
the way the latent space is found. Indeed, while ’CPCA’
solves an optimization problem by an iterative algorithm
in the set of nonlinear iterative partial least squares
methods (NIPALS [113]), ’HPCA’ [106] and ’MFA’ [107]

consecutively apply PCA on respectively: (a) each block
separately to derive lower-dimensional ‘stretched’ block
representations maximizing the within-block variance;
(b) the concatenation of the obtained block representa-
tions to derive a stretched latent space maximizing the
between-block covariance.

A notable generalization of PCA for multimodal data
is ’JIVE’ (Joint and Individual Variation Explained, [18]),
which explicitly models each data-block Xi as the sum
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Figure 4. Output-fusion. (A) Unimodal PSNs are constructed for each data type or data source and (B) each one is individually processed to identify
clusters or to classify unknown samples; subsequently, (C) a simple aggregation technique or a meta-model is used to obtain the fused/consensus
clustering/classification result.

of a matrix representing the joint structure associated
with Xi and shared with other sources, and a matrix
representing the source-specific structure characterizing
Xi, and residual noise. Given this formulation, authors
apply an iterative estimation procedure that minimizes
the reconstruction error, while constraining the axis
of the joint and individual structures to be orthogonal
(i.e. the joint and individual structures must be uncor-
related). In practice the estimation iterates over the
following two steps: (1) having removed the individual
structure, apply a sparse singular value decomposition
(SVD) to estimate a lower-dimensional joint structure;
(2) having removed the joint structure, apply a sparse
SVD to find a lower-dimensional individual structure.
Interestingly, JIVE also provides a permutation test to
select the optimal ranks for the estimated structures.
When experimented on multi-omics data from the
glioblastoma multiforme (TCGA-GBM) dataset [18], JIVE
showed its ability to effectively uncover the individual
and joint data structures, thus leading to a better
interpretation of interactions among data types and
improving unsupervised classification results. Since
the computational complexity of JIVE hampers its
applicability, it has been recently reformulated (Angle-
Based JIVE—aJIVE [97]) by using a hierarchical strategy

similar to HPCA, which also produces more intuitive
interpretations of the obtained decomposition, especially
in the presence of strong collinearities. The effective-
ness of aJIVE is witnessed by the promising results
obtained when applied to an extract of the TCGA breast
cancer dataset from [101] for the (supervised) task
of tumor subtype prediction [114]. In particular the
estimated joint components and the first five individual
components for each data block are used to compose
the integrated sample views to train Random Forest
classifiers [115].

Opposite to PCA-based integrative models, Canoni-
cal Correlation Analysis-based (CCA-based) integrative
models, e.g. Regularized Generalized CCA (RGCCA) [104,
105] and its sparse counterpart Sparse Generalized CCA
(SGCCA) [19, 105], find the latent space maximizing the
correlation within and between the different data-blocks.
They are generally used for exploratory variable analysis
since they try to bring all the data blocks to a unique
distribution, therefore uncovering hidden relationships
between different sources. However, DIABLO [20] has
shown that SGCCA is also effective in the context of
supervised clustering for patients’ subtype prediction.
In practice, given a multimodal dataset containing N
samples organized into Y classes, DIABLO firstly creates
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Table 6. PCA-based and CCA-based input data-fusion methods. For each method, the table reports: the name/acronym with the
corresponding reference paper; whether it requires the same set of patients across all data modalities (i.e. ‘Matched Samples’); the
dataset used to develop and evaluate the approach in the reference paper and the corresponding sample cardinality and data types
composing the dataset; the exploited integration method; the application task and the code availability (with link to the repository
and programming languages for which the code is available)

Name
Matched
samples Dataset

Sample
cardinality Data type

Integration
approach Task

Code and
Language

CPCA [99] x Simulated Not provided Numeric PCA Data Analysis
CPCA for
missing data
[100]

x Human Mortality
Database

143 exposure-to-risk PCA Data Analysis

(Italy + Switzerland)
JIVE [18] x TCGA BIC 348 mRNA PCA Unsupervised Clustering

(Patient subtype
identification)

R code

miRNA
methy
RPPA

aJIVE [97] x TCGA extract from 616 mRNA PCA Data Analysis and R code
[101] miRNA Unsupervised Clustering

somatic mutation (Patient subtype
identification)

CNV
RPPA

MCCA [102] x DLBCL Dataset 203 mRNA CCA Data analysis R code
[103] array CGH

measurements
RGCCA [104] x SCA Dataset 67 SCA + pons volume CCA Data Analysis RGCCA/SGCCA
SGCCA [19] Private 35 Healthy metabolic features R code
[105]
DIABLO [20] x TCGA COAD 92 mRNA (SG)CCA Data Analysis and R code

TCGA KIRC 122 miRNA Supervised Clustering
TCGA GBM 213 methy (Patient’s Survival)
TCGA LUSC 106
TCGA BRCA 989

CCA: Canonical Correlation Analysis; CGH: Comparative Genomic Hybridization; CNV: Copy Number Variation; DLBCL: Diffuse Large B-Cell Lymphoma; methy:
DNA methylation; miRNA: micro RNA; mRNA: messenger RNA; PCA: Principal Component Analysis; RPPA: Reverse Phase Protein Array; SCA: SpinoCerebellar
Ataxia; (SG)CCA: (Sparse Generalized) Canonical Correlation Analysis; TCGA+cancer code: The Cancer Genome Atlas+ link to complete cancer codes.

an extra dummy (supervising) data-block where each
column is an indicator variable for the point-class (1...Y).
Next, it uses SGCCA to maximize the covariance between
all the data-blocks, including the supervising data-block.
Given this representation, supervised clusters may be
identified either (1) by averaging the components across
data-blocks, to obtain an integrated patient representa-
tion that is then used by any supervised clustering algo-
rithm (such as the Maximum Centroids algorithm [116]);
(2) by applying the Maximum Centroids algorithm on
each projected data-block to obtain individual clustering
results, subsequently aggregated via a majority voting
algorithm.

Though effective in several applications, all the
aforementioned PCA-based methods suffer from two
main limitations: sensitiveness to outliers and inabil-
ity of handling missing data. Generalized Integrative
PCA (GIPCA) [100] has been recently proposed as
an extension of CPCA for dealing with missingness
of some values and of entire views. To this aim,
eigenvectors are used to explain the intra/inter-block
variance by neglecting those samples/views with missing
values/views.

Input data-fusion via MF-based methods
MF methods [117] embed the points into a latent space
that minimizes the reconstruction error and whose com-
ponents (factors) are not constrained to be orthogonal
(as in PCA) [31, 118, 119]. The most effective and used
MF method applied on unimodal data is non-negative
MF (NMF, [120]); it constrains both the component and
loading matrices to be non-negative, which makes the
approximation purely additive.

Given its effectiveness, several works proposed meth-
ods where NMF is extended to the integration of multi-
modal datasets (Table 7). The most relevant example is
joint NMF (jNMF [121]) where multiple NMF problems are
solved subject to a shared factor matrix that contains the
basis vectors of the shared latent space. However, jNMF
is sensitive to random noise and confounding effects
[98] that are specific to each source, and that cannot be
detected if a unique shared factor matrix is estimated.
This affects the accuracy of the common structure esti-
mation computed by jNMF [98]. Therefore, integrative
non-negative matrix factorization (iNMF [98]) uses an
approach similar to JIVE, where the factor matrices to
be estimated are composed both by a shared and a

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Table 7. MF-based input data-fusion methods. For each method, the table reports: the name/acronym with the corresponding
reference paper; whether it requires the same set of patients across all data modalities (i.e. ‘Matched Samples’); the dataset used to
develop and evaluate the approach in the reference paper and the corresponding sample cardinality and data types composing the
dataset; the exploited integration method; the application task and the code availability (with link to the repository and programming
languages for which the code is available). Of note, DFMF [31] has not been applied to patients’ data but it could be easily adapted to
this end.

