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Recently, we showed that murine dorsal root ganglion
(DRG) Car8 expression is a cis-regulated eQTL that
determines analgesic responses. In this report, we show
that transduction through sciatic nerve injection of DRG
with human wild-type carbonic anhydrase-8 using
adeno-associated virus viral particles (AAV8-V5-CA8WT)
produces analgesia in naive male C57BL/6J mice and
antihyperalgesia after carrageenan treatment. A peak mean
increase of about 4 s in thermal hindpaw withdrawal latency
equaled increases in thermal withdrawal latency
produced by 10mg/kg intraperitoneal morphine in these
mice. Allometric conversion of this intraperitoneal morphine
dose in mice equals an oral morphine dose of about 146mg
in a 60-kg adult. Our work quantifies for the first time
analgesia and antihyperalgesia in an inflammatory pain
model after DRG transduction by CA8 gene

therapy. NeuroReport 28:1215–1220 Copyright �c 2017 The
Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
According to the IOM Report (2011) on Chronic Pain in

America, chronic pain affects at least 116 million US

adults, accounting for over 30% of Americans [1,2].

Systemic analgesics, including opioids, can be limited by

side effects and are inadequate in relieving chronic pain.

Almost 250 million opioid prescriptions are dispensed

annually, indicative of the ‘opioid epidemic’, which has

led to a major rise in drug overdose deaths [2,3]. This has

prompted the need to seek alternatives that selectively

and safely ‘silence’ pain-transducing nociceptors, with

the potential for prolonged effects (e.g. lasting weeks,

months, or longer) [4,5].

Previously, we used complementation in homozygous null

mutant (MT) mice, lacking Car8 protein because of an

exon 8 deletion, to produce prolonged elevations in ther-

mal pain thresholds after AAV8-V5-Car8 intervention [6].

This approach demonstrated successful transduction of

dorsal root ganglion (DRG) through sciatic nerve (SN)

injections of adeno-associated virus (AAV) virus containing

the expression vector encoding Car8 wild-type (WT)

cDNA to produce antinociception. However, this finding is

‘paradoxical’ with respect to the mechanism of analgesia

seen with morphine. The Car8 protein is known to inhibit

inositol 1,4,5-triphosphate receptor-1 (ITPR1) to decrease

calcium release [6], whereas morphine depends on

increased ITPR1-dependent calcium release to produce

analgesia [7]. In another study, we addressed the morphine

‘paradox’ in which we found that murine DRG Car8 gene

expression is highly variable across inbred strains of mice

and genetically regulates the analgesic effects of morphine

in an antagonistic manner [8]. We surmised that the

antagonism between Car8 expression and morphine may

be related to their opposing effects on ITPR1-mediated

calcium release [8].

In this report, we extended our previous findings [6] to

evaluate the potential of the human form of carbonic

anhydrase-8 (CA8) to produce thermal antinociception in

naive C57BL/6J male mice. To quantify any resultant

analgesia, we performed SN injections of AAV8 containing a

vector encoding V5-CA8WT compared with injections con-

taining vector encoding V5-CA8MT with the S100P null MT

[9]. We report herein that AAV8-V5-CA8WT significantly

increased thermal baseline withdrawal latencies before carra-

geenan inflammation, indicating analgesia. AAV8-V5-CA8WT
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also attenuated decreases in withdrawal latencies after carra-

geenan inflammation, indicating antihyperalgesia. We further

showed quantification of these analgesic and antihyperalgesic

responses in morphine equivalents.

Materials and methods
Animals
All experiments and procedures were carried out in accor-

dance with the Guide for the Care and Use of Laboratory

Animals and the current guidelines for investigation of

experimental pain in conscious animals [10,11]. This pro-

tocol was approved by the Animal Care and Use

Committee of the University of Miami. Male adult C57BL/

6J mice, 12–14 weeks of age and weighing 30–35 g, were

obtained from Jackson Laboratories (Bar Harbor, Maine,

USA). Mice were kept in a home cage environment with

access to food and water ad libitum. Animals were allowed to

acclimatize for at least 7 days and were housed in a 12–12 h

light–dark cycle in a virus/antigen-free facility with con-

trolled humidity and temperature.

Generation and SN injection of AAV8-V5-CA8 viral
particles
Generation and SN injection of AAV8 viral particles is

described in our previous work [6]. These viral constructs

express human CA8 WT or MT CA8 vectors with V5 tag.

The S100P mutation in the MT vector is associated with

proteasome-mediated degradation that represents a null

mutation comparable to the causal Car8 deletion mutation

of the waddles mouse [6,9]. After SN exposure, 1.5 μl of
about 2.0E14 genome copies/ml viral particles containing

V5-CA8WT and V5-CA8MT were injected into the SN. The

negative control group received saline injections through

SN under anesthesia.

