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Abstract: Simple sequence repeats (SSRs) are known as microsatellites, and consist of tandem 1–6-base
motifs. They have become one of the most popular molecular markers, and are widely used in
molecular ecology, conservation biology, molecular breeding, and many other fields. Previously
reported methods identify monomorphic and polymorphic SSRs and determine the polymorphic SSRs
via experimental validation, which is potentially time-consuming and costly. Herein, we present a new
strategy named insertion/deletion (INDEL) SSR (IDSSR) to identify polymorphic SSRs by integrating
SSRs with nucleotide insertions/deletions (INDEL) solely based on a single genome sequence and
the sequenced pair-end reads. These INDEL indexes and polymorphic SSRs were identified, as well
as the number of repeats, repeat motifs, chromosome location, annealing temperature, and primer
sequences, enabling future experimental approaches to determine the correctness and polymorphism.
Experimental validation with the giant panda demonstrated that our method has high reliability and
stability. The efficient SSR pipeline would help researchers obtain high-quality genetic markers for
plants and animals of interest, save labor, and reduce costly marker-screening experiments. IDSSR is
freely available at https://github.com/Allsummerking/IDSSR.
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1. Introduction

Simple sequence repeats (SSRs), also known as microsatellites, are tandem 1–6-bp motifs distributed
frequently throughout eukaryote genomes [1]. Currently, microsatellites are one of the most popular
molecular markers, owing to their advantages including high polymorphism, co-dominant inheritance,
and reproducibility in different in vitro conditions [2]. Furthermore, they have been widely used in
studies on molecular ecology [3], conservation biology [4], molecular breeding [5], and many other
fields. Nevertheless, the major limitation of microsatellites is the need to isolate them de novo from the
species under study. Furthermore, traditional microsatellite isolation strategies based on clone and
probe hybridization are not only costly and labor- and time-intensive, but also inefficient [6].

With the development of next-generation sequencing (NSG), genome sequencing has become
faster and cheaper, enabling the sequencing of hundreds of genomes and transcriptomes of important
organisms. Sequence technology has changed how microsatellite markers are identified using genome
sequencing and bioinformatics tools [7–9]. To date, more than 25 tools or methods are available for
identifying microsatellites from genome or RNA sequences, and this number is increasing [10–12].
These tools, such as Tandem Repeat Finder (TRF) [13], GMATo [14], SSRIT [15], SSR-pipeline [16],
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MREPS [17], PRoGeRF [18], MISA [19], Kmer-SSR [20], ESAP plus [21], SA-SRR [22], PERF [23],
and SciRoko [24], are used to conduct SSR mining. In contrast, other tools such as SSRLocator [25],
QDD [26], CandiSRR [27], GMATA [28], and SSRPoly [29] have been improvised with the inclusion of
a primer design algorithm. Most of these methods are focused on identifying the SSR itself, and some
have integrated the tools for identifying SSRs with primer design.

Despite the existence of numerous tools, the availability of efficient tools or pipelines for identifying
candidate SSRs without false positive results and limited quality is still an issue, arising partly because
the identified SSRs may be monomorphic or their proximal primers are not specific, thus potentially
resulting in homoplasy. Further experiments are often required to identify the polymorphic SSRs and
finally validate the data. Obviously, the disadvantages of monomorphic SSRs or low quality of their
primers will greatly affect the subsequent experiments, such as PCR, leading to wastage of energy and
financial resources.

In addition to SSR markers, nucleotide insertion/deletions (INDELs) are one of the most abundant
structural variants, widely distributed across the genomes of plants and animals. INDELs can be
distinguished easily based on their sizes, and, because of their moderate polymorphism, they can be
amplified using conventional PCR and direct gel electrophoresis methods. These characteristics have
made INDELs highly valuable for identifying other markers such as SSRs and single-nucleotide
polymorphisms (SNPs), and they can be used as effective markers in genetic analysis [30–32].
Moreover, INDEL markers are easily detectable in genome and transcript sequences based on different
bioinformatics tools.