Name
Matched
samples Dataset

Sample
cardinality Data type

Integration
approach Task

Code and
language

MFA Brain Cancer Not provided Multi-omics MF Data Analysis R code
[107] Dataset Private
jNMF x TCGA OV 385 mRNA NMF Data Analysis R code
[121] miRNA

methy
iNMF x TCGA OV 592 mRNA NMF Unsupervised Clustering Python code
[98] miRNA (Patient subtype

identification)
methy

iGMFNA x TCGA CHOL 45 mRNA NMF Data Analysis
[126] TCGA PAAD 180 methy

CNV
MOFA+ Private Not provided Multi-omics NMF Data Analysis Python and R

code
[130]
iCluster x TCGA CRC 189 Exome sequence NMF Unsupervised Clustering R code
[123] mRNA (Patient subtype

identification)
and iCluster+ methy
[131] CNV
DFMF3 GO terms MTF Unsupervised Clustering Python code
[31] GO annotations (hepatotoxic risk

associated
[143] Drugs with individual drugs)

Tissue samples
DILI potentials

MaDDa TCGA BRCA, 200 Gene–gene interactions, MTF Unsupervised Clustering
(Patient subtype
identification)

Matlab code

[129] BioGRID Gene–pathway associations
KEGG Disease–disease relationships,
Disease Ontology Disease–gene associations,
DisGeNET Disease–pathway relations

DS-ICA x Private 38 features from EEG ICA Data Analysis
[142] and fMRI images
MISA x Private 1001 EEG images BSS Data Analysis MATLAB code
[21] sMRI and fMRI images

BSS: Blind Source Separation; CNV: Copy Number Variation; DILI: Drug-Induced Liver Injury; EEG: Electroencephalography; fMRI: functional Magnetic Resonance
Imaging; GO: Gene Ontology; ICA: Independent Component Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; methy: DNA methylation; miRNA:
micro RNA; MF: Matrix Factorization; mRNA: messenger RNA; MTF: Matrix Tri-Factorization; NMF: Non-negative Matrix Factorization; sMRI: structural Magnetic
Resonance Imaging; TCGA+cancer code: The Cancer Genome Atlas+ link to complete cancer codes.

source-specific structure. Unsupervised clustering exper-
iments on the TCGA dataset [98, 122] have proven the
superiority of iNMF with respect to jNMF [121], NMF [123]
and to integrative Bayesian methods [124, 125].

Integrative Graph Regularized Non-Negative Matrix
Factorization (NMF) for Network Analysis (iGMFNA
[126, 127]) proposes improving the minimization of the
reconstruction error, typical of NMF, by exploiting a graph
view on each data block. Thanks to such representation,
the designed iterative optimization minimizes the
reconstruction error while maintaining the topology
of the graph views. When compared with jNMF and
iNMF to prioritize genes associated with cancer in two
TCGA datasets by an unsupervised clustering approach,
iGMFNA showed its superior performance.

The popular Penalized Non-negative Matrix Tri-
Factorization (NMTF, [31, 128]) starts from a relational
matrix R1,2 containing non-negative elements that
represent the strengths of the relationships between
objects of two different types, ε1 and ε2, whose respective
characteristics are defined by specific constraints, θ1

and θ2. NMTF finds the decomposition of R1,2, subject
to constraints θ1 and θ2, such that: R1,2 ≈ G1S1,2GT

2 so that
G1 and G2 are the low-dimensional representations of
objects with types, respectively, ε1 and ε2, and S1,2 is the
backbone matrix linking the two types.

NMTF is exploited by [31] in Data Fusion by Matrix Fac-
torization (DFMF), where the reliability of the integrated
low dimensional estimates computed over a multimodal
dataset is improved by considering all the relational

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Table 8. Output-fusion methods. For each method, the table reports: the name/acronym with the corresponding reference paper; the
dataset used to develop and evaluate the approach in the reference paper and the corresponding sample cardinality and data types
composing the dataset; the exploited integration method; the application task and the code availability (with link to the repository
and programming languages for which the code is available)

Name Dataset
Sample
cardinality Data type Integration approach Task

Code and
Language

COCA TCGA AML 161 DNA sequence Consensus Clustering Unsupervised Clustering ConsensusClus-
terPlus

[22] TCGA BIC 834 mRNA (Patient subtype
identification)

R code

TCGA COAD 182 miRNA
TCGA READ 73 methy
TCGA GBM 195 CNV
TCGA KIRC 475 RPPA
TCGA LUSC 238
TCGA OV 329
TCGA UCEC 345
TCGA BLCA 120
TCGA LUAD 270
TCGA HNSC 305

PINS/PINSPlus 34 TCGA datasets 12158 mRNA Consensus Clustering Unsupervised Clustering R code
[23] 2 Metabric datasets miRNA (Patient subtype

identification)
methy

SUMO TCGA extract 3168 across mRNA Consensus Clustering Unsupervised Clustering Python code
[62] from NEMO miRNA (Patient subtype

identification)
[94] (Table 4) methy

FH-Clust TCGA AML 170 mRNA Consensus Clustering Unsupervised Clustering
(Patients’ clusters related
to known Survival)

R code

[24] TCGA BIC 621 miRNA
TCGA COAD 220 methy
TCGA GBM 274
TCGA KIRC 183
TCGA LIHC 367
TCGA LUSC 341
TCGA SKCM 448
TCGA OV 287
TCGA SARC 257

[145] TCGA KIRC 418 Histopathological
image

Stacked Generalization: Supervised Classification

TCGA OV 250 RNA-seq data linear regression of (Cancer grade < 3 versus
Cancer grade >= 3)

TCGA KIRC 220 unimodal classifiers Supervised Classification
TCGA OV 160 (Known Survival < 5 versus

Known Survival >= 5)
[63] ADNI Phase 1 628 for training Demographic data Average Supervised Multiclass

classification
Python code

[155] 94 for validation APOE e4 allele
information

(HC versus MCI versus AD)

AddNeuroMed
study

88 for testing anatomical brain
features

[156] from 1.5T MRI scans

AD: Alzheimer’s Disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative; CNV: Copy Number Variation; HC: Healthy Control; MCI: Mild Cognitive
Impairment; methy: DNA methylation; miRNA: micro RNA; MRI: Magnetic Resonance Imaging; mRNA: messenger RNA; RPPA: Reverse-Phase Protein Arrays;
TCGA+cancer code: The Cancer Genome Atlas+ link to complete cancer codes.

matrices (and corresponding constraints) linking the
different sources between each other and with the
patient data. Given all the relational matrices, Ri,j, and
respective constraints, each Ri,j is decomposed so that
each backbone matrix represents the latent structure
between two data types, the generic low-dimensional
data representations of objects with a specific type,
Gi, is bound to be used in the reconstruction of every

relational matrix involving that type. Thanks to the
abundance of information, the proposed model can also
handle missing data and treat sparse relational matrices.
Furthermore, it does not make any assumption about
the structural properties of relations, which can also be
asymmetric. DFMF can also be used in a semi-supervised
setting. During training, the model parameters (i.e. the
factorization ranks) are learnt, and are then used in a

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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matrix completion problem, where unobserved entries
in the target matrix Ri,j are reconstructed for elements
that were not present in the training set.

DFMF has been successfully used in the Matrix
trifactorization for Discovery of Data similarity and
Association (MaDDA) algorithm proposed by [129] to
construct PSNs for unsupervised clustering. In particular,
given n patients to be partitioned into k clusters, the low-
rank matrix G ∈ Rn×k estimated through DFMF is viewed
as a membership matrix relating each patient to the k
ranks/groups. After repeating the factorization multiple
times with different initialization parameters, a final
consensus matrix is obtained by element-wise averaging
all membership matrices and then composing a PSN
where the similarity between two patients (weight of the
edge connecting them) represents how many times they
ended up in the same group.