Mouse model of inflammatory pain in relation to
neurobehavioral testing
A volume of 15 μl of 1% λ carrageenan (Sigma; Sigma-

Aldrich Corp., St. Louis, Missouri, USA) in saline was

subcutaneously injected into the plantar surface of left

hindpaw. Thermal sensitivity was measured using heat

according to the Hargreaves’ test, to obtain threshold cal-

culations, respectively. Tests were performed in a quiet

room with daylight-like illumination. Animals were habi-

tuated to the behavioral room and apparatus for at least

60min for 1 week before a blinded investigator collected

baseline data. The thermal sensitivity test was performed

using an IITC Plantar Antinociception Meter apparatus

(IITC Life Sciences, Los Angeles, California, USA) with a

plastic box placed on a glass plate of constant temperature

(30°C). The mouse plantar surface was exposed to a beam

of radiant heat to induce paw withdrawal. The intensity of

the Hargreaves’ device was adjusted to obtain average

values of 5–9 s in control mice, with a maximum of 20 s as

cutoff to prevent potential injury. The latency time (in

seconds) from the onset of the intense light beam to paw

withdrawal was defined as the withdrawal latency of the

paw. Two consecutive tests were averaged to establish the

paw withdrawal latency.

Morphine dosing regimen in relation to neurobehavioral
testing
For the dose–response assessment, we chose to study

doses of saline (vehicle), 1, 3, 10, 30, and 60 mg/kg. The

thermal responses of male naive C57BL/6J mice were

measured at 30–60min after a single dose of intraper-

itoneal saline or morphine administration. This time

frame was chosen based on the morphine response

findings from Dogrul and Seyrak [12]. On a further note,

the 30–60 min time frame was required to measure

thermal responses after saline or morphine administra-

tion, and reflects the acclimation time needed in the

behavioral device. Moreover, we show that the maximal

response to morphine resides within this window.

These morphine doses were selected based on the

findings by Wilson et al. [13] in which they found

that maximal thermal antinociception occurred at doses

less than 100 mg/kg in C57BL/6J mice using a tail

immersion assay.

Thermal sensitivity was measured in these mice

using the Hargreaves’ assay, as previously described.

The thermal latency data in the morphine dose–response

assessment are presented after normalization to vehicle

(saline). Normalization of the data entailed subtrac-

tion of the saline response to adjust for environ-

mental effects due to intraperitoneal injections in

nonanesthetized mice.

Statistical analysis
The sample size was n= 8 per group for all experiments

and the total number of mice studied was N= 72. For data

presented in Fig. 1, a Tukey’s multiple-comparison post-

hoc test of a repeated two-way analysis of variance (treat-

ment× time) was used to analyze these data (IBM SPSS

Statistics 24, Armonk, New York, USA). Time was used as

the repeated measure factor to determine main effects of

treatment, time, and the interaction. Tests of between-

subject effects were performed to show an observed power

of 1.000 (computed using α= 0.05), which include

assumption of sphericity, Greenhouse–Geisser correction,

and Huynh–Feldt correction. IBM SPSS Statistics 24 was

modified to directly calculate the significance between

groups at each time point incorporating a Bonferroni’s

correction.

Power was estimated using a two-side two-sample t-test
using GraphPad StatMate 2.00 software (La Jolla,

California, USA) to determine sample size for data pre-

sented in Fig. 2. These calculations were in agreement

with other studies [14,15]. This power analysis estimates

that a group sample size of n= 8 is expected to achieve

95% power with a significant level (α) of 0.05. The

morphine dosing data are expressed as mean ± SEM. All

data were normalized to saline response. Normalized data
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were analyzed for statistical significance by one-way

analysis of variance followed by Tukey’s multiple-

comparison post-hoc test for multiple comparisons

(three or more groups) with one variance.

Results
DRG CA8 overexpression alters thermal nociception
before and after carrageenan inflammation
We constructed vectors containing the WT CA8 cDNA

with a V5 tag (V5-CA8WT) and CA8 MT cDNA sequence

(S100P), which served as a negative control (V5-CA8MT)
[8,9]. We assessed the effects of V5-CA8 overexpression

on thermal nociceptive thresholds for 19 days after SN

injection and DRG transduction before and after carra-

geenan injection and inflammation in the hindpaw of

naive C57BL/6J mice (Fig. 1).

Before saline or viral SN injections, baseline thermal

latency in naive mice was ∼7 s (mean±SD: 7.34±1.09 s).
As shown in Fig. 1, thermal withdrawal latencies were

measured in saline-treated and vector-treated mice.