SSRs and INDELs are both extremely useful, and, therefore, it would be expedient to develop a
method that integrates these two types of markers for identifying highly polymorphic SSRs. Herein,
we present a new protocol that integrates SSRs and INDEL markers to identify polymorphic SSRs and
high-quality specific primers, which exhibit good performance, repeatability, strong stability, and an
extremely low genotyping error rate based solely on a single genome sequence. The strategy identifies
SSRs from genome sequences using the improved SSRIT tools, designs the primers for each SSR, filters
the low-quality primers and their SSRs, and combines the high-quality SSRs with the INDEL markers
throughout the genome to generate dependable microsatellite results with polymorphisms. We used
this pipeline to identify microsatellites on the giant panda reference genome, and investigated the
efficacy and applicability of these markers in a wild population, thus demonstrating the impressive
capacity of our pipeline. This highly efficient SSR pipeline is expected to facilitate subsequent genetic
analyses of plants and animals of interest and save time, labor, and the cost associated with marker
screening experiments.

2. Results

2.1. Identification of Candidate Polymorphic SSRs in Giant Panda, Gallus gallus, and other Assemblies

The giant panda is a critically endangered species in China. Currently, although some SSRs have
been identified in the giant panda, obtaining microsatellites with tri-, tetra-, and pentanucleotides with
high polymorphism remains challenging [33–39]. In this study, we identified polymorphic SSRs in the
giant panda using our new pipeline.

First, 267,958 INDELS of 1–6 bp were identified (Table S1). Among them, 189,236 deletions and
78,722 insertions were found throughout the whole genome. The genome-wide average density was
about 0.12 INDELS per Mb. The number of deletions and insertions had a relatively regular distribution:
Insertions and deletions with 1 bp in length occurred the most often, and short INDELs were more
abundant than long ones (Figure S1). The INDEL rate was 1.2 × 10−4 on autosomes and 0.7 × 10−4 on
sex chromosomes. Thereafter, 423,459 SSRs with high-quality primers were identified, with a total
length of 7.2 Mb. Among them, dinucleotide repeats were the most abundant (225,439, 53%), followed
by tetranucleotide repeats (87,106, 20.6%), trinucleotide repeats (92,099, 21.7%), pentanucleotide repeats
(16,961, 4%), and hexanucleotide repeats (1854, 0.4%). The number of each type is comparable with
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the previously reported results on the giant panda [33]. Among these SSRs, CT/GA (26.4%) and
AC/GT (21.6%) were quite dominant, and TTTA/AAAT (5.7%) was the most frequent motif for >2
SSR units. Moreover, it was found that SSRs were more abundant in intergenic regions (297,202
SSRs) than in the gene regions (126,257 SSRs). To identify polymorphic SSRs, those in an INDEL
variation region were selected as final candidate SSRs. Consequently, 4882 polymorphic SSRs with
an average length of 18 bp and average repetitions of 8.58 were detected in the giant panda genome.
This total number of SSRs is much less than previously reported in the giant panda. These SSRs
were present in 1793 scaffolds, with a relative abundance of 2 SSRs/Mb (Table S2), and this density is
significantly lower than the previous value of 372 SSRs/Mb [33]. Among the 4882 polymorphic SSRs,
the dinucleotide repeat motif was the most abundant (>83%), with motifs (GA)n and (AC)n the most
frequent SSRs, consistent with previous reports on the giant panda [33]. Furthermore, the frequencies
of the trinucleotide and tetranucleotide motifs were similar at 8.7% and 7.4%, respectively (Table 1).
Those ratios are very different from the previous reports of 4.2% for trinucleotides and 18.09% for
tetranucleotides, respectively. We identified a limited number of pentanucleotide repeats (26) and
only one hexanucleotide repeat. The total number of repeat motif types was 241, and there were five
most-abundant motif repeat classes, including (GA/TC)n, (AC/GT)n, (AT)n, (AGAG)n, and (ACAC)n.
The frequency of di-nucleotide repeats is consistent with previous reports but different from the other
three motif units. In total, the aforementioned five classes of repeats constituted 80% of all the identified
polymorphic SSRs, while the other >200 types only accounted for 20% (Figure S2).

Table 1. Distribution of polymorphic simple sequence repeats (SSRs) in the giant panda and Gallus gallus.

SSR Length (bp) Dinucleotide Trinucleotide Tetranucleotide Pentanucleotide Hexanucleotide Total

Giant Panda
Number 4064 428 363 26 1 4882

Length (bp) 75,324 6933 7204 580 24 90,065
Percentage of repeat 83.24% 8.77% 7.44% 0.53% 0.02% 100%

Gallus gallus
Number 453 621 763 273 47 2157

Length (bp) 9412 8067 19,176 8650 1482 46,787
Percentage of repeat 21.00% 28.79% 35.37% 12.66% 2.17% 100%

To investigate the distribution of the polymorphic SSRs across the genome, the polymorphic SSRs
were annotated on the basis of the annotation data of the giant panda [40]. The entire distribution is
shown in Figure 1. Most SSRs were in the intergenic regions (3819 SSRs), followed by polymorphic
SSRs in introns (935 SSRs), and the rest were present 2 kb upstream or downstream of proximal genes.
This distribution in the giant panda is somewhat different from that reported previously, albeit similar
to that in bovid genomes [41].