Multi-Omics Factor Analysis+ (MOFA+ [130]) is an
integrative method exploiting Bayesian group factor
analysis [51] with regularization to impose: (i) a view-
wise and factor-wise sparsity, which shrinks to zero the
loading for the m-th modality and the k-th factor if the
latest does not explain any variability of the m-th view;
(ii) a feature-wise sparsity, which sets to zero loading
on individual features from active factors so that only a
small number of features ‘actively’ contribute to each
factor. MOFA+ can handle missing values as well as
entirely missing views for some samples; moreover, it
can cope with heterogeneous data types, which is exactly
what is needed when dealing with multimodal datasets
containing multi-omics, clinical and imaging data.

Given the successful results of MF-based integrative
techniques, some authors have included them as a pre-
processing step in their clustering/classification algo-
rithms. As an example, iCluster+ [123, 131] uses NMF
to fuse the heterogeneous data-blocks and then clusters
the integrated views. It also exploits the obtained factor
loadings to identify the relevant features in the cluster
generation.

Input data-fusion via BSS
In their original formulation, BSS models were defined
as an extension of NMF techniques for ‘recovering
unobservable source signals s from measurements x
(i.e., data), with no knowledge of the parameters θ of
the generative system x = f (s, θ)’ [132].

Given their documented ability [132–134] of uncover-
ing hidden structures underlying the observed unimodal
signals, several BSS models have been extended to
handle multimodal datasets comprising also ’multisets’
(Table 7), by a further step that estimates the mixing
matrix that recombines all the estimated latent sources
so as to compute an integrated, more informative signal
with no redundancies [21, 132, 135, 136]. In particular,
multisets are multimodal datasets containing multiple
views acquired by the same source under different acqui-
sition conditions (e.g. observation times, experiments,
tasks, machines). They are therefore homogeneous [26]

in semantic, type, and dimensionality. Multimodal-
multisets are multimodal datasets acquired by different
sources, among which sources producing multisets.

Given the lack of information about the mixing process
and the source signals, BSS models often differ for the
constraints they impose to counter the ill-conditioned
problem and obtain essentially unique source estimates
[132, 134, 137]. As an example, the well-known Inde-
pendent Component Analysis model (ICA [138]), and its
extensions to multimodal data (joint ICA—jICA [139,
140]), to multisets (Independent Vector Analysis—IVA
[141]) and to multidimensional sources (Independent
Subspace Analysis—ISA [142]), assume a linear (additive)
mixture with mutually independent sources and a non-
Gaussian distribution of each independent component
in the latent space.

All the BSS models base their computations on the
existence of collinearities between the observed multi-
modal data components, so that unreliable results may
be obtained when this assumption is not satisfied. Some
authors [135] circumvent this problem by preprocess-
ing the data with CCA (or its multimodal extension), to
obtain a projected data representation along correlated
components.

The most representative BSS-based multimodal data
integration technique is Multidataset Independent
Subspace Analysis (MISA [21, 132]), which was recently
proposed to generalize all the BSS models to the fusion
of any kind of multimodal-multisets. Motivated by the
definition of multiset, MISA is driven by statistical
independence between latent subspaces while assuming
correspondence within the subspaces underlying the
input multisets. In practice, it firstly removes redundan-
cies by estimating nonorthogonal demixing matrices,
projecting each multiset into a respective (intermediate)
lower-dimensional space spanned by independent
components. The sources from all the computed latent
spaces are then combined through another demixing
matrix that brings all the data-blocks into a unique
shared latent space, resulting in an integrated patient
view. The de-mixing matrices are estimated by mini-
mizing the mutual information in the final space, while
maximizing the mutual information in the intermediate
spaces, so as to capture as much correlation as possible.
When applied to the integration of the information
extracted from functional magnetic resonance imaging
(fMRI), structural magnetic resonance imaging (sMRI)
and electroencephalogram (EEG) data, MISA has proven
its robustness with respect to high signal-to-noise ratios
as well as its ability to produce effective data fusion in
different ICA contexts.

Output-fusion methods
Following Figure 4, in the context of multimodal PSN
analysis the output-fusion methods described in this
section may be applied to combine the (unsupervised
clustering or supervised classification) results (Figure 4B)
computed by individual PSN analyses applied on each
data block (see Figure 4A). In Figure 4C, the combination
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of the unimodal results is performed either by some
heuristics, or by majority voting, or by using a meta-
model that learns from the predictions performed by
each unimodal PSN analysis. Output-fusion techniques
have been proposed for clustering samples (mainly from
the TCGA datasets, Table 8) to identify patients’ subtypes
[22, 23, 144] and for patients’ classification [63, 145]
(Table 8).

As an example, in Cluster-of-Cluster-Assignments
(COCA [22]), authors combine the clustering results
individually obtained by NMF [146] on each of the six
data types of the TCGA datasets. To this aim, the samples
are coded into vectors composed of indicator variables
representing the clusters they have been assigned in each
modality, so that they can be reclustered according to
those vectors by Consensus Clustering Plus [147]. Given
the number of clusters k, Consensus Clustering Plus
works on a consensus matrix (CMk) representing ‘the
proportion of clustering runs in which two items are
[grouped] together’ [148]. Given CMk an agglomerative
hierarchical consensus clustering using distance of 1-
consensus values is completed and pruned to k groups
that are returned as consensus clusters.

PINSPlus [23, 144] similarly exploits Consensus Clus-
tering [148] for reaching the final partition. In practice,
Perturbation clustering for data INtegration and disease
Subtyping (PINS) starts by applying any classic unsuper-
vised clustering algorithm (e.g. k-means) individually on
each of the M-th datasets. If n is the number of patients,
for the m-th dataset (m ∈ 1, . . . , M) the clustering result
is expressed by a square matrix Cm ∈ R

n×n, such that
Cm(i, j) = 1 if samples i and j fall in the same cluster, and
Cm(i, j) = 0 otherwise. All the resulting matrices are then

averaged to obtain a consensus matrix S =
∑M

m=1 Cm
M . Even

though matrix S may highlight that some points do not
reach a strong agreement, authors consider that S itself
may be used as a pairwise similarity matrix (since S = 1
for points for which there is a strong agreement, viewed
as similarity, across all the dataset, and S = 0 otherwise)
that is suitable for similarity/distance-based clustering
algorithms such as any hierarchical Clustering algorithm
[149], Partitioning Around Medoids [150] or dynamic tree
cut [151]. In their work, authors propose testing different
clustering algorithms and then choose the partition that
agrees the most with the partitioning of individual data
types.

Consensus clustering has also been successfully
applied by the recently published SUMO [62], an inte-
grative clustering algorithm that starts by computing
several unimodal PSNs by using a scaled-normalized
Euclidean kernel similar to the one exploited by SNF
[3]. SUMO then formulates a constrained NMTF (see
Section Input data-fusion via MF-based methods) to find
a sparse shared representation of all the samples in
the cluster subspace by accounting for the adjacencies
observed in all the data types. The NMTF optimization
problem is solved by an iterative procedure that is

applied several times on several sample subsets to
ensure robustness with respect to the initial conditions
and to the input data; consensus clustering is then
exploited to pool together the clustering results. When
compared with the most promising integrative clustering
methods (e.g. iCluster [152], Multiple Canonical Correla-
tion Analysis (MCCA) [102], NEMO [94], SNF [3], PINSPlus
[23]) SUMO obtained impressive results.