Differences in thermal withdrawal latencies were found

between groups [F(3, 28)=21.48, P<0.001] and across the

13 time points [F(12, 336)=20.04, P<0.001]. There were

also significant interactions between time and group

[F(36, 336)=4.37, P<0.001]. Bonferroni’s pairwise com-

parisons of time× group interaction indicated that there

were no differences between groups at baseline, day 1, day

3, and day 5. Withdrawal latencies in the AAV8-V5-CA8WT
group were greater than the saline group at all time points

after day 7 and after carrageenan application. Withdrawal

latencies in the AAV8 empty vector and AAV8-V5-CA8MT

Fig. 2

Morphine dose–response in naive mice for thermal withdrawal latencies.
Eight 10-week-old naive male C57BL/6J mice were injected
intraperitoneally in each group with morphine at each dose diluted in
saline. Saline was used as vehicle control and all results were normalized
to saline response. Each bar denotes mean±SEM group response
(N=8; ****P<0.0001, *P<0.05 vs. saline controls, ++++P<0.0001,
+P<0.05 vs. 1 mg/kg group; ####P<0.0001 vs. 3 mg/kg group;
$$$$P<0.0001, $$$P<0.001 vs. 10mg/kg group).

Fig. 1

Gene transfer of AAV8-V5-CA8WT vector through sciatic nerve (SN) injection in a carrageenan inflammatory pain model produces analgesia and
antihyperalgesia. Thermal latencies were measured at baseline and after intrasciatic saline or viral particle injection. Mice receiving SN injections of
AAV8-V5-CA8WT (wild type) vector (1.5 µl, 2.65E14 genome copies/ml) had increased basal thermal latencies after day 7 compared with saline-treated
mice. After carrageenan injections on day 14, mice in the AAV vector and AAV8-V5-CA8MT (mutant) vector groups had reductions in latency values
markedly below baseline on day 15 and day 16, indicating failure to protect from carrageenan-related hyperalgesia. In contrast, after carrageenan
injections on day 14, AAV8-V5-CA8WT-treated mice showed an attenuated reduction in thermal latencies on day 15 and day 16, in which these latency
values did not differ from baseline values. AAV8-V5-CA8WT therapy restored thermal latencies to above baseline on day 17 and day 19, indicating a
protective effect in response to inflammatory hyperalgesia (N=8; *P<0.05, **P<0.01, ***P<0.001, when compared with saline-treated mice).
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groups did not differ from saline treatment at all time points

before and after carrageenan treatment.

On day 14, AAV8-V5-CA8WT treatment increased

Hargreaves’ thermal latency values by about 4 s com-

pared with baseline values in the naive state (about 11 s

compared with 7 s). Thermal latencies did not increase in

saline, empty vector, or AAV8-V5-CA8MT-treated groups.

Following carrageenan inflammation, the transduction of the

mouse DRG with V5-CA8WT prevented a decrease in ther-

mal thresholds below baseline values, with restoration of

elevated thermal latencies of about 4 s above baseline by day

19. Conversely, SN administration of saline, virus containing

empty vector, and AAV8-V5-CA8MT provided no protection

from a decrease in thermal thresholds from baseline following

carrageenan inflammation.

Effect of morphine on thermal nociception before
carrageenan inflammation
The raw baseline thermal latency for naive mice in Fig. 2

was ∼ 7 s (mean ±SD: 6.87 ± 0.65), which were similar to

the unadjusted baseline thermal latency for naive mice

studied. Figure 2 shows normalized thermal latencies for

intraperitoneal vehicle responses (saline) by subtracting

the saline component. After normalization, we found

significant increases in thermal withdrawal latencies from

mice receiving 10, 30, and 60 mg/kg of morphine com-

pared with saline-treated mice. Mice receiving the

highest dose of morphine (60 mg/kg) had increases in

thermal withdrawal latencies compared with mice

receiving 1, 3, and 10 mg/kg of morphine, but not com-

pared with mice receiving 30 mg/kg. On the basis of this

analysis, we were able to assess the amount of parenteral

morphine required to increase thermal withdrawal

latencies in these naive mice and before carrageenan

inflammation. In addition to normalizing the data, we also

calculated maximal percentage effectiveness (%MPE)

using the formula: (measured thermal latency− saline

baseline latency)/[cutoff latency (20 s)− baseline latency]

[13]. We found a progressive increase in %MPE in rela-

tion to the dose, in which the %MPE was 7.48% for the

1mg/kg group, 20.17% for the 3mg/kg group, 36.28% for

the 10mg/kg group, 78.86% for the 30 mg/kg group, and

86.20% for the 60 mg/kg group.

Scaling of morphine from mice to humans based on the
dose response of morphine on thermal nociception
The amount of morphine administered in mice to pro-

duce antinociception (increase in thermal response above

baseline) is known as the mouse equivalent dose

(Table 1). By obtaining mouse morphine equivalents,

these data can be translated to a human equivalent dose

by allometric conversion that depends on a formula that

accounts for body surface area coefficients in humans and

mice [16]. As shown in Table 1, we can extrapolate the

mouse equivalent dose for thermal somatosensory

responses to clinical oral morphine dosing in humans.