In order to have a further validation of the strengths of our pipeline, genome assembly of
Gallus gallus and other assemblies were used. We identified 2157 SSRs throughout the whole
Gallus gallus genome (Table S3). Results showed that the genome-wide average density of SSRs in
Gallus gallus was about 1.9 per Mb, which is nearly the same as in the giant panda. Among these
SSRs, there are 1388 SSRs in intergenic regions, which is almost 100% higher than in gene regions (769).
Among the 769 SSRs, only 91 were found in the exonic region. Interestingly, tetranucleotide SSRs were
the most frequent unit, then followed by the pattern: Tri- > di- > penta- > hexanucleotide SSRs in the
Gallus gallus genome (Table 1). It was found that (AT/TA)n, (AAC/TTG)n, and (TG/AC)n were the three
most dominant repeat motifs. For those download assemblies, MISA-web [42] was used for predicting
SSRs. We identified 117 SSRs, including 62 mononucleotide SSRs and 55 polyribonucleotide SSRs.
Based on our pipeline, we identified 106 polyribonucleotide SSRs and 44 SSRs (80%), which were also
identified through the MISA-web.
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Figure 1. Locations of simple sequence repeats in the giant panda genome.

2.2. Evaluation of Microsatellite Polymorphism

To quantify the accuracy of those polymorphic SSRs detected using the pipeline, we analyzed the
26 microsatellite loci with 5-bp repeats and the single microsatellite locus with a 6-bp repeat for PCR
experiments. Most of the primers (21 pairs, 77.78%), including the single 6-bp repeat, were successfully
amplified and showed good performance, with specific amplification and high yield (Table 2).

Table 2. The primers of the giant panda microsatellites.

Locus Number of Bases
per Repeat Unit Forward Primer Sequence Reverse Primer Sequence Label *

GP1 6 CTCGTGCTGGGCTGAAGAGAGAAG CCCCATCACAATGTCTGCAGCTG 5′-TET
GP2 5 GATGGGCCACCTTGACATGTACAT ACTGAAGACCCAGGAGAGAGCTTT 5′-FAM
GP3 5 AACAAAAACCCCCAAACCAAACCC GGTCGGTAGCTATGAAGTGTTGGG 5′-FAM
GP4 5 TCATTGTTACTCTGCCTGTATCTGTT CTTGTGCTCTCTCTCCGTCAAATA –
GP5 5 ACCACAGCCAAGGGTTGTATTGTT GGGTTGTGAGTTGAAGCCCTACAT 5′-FAM
GP6 5 CTCAAGGCAGTTGTTCCCACTCTT TCCATATTGGAAAACCCTACACTGGAA 5′-FAM
GP7 5 TGGTGGTAATGAAATCCCTCAGCT CTTCTATCCTCAGTGAAGCCGTCC 5′-TET
GP8 5 CTTACTTTCACATCTGGGCCCTCC ACATGCAATGAAACAGGGACCACT 5′-TET
GP9 5 TTAACTGGGGGTGTACTGGATGGT TAAGGGTGCTATTCTCGCCATTCC 5′-FAM
GP10 5 CTCGGAGGGCATCTGTTGGATTAA CCATGAGCGTGGGGCCTATTTAAA 5′-FAM
GP11 5 TCTTCAACAAAACAATTCTTTTGCTTGT TTAAAACCAGCGTGGCAGATTTTG -
GP12 5 CCAACTCACGGAGGGGATATCAAG AACCACATCCTATTCTGACTGCCT -
GP13 5 CCTCAACTCCTTCCCCTGCAAAAT GGTGTCGTCAAGTACATGGGTCTC 5′-TET
GP14 5 TCTGTCAGCTGAGTTGACCTTGAG TTTGCAGCAAAAAGTTCTCTTGCC -
GP15 5 GAGACAGGCTATCTTACATTGGGCT AATTGTAGCAGGGTCTCATGGCTG 5′-HEX
GP16 5 TATCTCTAAGTGCCCTGGGGTCAG CGGACTCGTTCCTAGTGTGTGG 5′-HEX
GP17 5 TCGTTGAACGCCACATCAAAAACT TTCAGGATTCTGGGCACTACTGGA 5′-HEX
GP18 5 TCGAGGGCTTGCGACTTTATTTCA AGAGCTGGATTGGAGAAAGCTTGA 5′-TET
GP19 5 AGGAAGGGAAGGGAAGGGAAAGAA TCCTCACAAACCAGAGAGTATGGGA -
GP20 5 TGCTCGAAAGGAAACTACCAGGAA CCAAGGTCATGGAGGCACATTTTA 5′-HEX
GP21 5 ACAAATGCAATAGAAGGGAAAGTCTGT ATGGTGCCCTGGGTGTTATACG -
GP22 5 TTTGGAGAGGCGGAAAGAGCTTTT TTTTGCTGCGAGGAGGTGATAGTC 5′-HEX
GP23 5 GGCGTCCCAGTACGTAACTCTCTA ATACACTTTGGAGGCACCTGGATG 5′-TET
GP24 5 GATATTCTCTCTCCCTCTCCCCTG TTCCATTTTGAGCCAAAAGTTACTTAGT 5′-TET
GP25 5 CATCTGAGCACTTGAAAGCCAGT GTCACTACAGCAATCATATAACCCTGT 5′-HEX
GP26 5 CTCAGGATCGTGAGTTTAAGCCCC GGTTGTCTTATTTCCTGTGCATTTGGT 5′-HEX
GP27 5 TCCAGCTAAACAAACTGCCCTTCT CTACTGGTCAGCTGCAAGGACTTG 5′-TET