The Fuzzy-hierarchical CLUSTering—FH-Clust method
[24] interestingly proposes to use fuzzy logic for iden-
tifying patients’ prognostic subgroups from multiomics
data, resting on the fact that in nature there is often
no clear cut between subtypes. Unimodal data are sep-
arately analyzed using a fuzzy-based hierarchical clus-
tering approach exploiting a Lukasiewicz valued fuzzy
similarity and individual results are then fused through
a consensus matrix. Extensive experiments on 10 can-
cer datasets from TCGA (considering gene expression,
miRNA, methylation data) show that FH-Clust is compet-
itive with state-of-the-art methods (i.e. k-means, Spectral
Clustering, LRACluster, PINS, SNF, MCCA).

Interesting output-fusion approaches aimed at patients’
classification are described in [63, 145]. In [145] the
authors obtain effective cancer-grade and patient-
survival classifications for cancer patients represented
in the TCGA renal (TCGA KIRC) and TCGA ovarian (TCGA
OV) datasets by using all the data types included in
TCGA, including hematoxylin and eosin (H&E)-stained
whole-slide images of tissue samples that are processed
by digital image processing techniques to extract more
that 400 features per sample. In practice authors firstly
individually process each data block to apply an internal
cross-validation approach to choose (1) the number of
informative features to be extracted by the minimum
Redundancy Maximum Relevance (mRMR) method [153]
and (2) the best performing 5-fold cross classifier among
SVM, logistic regression, K-nearest neighbors and Linear
Discriminant Analysis. To compose all the predictions
from the different modalities authors compare the
stacked generalization model [154], which essentially
trains a logistic regression classifier on the obtained
predictions, to the majority vote strategy. The best results
are obtained by the stacked prediction model, which
leverages the results obtained by any of the multimodal
predictions, independent from the classifier that is used
for producing them.

In [63] authors simply use the average to integrate
the different prognostic classifications computed over
multimodal profiles of suspected Alzheimer Disease (AD)
patients, with the aim of identifying patients who are vul-
nerable to conversion from mild-cognitive impairment
to AD. In particular, the squared-exponential kernels are
firstly used to build unimodal PSNs, and, for each uni-
modal network, a Gaussian process is then exploited
to assign labels to unknown points based on the near-
est known points. Finally, the unknown patients’ condi-
tion is computed as the average over all the unimodal
predictions.
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Discussion and conclusion
In the context of precision medicine, PSNs are gaining
momentum given their ability to uncover and exploit
relationships among patients when applied to clustering
and classification tasks [9]. According to the state-of-
the-art surveys describing the application of PSNs for
precision medicine or health data processing [9, 45, 157,
158], PSN-based models benefit from several advantages;
they are: (1) easy to understand, (2) interpretable by
design, (3) privacy preserving, (4) competitive or even
superior to state-of-the-art clustering/classification
methods, (5) potentially able to integrate different data
views. In particular, the possibility of using PSN models in
a multimodal setting is especially relevant in light of the
increasing availability of digital technologies by means of
which huge amount of multimodal data can be collected
that describe each patient/sample by considering differ-
ent biological/medical views. Moreover, in the past few
years the increasing availability of cloud technologies
allowed us to distribute data processing across multiple
local servers belonging to, e.g. different institutions. In
this context, the development of promising information
integration models would allow the application of a
Federated Learning strategy [159], where a central server
collects, further integrates, and eventually processes,
the (already) integrated data, or the individual PSNs, or
the predictions individually computed by local servers
located in the institutions where the data belong. In this
way, the initial processing of the sensitive data would
be demanded to the local institutions to protect patient
privacy, and the central server would have access only to
preprocessed information, thus hiding explicit sensitive
data.

Though in the biomedical context several multimodal
approaches have already shown their ability to integrate
multimodal data to improve the results obtained from
a single view (unimodal data) [114], and the survey lit-
erature about data integration methods for multimodal
data is wide [13, 15, 16], in the field of PSN analysis
only few methods have already investigated the usage
of multimodal data, by building integrated PSNs that
exploit both the joint and the individual information
from all the available sources. Moreover, no state-of-the-
art survey has focused on the role of PSN as a cornerstone
for data fusion. In this survey, we aim at filling this
gap with the goal of providing interested readers with
a comprehensive collection of integrative methods that
may be exploited to build PSN approaches efficiently
handling multimodal data.

Besides an extensive literature search, the integration
approaches have been organized into three broad classes
on the basis of the type of data that is fused: ’PSN-
fusion’, ’Input data-fusion’ and ’Output-fusion’ methods.
More precisely, ’PSN-fusion’ methods may be split
into the three sub-classes of ’MKL’, ’SNF-based’ and
’other’ methods, whereas ’Input data-fusion’ approaches
comprehend algorithms ’PCA-based’, ’CCA-based’ and
’MF-based’.

The survey has highlighted the promising results and
advantages that characterize the methods belonging to
the three classes of our proposed taxonomy.

Methods based on PSN-fusion techniques are particu-
larly useful in network medicine applications [160] that
study human diseases through ‘systemic’ approaches in
which diseases are interpreted as perturbations in com-
plex biomolecular networks. In this context, transductive
strategies working on individual PSN models [7] would
benefit from the application of PSN-fusion approaches,
as shown by recent promising results [3, 6].

Methods based on input-data fusion techniques rely
on factor analysis models for the removal of data
collinearities and the simultaneous enhancement of
the individual structure characterizing each view. For
this reason, we believe such techniques are particularly
useful when dealing with multiview data involving
follow-up examinations, where the multiple views likely
contain correlated information.

Output-fusion techniques should be used when the
differences between the multimodal views impose the
usage of peculiar and specific unimodal PSN models
for obtaining individual inferences. This is the case, for
example when we need to combine data having sub-
stantially different structures, ranging from vectorial to
sequence and graph-structured data.

Though being effective, our thorough review also evi-
denced difficulties and drawbacks that harbour from
the data-fusion strategy. In particular, PSN-fusion models
require to build an individual PSNs on each data type.
This raises the crucial, still open, and often overlooked
problem of choosing proper individual similarity mea-
sures for building each unimodal PSNs. Indeed, only
few methods [60, 161, 162] reported exhaustive compar-
ative evaluations among few distance metrics applied
to genetic data. By considering that several problems
in precision medicine are characterized by nonlinearly
separable omics data, and given the experimental results
we have collected during our literature search, we rec-
ommend computing PSNs by exploiting a kernel func-
tion. In this context, though several functions have been
successfully proposed and used in literature, when deal-
ing with continuous data, we suggest using the scaled
exponential kernel of Euclidean distance [3, 62], due
to its ability to adapt to different neighborhood sizes.
This allows dealing with datasets distributed on complex
manifolds where datapoints are not evenly distributed
in space, as it often happens in real-world problems.
On the other hand, when dealing with simpler data
types with lower dimensionalities and complexities (e.g.
clinical data), simpler normalized similarities may be
sufficient to appropriately capture the data structure.
Clinical datasets usually contain categorical variables,
often mixed with numeric features. The former situation
can be appropriately addressed by averaging the normal-
ized similarities individually computed on each variable
[6], whereas Chi-squared distances are the most suit-
able for categorical data [3, 6]. Of note, the subsequent
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application of a Random Walk kernel, as proposed by
Gliozzo et al. [7], is a promising step to refine the obtained
PSN.

On the other side, input data-fusion techniques
integrate the input data by projecting them into a shared
space with lower dimensionality, thus making these
approaches strongly dependent on the chosen final
dimensionality d.

While classic approaches have been proposed to auto-
matically set d [100, 163–165], this value is often user-
defined after observation of the scree plot. However,
observing that the optimal latent vector space is the one
that allows to capture the intrinsic data structure, we
instead suggest setting d to the intrinsic data dimension-
ality (id) [166], which is the minimum number of param-
eters needed to represent the data without information
loss.