Using this approach, we estimated that increases in

thermal withdrawal latencies on the order of 4 s, as seen

with AAV8-V5-CA8WT therapy, corresponds to a dose

equivalent to about 10 mg/kg of intraperitoneal morphine

(Fig. 2). We found that 10 mg/kg of systemic morphine in

mice translates to human equivalent dose of 0.81 mg/kg,

48.65 mg of parental morphine, and 145.95 mg of oral

morphine in a 60-kg adult (Table 1).

Discussion
In a previous study, we noted that thermal anti-

nociception in the noninflammatory state after Car8
gene therapy persisted for at least 28 days [6]. In this

report, we show that SN administration in naive inbred

mice and DRG transduction by using AAV8-V5-CA8WT
gene therapy produces profound analgesia as demon-

strated by a maximal increase of thermal latencies about

4 s above baseline (Fig. 1). In addition, we show that

CA8 therapy produced antihyperalgesia by preventing a

drop in thermal latencies below baseline in response to

carrageenan inflammation along with restored thermal

baselines to 4 s above baseline by day 19. These find-

ings support the concept that CA8 gene therapy pro-

vides prolonged analgesia before or after the onset of

inflammatory pain.

As aforementioned, both CA8 and morphine have ‘para-

doxical’ effects on intracellular calcium release, even though

both can produce antinociception. Morphine antinociception

has been attributed to increased calcium release through

ITPR1 binding of inositol 1,4,5-triphosphate (IP3) [7]. In

contrast, we demonstrated that murine AAV8-V5-Car8WT
showed inhibition of ITPR1-mediated cytosolic calcium

release in conjunction with decreased thermal hypersensi-

tivity [6]. We also found that greater DRG Car8 expression

antagonizes morphine analgesia concomitant with regulation

of morphine-induced ITPR-mediated calcium release [8].

The disadvantage of μ opioids, such as of morphine, is the

development of analgesic tolerance seen after morphine

administration [14], which may involve pathways that

increase intracellular calcium release such as IP3 binding to

IP3 receptors [17]. Further studies are warranted to deter-

mine whether CA8 therapy, which involves inhibition of

ITPR1-mediated calcium release, could be advantageous in

providing antinociception without the development of

analgesic tolerance.

We sought to determine the amount of morphine

equivalents needed to produce thermal antinociception

and correlate that with thermal antinociception associated

with CA8 therapy. The degree of thermal antinociception

in mice in response to morphine was assessed by

dose–response analysis (Fig. 2). On the basis of allometric

modeling by Reagan-Shaw et al. [16] among various

species, the proper translation of animal dosing to human

dosing entails the use of body surface area in addition to

weight. Using the morphine dose–response data col-

lected herein in naive male C57BL/6J mice, we show by
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allometric conversion that CA8 analgesia from this

experiment provided increases in thermal latency on the

order of 4 s, which translates to morphine dosing

equivalents of about 146 mg of oral morphine in a

60-kg adult human. These adult morphine quantities

would exceed the recommended dosing maximum of

50–120 mg of daily oral morphine equivalents based on

Centers for Disease Control [18] and Washington State

Interagency Guidelines [19] on opioid dosing in chronic

noncancer pain patients.

By establishing the relationship between morphine dosing

and the degree of analgesia and antihyperalgesia associated

with CA8 gene therapy, we extrapolated the potential

clinical significance of CA8 gene therapy to morphine

equivalents. However, there are several limitations with this

strategy. We assessed morphine equivalents in a single

inbred strain of male mice before inflammatory challenge.

Nonetheless, the increases in thermal latencies observed

after AAV8-V5-CA8WT therapy clearly persist after carra-

geenan inflammation, as compared with saline, empty

vector, and MT. Thus, it appears that measuring morphine

analgesic equivalents before the onset of carrageenan

inflammation should still be relevant. In addition, inbred

strains of mice differ in analgesic response by sex and strain,

limiting the extrapolation of specific findings [20]. For

example, C57BL/6 mice only achieve about 75% maximal

percentage of thermal antinociception with morphine

compared with BALB/cByJ mice, which had the highest

degree of maximal percentage antinociception on the order

of 90–100% [13]. Therefore, this strain appears relevant to

test our general hypothesis.

Conclusion
We determined that AAV8-V5-CA8WT SN injection pro-

duces profound analgesia in mice before and after severe

inflammatory pain, as assessed in morphine equiva-

lents. Further assessment of the safety profile of

AAV8-V5-CA8WT therapy in mice will entail various

assays to rule out tissue toxicity and neurobehavioral

abnormalities. Future research is also needed in under-

standing the role of known analgesics such as morphine

and clonidine in relation to CA8 analgesia, inflammation,

and calcium release.
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