* TET: tetrachloro-6-car-boxyfluorescein; FAM: 6-carboxyfluorescein; HEX: hexachloro-6-car-boxyfluorescein.

In addition, genotyping was carried out to evaluate the polymorphism using 21
fluorescence-labeled microsatellite primers. The results show that all these loci were polymorphic
(Table S4). From the 20 individual giant pandas, we acquired 2.38 alleles per locus on average,
ranging from two to four, indicating the effectiveness of the pipeline in identifying polymorphic
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microsatellite loci and designing primers for microsatellite genotyping. These validated results reveal
100% polymorphic SSRs in the giant panda genome.

3. Discussion

In the present study, the protocol was developed for identifying polymorphic SSRs. In order to
evaluate its efficiency, we applied our protocol to identify SSRs in the giant panda genome, Gallus gallus,
and other assemblies. Compared with the previous results on the giant panda [33], we identified
markedly fewer SSRs, with a markedly lower relative density. This phenomenon occurred primarily
because our pipeline disregarded mononucleotide motifs, which constitute one of the most diverse
SSRs in species. Moreover, the criterion that motifs should have unique primers and SSRs within an
INDEL allele index markedly decreased the number of polymorphic SSRs. This rigorous filtering
decreased the number of SSRs as well as the types identified, which makes a direct comparison
with previous research difficult. Despite the significant differences between our final SSRs and those
previously reported, we note that the intermediate results could be compared with previous studies.
The entire distribution of SSRs in the giant panda genome is consistent with previous reports, showing
that the occurrence of SSRs is lower in gene regions than in other regions because SSRs have a high
mutation rate that potentially affects gene expression. To further verify the capacity of the pipeline,
we applied the pipeline on the Gallus gallus genome and several other assemblies. The identified
SSRs in Gallus gallus demonstrate that the pipeline also has utility on a more-studied species. Results
from the other assemblies showed that our pipeline has high confidence, with the MISA-web method
also indicating that our pipeline has an accuracy of over 80%. Polymorphic SSRs with motifs longer
than 4 bp are typically more biologically interesting and extremely valuable for endangered animals.
Hence, we selected SSRs of >4 bp, identified herein, for subsequent analysis. Excluding the failure
of six primers, the remaining 21 primers displayed 100% polymorphic SSRs in the giant panda
genome and considerably outperformed those previously reported, with rates of 71.7% [34], 88.5% [33],
and 80% [43]. These previous validations were carried out using 1–4-bp SSRs, but the present validation
was conducted using >4 bp SSRs. Overall, the experimental validation of those SSRs in the giant panda
genome demonstrated the high success rate and the potential of our pipeline.