Finally, output-data fusion methods are often too
generic or use very simple output-aggregation strategies,
e.g. average or majority voting, that may produce
suboptimal results.

Generally speaking, our survey evidenced some impor-
tant open issues in the context of data integration meth-
ods for PSN that call for the future research directions
summarized in the following subsection.

Future research directions

While conducting our survey we noted the need of
investigating methods for data pre-processing, with
the aim of, e.g. detecting and eliminating noise with
heterogeneous characteristics, collinearities between
different views, and confoundings that could bias the
final results (as per [27]). Indeed, only few recently
proposed preliminary attempts were able to explicitly
consider the presence of noise with heterogeneous
characteristics [98, 122].

Moreover, future research should be devoted to the
investigation of novel multimodal feature-selection algo-
rithms. Indeed, the few methods applying a feature selec-
tion step exploit either classic univariate statistics, or
algorithms, such as mRMR [153], that analyze group of
features by neglecting their multimodal characteristics.

On the other side, missing data imputation needs
deeper investigation to handle two types of biomedical
data-missingness: (1) missingness of some data values
in some views; (2) missingness of entire views for some
samples. While missingness is becoming a common
problem in different fields, in the biomedical field few
approaches present thorough missing data imputation
studies [11]. Besides, among the approaches we have
surveyed, only GIPCA [100] specifically addressed both
these types of missingness. Finally, given the big-data
produced by high-throughput technologies, scalability
is becoming an important and often overlooked issue,
nowadays hampering the applicability of several promis-
ing tools.

Though the aforementioned issues are still open, all
the surveyed strategies have reported promising results
that might improve knowledge in then field of preci-
sion medicine. Unfortunately, different similarity met-
rics, experimental setups and evaluation measures are
used for model assessment; this hampers an objective
comparison between the different integration techniques
and data analysis models. Furthermore, we found no evi-
dence about data integration approaches that should be
preferred over the others. Instead, the type and semantic
of the available data type and the specific biomedical
question to address should guide the choice. An addi-
tional open problem regards the identification of the
most appropriate similarity/distance measure for each
biological data modality. To the best of our knowledge,
only few works tried to investigate this issue by compar-
ing different metrics for specific data views and most
of them are focused on gene expression data [60, 161,
162]. Comprehensive studies comparing the usage of
different similarity measures in different contexts (e.g.
when applied to different biological data types and in
supervised and unsupervised prediction contexts) would
provide fruitful insights to guide the scientific commu-
nity towards effective PSN construction. We also remark
that, though some algorithms are already available as
open source packages/repositories (mostly coded using R,
Python and Matlab) [16], many others are not, thus slow-
ing down their diffusion and testing by the community.

Another interesting research line that should be given
attention is represented by the development of Web
applications extending, e.g. those presented in [167,
168], for the visual analysis of PSN models. Indeed,
the graphical tools can enable the visual comparison
of different PSN models realized according to any of
the methods discussed in this survey. This in turn can
improve the explainability of the computed results and
would allow the user to choose the approach mostly
suited to her/his needs.
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Key Points

• Patients similarity networks (PSN) are explainable and
privacy preserving representations of patients that lever-
age the similarity of their clinical/biomolecular profiles
to construct graphs of patients.

• Network Medicine algorithms on PSNs for patient strati-
fication, phenotype and outcome prediction and disease
risk assessment represent novel tools for Genomic and
Precision Medicine
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• The combination of clinical, omics and imaging bio-
medical data can lead to novel PSNs able to leverage the
synergy of multiple views of the patients.

• Several reviews about data integration methods in bioin-
formatics and biomedical applications have been pro-
posed but no specific reviews about the emerging field
of heterogeneous data integration methods for patient
similarity networks are actually available.

• We provide a thorough review and propose a taxonomy
of heterogeneous data integration methods for PSNs,
together with the different patient similarity measures
proposed in literature.

• We also review methods that have appeared in the
machine learning literature but have not yet been
applied to PSNs, thus providing a resource to navigate the
vast machine learning literature existing on this topic.

• Strengths and limitations of the proposed methods are
discussed to both assist researchers in the design and
development of novel methods and to guide the selection
of PSN integration methods for specific applications,
focusing on methods that could be used to integrate
very diverse datasets, including multi-omics data as well
as data derived from clinical information and medical
imaging.
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31. Žitnik M, Zupan B. Data fusion by matrix factorization. IEEE
Trans Pattern Anal Mach Intell 2014;37(1):41–53.

32. Li Y, Fang-Xiang W, Ngom A. A review on machine learning
principles for multi-view biological data integration. Brief Bioin-
form 2018;19(2):325–40.

33. Momeni Z, Hassanzadeh E, Abadeh MS, et al. A survey on
single and multi omics data mining methods in cancer data
classification. J Biomed Inform 2020;107:103466.

34. Tang W, Zhengdong L, Dhillon IS. Clustering with multiple
graphs. In: Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S.
Yu, Xindong Wu (eds.) 2009 Ninth IEEE International Conference on
Data Mining. Piscataway, New Jersey, United States: IEEE, 2009,
1016–21.

35. Van Vliet MH, Horlings HM, Van De Vijver MJ, et al. Integration
of clinical and gene expression data has a synergetic effect on
predicting breast cancer outcome. PLoS One 2012;7(7):e40358.

36. Lanckriet GRG, De Bie T, Cristianini N, et al. A statistical frame-
work for genomic data fusion. Bioinformatics 2004;20(16):2626–
35.

37. Gevaert O, De Smet F, Timmerman D, et al. Predicting the prog-
nosis of breast cancer by integrating clinical and microarray
data with Bayesian networks. Bioinformatics 2006;22(14):e184–
90.

38. Sharifi-Noghabi H, Zolotareva O, Collins CC, et al. Moli: multi-
omics late integration with deep neural networks for drug
response prediction. Bioinformatics 2019;35(14):i501–9.

39. Chen S, Ma B, Zhang K. On the similarity metric and the
distance metric. Theor Comput Sci 2009;410(24–25):2365–76.

40. Belanche L, Orozco J. Things to know about a (dis) similarity
measure. In: Koenig A, Dengel A, Hinkelmann K, Kise K, Howlett
RJ, Jain LC (eds.) International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems. Berlin, Heidelberg:
Springer, 2011, 100–9.

41. Schölkopf B, Smola A, Müller K-R. Kernel Principal Component
Analysis. In: Wulfram Gerstner, Alain Germond, Martin Hasler,
Jean-Daniel Nicoud (eds.) International Conference on Artificial
Neural Networks. Berlin, Heidelberg: Springer, 1997, 583–8.

42. Kriege NM, Johansson FD, Morris C. A survey on graph kernels.
Appl Netw Sci 2020;5(1):1–42.

43. Fouss F, Francoisse K, Yen L, et al. An experimental investi-
gation of kernels on graphs for collaborative recommenda-
tion and semisupervised classification. Neural Netw 2012;31:
53–72.

44. Lee J, Maslove DM, Dubin JA. Personalized mortality prediction
driven by electronic medical data and a patient similarity
metric. PLoS One 2015;10(5):e0127428.

45. Sharafoddini A, Dubin JA, Lee J. Patient similarity in prediction
models based on health data: a scoping review. JMIR Med Inform
2017;5(1):e7.

46. Zhang P, Wang F, Jianying H, et al. Towards personalized
medicine: leveraging patient similarity and drug similarity
analytics. AMIA Summits Trans Sci Proc 2014;2014:132.

47. Choi S-S, Cha S-H, Tappert CC. A survey of binary similarity and
distance measures. J Syst Cybern Inf 2010;8(1):43–8.

48. Klenk S, Dippon J, Fritz P, et al. Determining patient similarity in
medical social networks. In: Proceedings of the First International
Workshop on Web Science and Information Exchange in the Medical
Web, 2010, 6–14.

49. Schölkopf B. The kernel trick for distances. In: Todd K. Leen,
Thomas G. Dietterich and Volker Tresp (eds.) Advances in neural
information processing systems. A Bradford Book, 2001, 301–7.

50. Zhu B, Song N, Shen R, et al. Integrating clinical and multiple
omics data for prognostic assessment across human cancers.
Sci Rep 2017;7(1):1–13.

51. Zhang Y, Li A, Peng C, et al. Improve glioblastoma multi-
forme prognosis prediction by using feature selection and
multiple kernel learning. IEEE/ACM Trans Comput Biol Bioinform
2016;13(5):825–35.

52. Mariette J, Villa-Vialaneix N. Unsupervised multiple kernel
learning for heterogeneous data integration. Bioinformatics
2018;34(6):1009–15.

53. Daemen A, Timmerman D, Van den Bosch T, et al. Improved
modeling of clinical data with kernel methods. Artif Intell Med
2012;54(2):103–14.

54. Ruan P, Wang Y, Shen R, et al. Using association signal
annotations to boost similarity network fusion. Bioinformatics
2019;35(19):3718–26.

55. Li S, Jiang L, Tang J, et al. Kernel fusion method for detecting
cancer subtypes via selecting relevant expression data. Front
Genet 2020;11:979.

56. Valentini G, Armano G, Frasca M, et al. RANKS: a flexible tool
for node label ranking and classification in biological networks.
Bioinformatics 06 2016;32(18):2872–4.

57. Tepeli YI, Ünal AB, Akdemir FM, et al. Pamogk: a pathway
graph kernel based multi-omics approach for patient cluster-
ing. Bioinformatics 2020;36:5237–46.

58. Wen Y, Song X, Yan B, et al. Multi-dimensional data integra-
tion algorithm based on random walk with restart. BMC Bioinf
2021;22(1):1–22.

59. Jaskowiak PA, Campello RJGB, Costa IG. Proximity measures
for clustering gene expression microarray data: a validation
methodology and a comparative analysis. IEEE/ACM Trans Com-
put Biol Bioinform 2013;10(4):845–57.

60. Jaskowiak PA, Campello RJGB, Costa IG. On the selection of
appropriate distances for gene expression data clustering. BMC
Bioinf 2014;15(2):1–17.

61. Park C, Ahn J, Kim H, et al. Integrative gene network con-
struction to analyze cancer recurrence using semi-supervised
learning. PLoS One 2014;9(1):1, 01–9.

62. Sienkiewicz K, Chen J, Chatrath A, et al. Detecting molecular
subtypes from multi-omics datasets using sumo. Cell Rep Meth-
ods 2022;100152.

63. Zhang H, Zhu F, Dodge HH, et al. A similarity-based
approach to leverage multi-cohort medical data on the diag-
nosis and prognosis of Alzheimer’s disease. GigaSci 2018;7(7):
giy085.

64. Liu F, Zhou L, Shen C, et al. Multiple kernel learning in the
primal for multimodal Alzheimer’s disease classification. IEEE
J Biomed Health Inform 2013;18(3):984–90.



Heterogeneous data integration methods for patient similarity networks | 23

65. Tao M, Song T, Wei D, et al. Classifying breast cancer subtypes
using multiple kernel learning based on omics data. Genes
2019;10(3):200.

66. Gönen M, Alpaydin E. Multiple kernel learning algorithms. J
Mach Learn Res 2011;12:2211–68.

67. Zhang Y, Li A, He J, et al. A novel MKL method for GBM prognosis
prediction by integrating histopathological image and multi-
omics data. IEEE J Biomed Health Inform 2019;24(1):171–9.

68. Cristianini N, Scholkopf B. Support vector machines and kernel
methods: the new generation of learning machines. Ai Mag
2002;23(3):31–1.

69. Sun D, Li A, Tang B, et al. Integrating genomic data and patho-
logical images to effectively predict breast cancer clinical out-
come. Comput Methods Programs Biomed 2018;161:45–53.

70. Aiolli F, Donini M. Easymkl: a scalable multiple kernel learning
algorithm. Neurocomputing 2015;169:215–24.

71. Xu Z, Jin R, Yang H, et al. Simple and efficient multiple ker-
nel learning by group lasso. In: Johannes Fürnkranz,Thorsten
Joachims (eds.) Proceedings of the 27th international conference
on machine learning (ICML-10). Omnipress, 2600 Anderson St,
Madison, WI, United States: Citeseer, 2010, 1175–82.

72. Suzuki T, Tomioka R. Spicymkl: a fast algorithm for mul-
tiple kernel learning with thousands of kernels. Mach Learn
2011;85(1–2):77–108.

73. Yan F, Kittler J, Mikolajczyk K, et al. Non-sparse multiple ker-
nel fisher discriminant analysis. J Mach Learn Res 2012;13(1):
607–42.

74. Baudat G, Anouar F. Generalized discriminant analysis using a
kernel approach. Neural Comput 2000;12(10):2385–404.

75. Ong CS, Zien A. An automated combination of kernels for
predicting protein subcellular localization. In: Keith A. Cran-
dall, Jens Lagergren (eds.) International Workshop on Algorithms
in Bioinformatics. Berlin, Heidelberg: Springer, 2008, 186–97.

76. Speicher NK, Pfeifer N. Integrating different data types by
regularized unsupervised multiple kernel learning with appli-
cation to cancer subtype discovery. Bioinformatics 2015;31(12):
i268–75.

77. Liu X, Dou Y, Yin J, et al. (eds). Multiple kernel k-means clus-
tering with matrix-induced regularization. In: Proceedings of the
AAAI Conference on Artificial Intelligence, 2016.

78. Lin Y-Y, Liu T-L, Fuh C-S. Multiple kernel learning for
dimensionality reduction. IEEE Trans Pattern Anal Mach Intell
2011;33(6):1147–60.

79. He X, Niyogi P. Locality preserving projections. Adv Neural
Inform Process Syst 2004;16(16):153–60.

80. Schölkopf B, Smola A, Müller K-R. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Comput
1998;10(5):1299–319.

81. Valentini G, Paccanaro A, Caniza H, et al. An extensive analysis
of disease-gene associations using network integration and
fast kernel-based gene prioritization methods. Artif Intell Med
2014;61(2):63–78.

82. Pearl J. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier, 2014.

83. Tini G, Marchetti L, Priami C, et al. Multi-omics integration-
a comparison of unsupervised clustering methodologies. Brief
Bioinform 2019;20(4):1269–79.

84. Williams EG, Wu Y, Jha P, et al. Systems proteomics of liver
mitochondria function. Science 2016;352(6291).

85. Zufferey A, Ibberson M, Reny J-L, et al. New molecular
insights into modulation of platelet reactivity in aspirin-
treated patients using a network-based approach. Hum Genet
2016;135(4):403–14.

86. Koboldt DCFR, Fulton R, McLellan M, et al. Comprehen-
sive molecular portraits of human breast tumours. Nature
2012;490(7418):61–70.

87. Ma T, Zhang A. Integrate multi-omic data using affinity net-
work fusion (ANF) for cancer patient clustering. In 2017 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
pages 398–403. IEEE, 2017.

88. Rozza A, Lombardi G, Casiraghi E, et al. Novel fisher discrimi-
nant classifiers. Pattern Recognit 2012;45(10):3725–37.

89. Liu S, Shang X. Hierarchical similarity network fusion for dis-
covering cancer subtypes. In: Fa Zhang, Zhipeng Cai, Pavel
Skums, Shihua Zhang (eds.) International Symposium on Bioinfor-
matics Research and Applications. Cham, Switzerland: Springer,
2018, 125–36.