While IDSSR could provide substantially superior performance in identifying polymorphic SSRs
with unique primers, the pipeline has some limitations. First, since INDEL markers should be obtained
in the first stage, some reads with a short insert size library should be downloaded or sequenced,
and the data should approach 25× genome coverage. This may impede its use, as reference genome
reads may not be available. Moreover, INDEL calling is only based on the de novo genome reads,
which may underestimate their number in the population. In future studies, we could improve this by
using re-sequenced data of additional individuals. Second, to obtain a unique primer pair for each
polymorphic SSR, we incorporated some initial filtering criteria. Since genome complexities often
differ, this protocol may be time- and data-intensive, largely depending on the BLAST alignment
algorithm, thereby impeding the identification of high-quality primers and SSRs.

Notwithstanding previously reported tools or pipelines for identifying candidate polymorphic
SSRs, some including primer design, there is still a major limitation in analyzing SSRs and designing
high-quality primers from large sequences. For a diploid genome, the assembled genome sequence
is always haploid. The two sets of the chromosomes contain SSRs with heterozygous INDELs,
and individuals harbor SSRs that may be polymorphic among other samples in genetic analyses.
Accordingly, we present the IDSSR pipeline to identify numerous efficient and polymorphic SSRs and
their specific primers based on assembled and non-assembled genome sequencing reads. In the first
stage of the pipeline, high-quality INDELs were identified in accordance with the reference genome
data and clean reads. In the second stage, SSRs with specific primers were designed using several
filtering steps, and finally, SSRs within a repeated motif as altered INDEL alleles were selected as
the final output. As the altered INDEL allele is a repetition of the repeat motif, this ensures that the
identified SSRs are polymorphic. This is the first study to use INDEL and SSR markers together to



Int. J. Mol. Sci. 2019, 20, 3497 6 of 10

identify the abundance of polymorphic SSRs. This integration could theoretically improve the success
rate of identifying polymorphic SSRs. The output of the pipeline revealed that the numbers of repeats,
repeat motifs, repeat positions, SSRs, chromosome locations, annealing temperatures, and primer
sequences were convenient for use in further analyses.

Overall, our novel pipeline developed herein would be a suitable supplementary tool for
establishing high-quality SSRs, and would help resolve biological issues.

4. Materials and Methods

4.1. Data Accessibility

The genome sequences of the giant panda and Gallus gallus are available at the ENSEMBL
Genomes Database (ftp://ftp.ensembl.org/pub/release-91/fasta/ailuropoda_melanoleuca/dna/, ftp://ftp.
ensembl.org/pub/release-96/fasta/gallus_gallus/dna). The sequenced reads for the giant panda can be
downloaded from the National Centre for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) under accession numbers SRX1352277 and SRX1352276. The sequenced reads for Gallus gallus can
be downloaded with accession number SRR8902348. The assemblies (accession numbers: AC256511.1,
AC269605.1, AC265197.1, AC263353.1, AC264961.1, AC266636.1, AC261250.1, AC267178.1, AC259365.1,
AC257258.1) were also downloaded from the NCBI database.

4.2. Package Availability and Requirements

• Project name: IDSSR
• Project homepage: https://github.com/Allsummerking/IDSSR
• Operating system(s): Linux and UNIX
• Programming language or software: Perl, BASH, BLAST [44], Primer3 [45], and SSRIT [15].

4.3. Complete SSR Pipeline Process

The input files for IDSSR were assembled genome sequences in the FASTA format and sequenced
clean reads in the FASTQ format. All the procedures for identifying candidate SSRs using this pipeline
can be separated into two parts: Calling INDELs and identifying SSRs (Figure 2).

INDEL calling involved downloading or assembling the genome of the target species in question.
Thereafter, clean paired-end (PE) reads of the target species were prepared. All clean PE reads were
aligned to the target genome sequence, using SOAP2 [46] with the following parameters: ‘-p 2 –m 170
–x 800 –s 32 –l 24 –v 30′. Alignments generated via PCR duplication were eliminated, and the mapped
files were sorted in accordance with the mapping coordinates. The file was then used as an input
for the SOAPindel [47] software based on the following parameters: ‘-m 1 –p 0.01 –c 3 –h 0.5 –k 5′ to
identify INDELs. Then, the returned results were filtered as follows: (i) INDELs should have at least
five supporting PE reads, and (ii) sites should be at least 5 bp away from their predicted neighboring
INDELs. Finally, we obtained 1–6-bp high-quality INDELs throughout the genome.