90. Jiang L, Xiao Y, Ding Y, et al. Discovering cancer subtypes via an
accurate fusion strategy on multiple profile data. Front Genet
2019;10:20.

91. Kivelä M, Arenas A, Barthelemy M, et al. Multilayer networks. J
Complex Netw 2014;2(3):203–71.

92. Valdeolivas A, Tichit L, Navarro C, et al. Random walk with
restart on multiplex and heterogeneous biological networks.
Bioinformatics 2019;35(3):497–505.

93. Rappoport N, Shamir R. Multi-omic and multi-view clustering
algorithms: review and cancer benchmark. Nucleic Acids Res
2018;46(20):10546–62.

94. Rappoport N, Shamir R. Nemo: Cancer subtyping by integration
of partial multi-omic data. Bioinformatics 2019;35(18):3348–56.

95. Liu J, Ge S, Cheng Y, et al. Multi-view spectral clustering based
on multi-smooth representation fusion for cancer subtype pre-
diction. Front Genet 2021;1574.

96. Nie F, Li J, Li X, et al. Self-weighted multiview clustering with
multiple graphs. In: Carles Sierra (ed.) IJCAI. International Joint
Conferences on Artificial Intelligence, 2017, 2564–70.

97. Feng Q, Jiang M, Hannig J, et al. Angle-based joint and individual
variation explained. J Multivariate Anal 2018;166:241–65.

98. Yang Z, Michailidis G. A non-negative matrix factorization
method for detecting modules in heterogeneous omics multi-
modal data. Bioinformatics 2016;32(1):1–8.

99. Westerhuis JA, Kourti T, MacGregor JF. Analysis of multi-
block and hierarchical PCA and PLS models. J Chemometr
1998;12(5):301–21.

100. Zhu H, Li G, Lock EF. Generalized integrative principal com-
ponent analysis for multi-type data with block-wise missing
structure. Biostatistics 2020;21(2):302–18.

101. Ciriello G, Gatza ML, Beck AH, et al. Comprehensive molecular
portraits of invasive lobular breast cancer. Cell 2015;163(2):506–
19.

102. Witten DM, Tibshirani RJ. Extensions of sparse canonical cor-
relation analysis with applications to genomic data. Stat Appl
Genet Mol Biol 2009;8(1).

103. Lenz G, Wright GW, Emre NCT, et al. Molecular subtypes of dif-
fuse large b-cell lymphoma arise by distinct genetic pathways.
Proc Natl Acad Sci 2008;105(36):13520–5.

104. Tenenhaus A, Tenenhaus M. Regularized generalized canonical
correlation analysis. Psychometrika 2011;76(2):257.

105. Garali I, Adanyeguh IM, Ichou F, et al. A strategy for multimodal
data integration: application to biomarkers identification in
spinocerebellar ataxia. Brief Bioinform 2018;19(6):1356–69.

106. Smilde AK, Westerhuis JA, de Jong S. A framework for
sequential multiblock component methods. J Chemometr
2003;17(6):323–37.

107. De Tayrac M, Aubry LES, Mosser M, et al. Simultaneous anal-
ysis of distinct omics data sets with integration of biological



24 | J. Gliozzo et al.

knowledge: multiple factor analysis approach. BMC Genomics
2009;10:32.

108. Kucukboyaci NE, Kemmotsu N, Leyden KM, et al. Integration
of multimodal MRI data via PCA to explain language perfor-
mance. NeuroImage 2014;5:197–207.

109. Chamberland M, Raven EP, Genc S, et al. Dimensionality reduc-
tion of diffusion mri measures for improved tractometry of the
human brain. Neuroimage 2019;200:89–100.

110. Geeraert BL, Chamberland M, Lebel RM, Lebel C. Mul-
timodal principal component analysis to identify major
features of white matter structure and links to reading.
PLoS ONE. 2020;15(8):e0233244. https://doi.org/10.1371/journal.
pone.0233244.

111. Worley B, Powers R. A sequential algorithm for multiblock
orthogonal projections to latent structures. Chemom Intel Lab
Syst 2015;149:33–9.

112. Zhang L, Lv C, Jin Y, et al. Deep learning-based multi-omics
data integration reveals two prognostic subtypes in high-risk
neuroblastoma. Front Genet 2018;9:477.

113. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of
chemometrics. Chemom Intel Lab Syst 2001;58(2):109–30.

114. Ponzi E, Thoresen M, Nøst TH, et al. Integrative, multi-omics,
analysis of blood samples improves model predictions: appli-
cations to cancer. BMC Bioinformatics 2021;22:395. https://doi.
org/10.1186/s12859-021-04296-0.

115. Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
116. Rohart F, Gautier B, Singh A, et al. mixomics: an r package for

‘omics feature selection and multiple data integration. PLoS
Comput Biol 2017;13(11):e1005752.

117. Isokääntä S, Kari E, Buchholz A, et al. Comparison of dimension
reduction techniques in the analysis of mass spectrometry
data. Atmos Meas Tech 2020;13(6):2995–3022.

118. Gillis N. Sparse and unique nonnegative matrix factorization
through data preprocessing. J Mach Learn Res 2012;13(1):3349–
86.

119. Li Y. Advances in multi-view matrix factorizations. In: 2016
International Joint Conference on Neural Networks (IJCNN). Piscat-
away, New Jersey, United States: IEEE, 2016, 3793–800.

120. Hoyer PO. Non-negative matrix factorization with sparseness
constraints. J Mach Learn Res 2004;5(9).

121. Zhang S, Liu C-C, Li W, et al. Discovery of multi-dimensional
modules by integrative analysis of cancer genomic data. Nucleic
Acids Res 2012;40(19):9379–91.

122. Chauvel C, Novoloaca A, Veyre P, et al. Evaluation of integrative
clustering methods for the analysis of multi-omics data. Brief
Bioinform 2020;21(2):541–52.

123. Shen R, Olshen AB, Ladanyi M. Integrative clustering of mul-
tiple genomic data types using a joint latent variable model
with application to breast and lung cancer subtype analysis.
Bioinformatics 2009;25(22):2906–12.

124. Lock EF, Dunson DB. Bayesian consensus clustering. Bioinfor-
matics 2013;29(20):2610–6.

125. Kirk P, Griffin JE, Savage RS, et al. Bayesian correlated cluster-
ing to integrate multiple datasets. Bioinformatics 2012;28(24):
3290–7.

126. Gao Y-L, Hou M-X, Liu J-X, et al. An integrated graph regu-
larized non-negative matrix factorization model for gene co-
expression network analysis. IEEE Access 2019;7:126594–602.

127. Deng C, He X, Han J, et al. Graph regularized nonnegative matrix
factorization for data representation. IEEE Trans Pattern Anal
Mach Intell 2010;33(8):1548–60.

128. Wang F, Li T, Zhang C. Semi-supervised clustering via matrix
factorization. In: Chid Apte, Haesun Park, Ke Wang, and

Mohammad J. Zaki (eds.) Proceedings of the 2008 SIAM Interna-
tional Conference on Data Mining (SDM), 2008, pp. 1–12.

129. Vitali F, Marini S, Pala D, et al. Patient similarity by joint
matrix trifactorization to identify subgroups in acute myeloid
leukemia. JAMIA Open 2018;1(1):75–86.

130. Argelaguet R, Arnol D, Bredikhin D, et al. Mofa+: a statisti-
cal framework for comprehensive integration of multi-modal
single-cell data. Genome Biol 2020;21(1):1–17.

131. Mo Q, Wang S, Seshan VE, et al. (eds). Pattern discovery and
cancer gene identification in integrated cancer genomic data.
Proc Natl Acad Sci 2013;110(11):4245–50.