The identification of SSRs with high-quality specific primers and the entire protocol can be divided
into five steps: (1) Different 2–6-bp motifs were detected using an improved SSRIT [15], and this
software paper was cited more than 1700 times and used to screen the whole genome. The number
of repeats for a 2-bp motif should be >6-fold and >4 for the 3–6-bp motif. (2) Each candidate SSR
sequence with 150 bp flanking sequences on both sides was imported into the software Primer 3 [45] for
designing primers using the following parameter settings: The primer length should be approximately
20–28 bp, the optimal GC content is 40%–60%, the minimum and maximum annealing temperatures
are 60 and 65 ◦C, and the product size has a range from 100 to 300 bp. (3) Those primers with any
SSR motif were filtered initially, thus reducing homoplasy, and the rest of the primers were aligned
to the reference genome, using BLASTn [44] for further filtering. According to the BLASTn results,
those primers with a mismatch of >4 in the forward or one in the reverse against the genome were
discarded. Furthermore, to obtain specific primers, only primers with only one hit, or multiple hits

ftp://ftp.ensembl.org/pub/release-91/fasta/ailuropoda_melanoleuca/dna/
ftp://ftp.ensembl.org/pub/release-96/fasta/gallus_gallus/dna
ftp://ftp.ensembl.org/pub/release-96/fasta/gallus_gallus/dna
https://github.com/Allsummerking/IDSSR
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with products of different lengths of >2 kb were retained. (4) These product sequences were then
searched to identify 2–6-bp motifs using the improved SSRIT with the same criterion used in the first
step, and products with multiple SSRs were discarded. The best-fitting pairs of primer sequences and
the proximal SSRs were retained. As the primers probably result in homoplasy, these rather strict
filters may greatly improve the success ratio for amplifying primers. (5) The key step is that INDELs
obtained initially were used to identify polymorphic SSRs. For all high-quality SSR motifs, whole
INDELs were identified and compared with each SSR. INDELs were integrated into the SSRs based on
the following criteria: a) The altered INDEL allele has the same repeat unit as the SSR motif, or the
altered allele of the INDEL is precisely the SSR’s repeat motif; and b) the INDEL is located at the center
of the SSR motif. Finally, SSRs containing INDELs were selected as candidate polymorphic SSRs.

The procedures above were implemented using the Perl and BASH scripts, and the whole process
was developed to be user-friendly.

Figure 2. Flowchart of the insertion/deletion SSR (IDSSR) pipeline.

4.4. Sample Collection and DNA Extraction

To experimentally validate the polymorphic SSRs, the blood samples of giant pandas were
collected by veterinarians in the China Research and Conservation Center for the Giant Panda during
the routine physical examinations, and stored in the State Conservation Center for Gene Resources
of Endangered Wildlife. The use of the samples was permitted by the State Conservation Center for
Gene Resources of Endangered Wildlife (SCCGREW2016-S11) on 13 October 2016. The conventional
phenol–chloroform method was used to extract the genomic DNA from the blood samples [48].
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4.5. Evaluation of Microsatellite Polymorphisms

We carried out PCR with genomic DNA from the giant panda “Panpan” to evaluate the sensitivity
and specificity of the primers, as well as the optimum annealing temperatures. The microsatellite
primers used in this study are listed in Table 2. The details of the PCR process are as follows: 94 ◦C
for 3 min, followed by 35 cycles at 94 ◦C for 30 s, 30 s at the annealing temperature, 72 ◦C for 30 s,
and 72 ◦C for 10 min in the final extension step. Each PCR reaction mixture contained 5 µL 2× Taq
master Mix (Shanghai Generay Biotech, Shanghai, China), 0.4 µL of each primer (10 µM), and 0.5 µg of
genomic DNA in a total volume of 10 µL. PCR products were visualized on a 1% agarose gel.

Subsequently, 21 pairs of primers with high sensitivity and specificity were used for microsatellite
polymorphism analysis. The fluorescence-labelled forward primers (tetrachloro-6-car-boxyfluorescein
(TET), 6-carboxyfluorescein (FAM), and hexachloro-6-car-boxyfluorescein (HEX) dyes) were synthesized
and used for the PCR with genomic DNA from 20 giant pandas. PCR products were diluted 1:10 and
run using the 3730 DNA analyzer (Applied Biosystems, Foster City, CA, USA) with the GeneScan 500
ROX Size standard (Applied Biosystems). The output data were analyzed using Gene Mapper 4.1
(Applied Biosystems) to assign the genotype to each sample at each locus.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/
3497/s1.
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