132. Silva RF, Plis SM, Sui J, et al. Blind source separation for
unimodal and multimodal brain networks: a unifying frame-
work for subspace modeling. IEEE J Selected Topics Signal Process
2016;10(7):1134–49.

133. Lee DD, Sebastian H, Seung. Learning the parts of objects by
non-negative matrix factorization. Nature 1999;401(6755):788–
91.

134. Zhou G, Qibin Zhao Y, Zhang TA, et al. Linked component
analysis from matrices to high-order tensors: applications to
biomedical data. Proc IEEE 2016;104(2):310–31.

135. Adali T, Anderson M, Geng-Shen F. Diversity in independent
component and vector analyses: Identifiability, algorithms,
and applications in medical imaging. IEEE Signal Process Mag
2014;31(3):18–33.

136. Lahat D, Adali T, Jutten C. Multimodal data fusion: an
overview of methods, challenges, and prospects. Proc IEEE
2015;103(9):1449–77.

137. Comon P, Jutten C. In: P. Comon, C. Jutten (eds.) Handbook of
Blind Source Separation: Independent Component Analysis and Appli-
cations. Cambridge, Massachusetts, United States: Academic
Press, 2010.

138. Hyvärinen A, Oja E. Independent component analysis: algo-
rithms and applications. Neural Netw 2000;13(4–5):411–30.

139. Calhoun V, Adali T, Liu J. A feature-based approach to combine
functional MRI, structural MRI and EEG brain imaging data. In:
2006 International Conference of the IEEE Engineering in Medicine and
Biology Society. Piscataway, New Jersey, United States: IEEE, 2006,
3672–5.

140. Moosmann M, Eichele T, Nordby H, et al. Joint independent
component analysis for simultaneous EEG–fMRI: principle and
simulation. Int J Psychophysiol 2008;67(3):212–21.

141. Kim T, Eltoft T, Lee T-W. Independent vector analysis: an exten-
sion of ICA to multivariate components. In: Justinian Rosca,
Deniz Erdogmus, José C. Príncipe, Simon Haykin (eds.) Inter-
national conference on independent component analysis and signal
separation. Berlin, Heidelberg: Springer, 2006, 165–72.

142. Adali T, Akhonda MABS, Calhoun VD. ICA and IVA for data
fusion: an overview and a new approach based on disjoint
subspaces. IEEE Sensors Lett 2018;3(1):1–4.
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Appendix A - Data integration in Medicine:
previous surveys and taxonomies

The abundance of multimodal data integration approa-
ches developed in the past decade in the biomedical con-
text has motivated many relevant surveys [16, 29, 34–37],
which proposed different definitions and taxonomies,
schematized in Figure 1.

In the context of precision medicine, multimodal sets
are composed of multiple views (or data-blocks) for
the same set of patients. They are either ’multisets’ or
’multimodal datasets’ [142]. ’Multisets’ (top of Figure 1-
yellow box) contain multiple views acquired by the
same source under different acquisition conditions (e.g.
observation times, experiments, tasks, machines), and
are therefore ’homogeneous’ [26] in semantic, type and
dimensionality. Conversely, ’multimodal datasets’ (alias
’heterogeneous’ sets [26], Figure 1-light blue box) contain
data-blocks acquired by different sources, characterized
by different semantics, type and dimensionalities.
Among the latter, ’multimodal-multiset’ are datasets
acquired by different sources, some of which are used
to produce multisets.

Given their different characteristics, multisets and
multimodal datasets are generally fused by following
different integration flows. ’Horizontal integration’
methods [25, 169] are usually used for multisets because
they equally process all the data-blocks and then pool
the obtained results by e.g. summary statistics [170].
By contrast, ’vertical integration’ methods are used
for processing multimodal datasets, which are more
articulated and are usually grouped in the ’hierarchical-
vertical’ class and the ’parallel-vertical’ class.

’Hierarchical-vertical’ [171–173] or ’multi-staged
analysis’ methods [27] consider omics data being
interrelated by regulatory mechanisms and exploit such
prior knowledge during the integration procedure. Since
these methods are tailored for the treatment of specific
data types and applications and cannot be generalized
to different research contexts, they will not further
considered in this survey. ’Parallel-vertical’ integration
techniques, alias ’meta-dimensional analysis’ methods
[27], are the most diffused and generalizable ones
because dependencies between data-blocks injected
by prior information are not considered. To categorize
parallel-vertical approaches several interrelated tax-
onomies have been defined. The categorization reported
in the red-dashed box in Figure 1 is the one adopted by
several authors [27, 29–33] that relies on the processing
stage (early, intermediate, late) in which the data fusion
happens, which also influences the kind of information
that is fused.

’Early integration techniques’ (also called ’concatena-
tion-based models’ [27, 33]) are applied on the input
data-blocks in an early stage to compose the integrated
input vectors subsequently used in the analysis by either
using a simple data-concatenation, or by exploiting joint
latent space estimation models. The evident advantage
of early methods relies on their ability to uncover the
individual information characterizing each of the differ-
ent sources as well as the hidden relationships between
them. Another advantage is brought by the fact that
early methods solve the integration problem in the first

stage, so that any unimodal analysis process may be
subsequently applied.

’Intermediate integration approaches’ (also named
’transformation-based models’) [27, 33] individually
transform the data-blocks into intermediate (unimodal)
models that are subsequently integrated to produce a
unique fused model to be analyzed. In the taxonomy
proposed by [28] (blue-dashed box in Figure 1), these
methods have been classified as ’model-dependent’
approaches for highlighting their dependency from the
data analysis model, which guarantees the ability to
retain the original data structure by explicitly addressing
the fusion task in the construction of the predictive
model itself.

’Late integration approaches’ (also named ’model-
based approaches’ in [27, 33]) separately analyze each of
the incoming data-blocks to produce individual results,
subsequently integrated in a late phase by some meta-
learner acting as the final judge or by simple techniques
such as majority voting. These approaches along with the
early integration ones are classified as ’model-agnostic’
in the taxonomy proposed by [28] (blue-dashed box in
Figure 1) and are contrasted with the model-independent
approaches previously discussed. They are named
“agnostic” because they are independent from the spe-
cific algorithm applied in the preceding unimodal analy-
sis, which can be therefore tailored to the processed type.

Even if the aforementioned early/intermediate/late
taxonomy is the most diffused in literature, other
taxonomies have been defined in the context of inte-
grative (multi-omics) methods for precision medicine.
As an example, [25, 174, 175] consider three classes:
(1) ’statistical-based methods’, most of which can be
considered instances of the class of early integrative
methods; (2) ’unsupervised methods’ neglecting the
outcome variable during the integration phase, which
may be applied in any (early, intermediate or late) phase
and are mainly devoted to unsupervised clustering; (3)
’supervised integration methods’ fusing the available
information to maximize the outcome prediction perfor-
mance by mainly using an intermediate MKL integration
approach or a late fusion approach.

Other taxonomies [8, 14, 16, 32] consider the spe-
cific algorithm used for the integration; they recognize
network-based approaches (among which deep-network
based approaches, not treated in this survey), feature
transformation models mainly applying an early integra-
tion approach (e.g. PCA, CCA), integrative models exploit-
ing MF techniques in an early integrative fashion, MKL
models belonging to the class of intermediate methods,
and Bayesian techniques applied in an early phase. Note
that Bayesian models are not considered in this work
since they have been exhaustively described in a dedi-
cated survey [13].

Finally, the relevant survey by [16] is focused on the
description of publicly available multimodal datasets in
the context of multi-omics and in the critical analy-
sis of open source integrative models. After a thorough
study, the authors conclude that an objective comparison
between different models is difficult, and highlight the
lack of an easy-to-use multi-omics data fusion model
providing a ‘biologist-friendly’ visualization and interpre-
tation.
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