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Abstract
Over 70% of the total channel length in all river basins is formed by low order 
streams, many of which originate on mountaintops. Headwater streams play funda-
mental roles in processing and transporting terrestrial and aquatic organic matter, 
often harboring high biodiversity in bottom leaf patches deposited from riparian veg-
etation. The objective of this study was to assess the variation in taxonomic composi-
tion (measured by beta diversity of aquatic macroinvertebrates) among stream sites 
located in the Espinhaço Meridional Mountain Range, part of a UNESCO Biosphere 
Reserve in eastern Brazil. We tested two hypotheses. (a) Taxa turnover is the main 
reason for differences in aquatic insect assemblages within stream sites; we pre-
dicted that turnover would be higher than nestedness in all stream sites. (b) Stream 
site altitude and catchment elevation range are the main explanatory variables for 
the differences in beta diversity; we predicted that local stream site variables would 
account for only minor amounts of variation. In both dry and wet seasons, we sam-
pled twice in two habitat types (five leaf patches in pools and five in riffles) in each 
of nine stream sites distributed in three different river basins. We computed average 
pairwise beta diversity among sampling stations and seasons in each stream site by 
using Jaccard and Bray– Curtis indices, and calculated the percentages of diversity 
resulting from turnover and nestedness. Finally, we tested the degree that local-  or 
catchment- level predictor variables explained beta diversity. We found that turnover 
was the main component of beta diversity and that both dissolved oxygen and el-
evation range best explained Bray– Curtis beta diversity. These results reinforce the 
importance of leaf patches in montane (sky islands) Neotropical savanna streams as 
biodiversity hotbeds for macroinvertebrates, and that both local and landscape vari-
ables explained beta diversity.
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1  | INTRODUC TION

Facing an accelerated scenario of global warming and considering 
that mountain streams harbor endemic taxa that may be extirpated 
as the streams warm (Rivers- Moore, 2012; Hotaling et al., 2017), 
mountaintop ecosystems are critical for two reasons. They sup-
port a unique and specialized biodiversity (Colvin et al., 2019) and 
offer refuges for aquatic species that could potentially migrate from 
lower reaches with unsuitably warm water, to upper reaches with 
cooler conditions (Colvin et al., 2019; Isaac et al., 2018). One South 
American mountaintop ecosystem, embedded within the Cerrado, 
Caatinga, and Atlantic Forest biomes, is the Campos Rupestres (CR, 
rocky grasslands). These areas are very old formations, with unfertile 
soils and communities adapted to them because of relatively stable 
ecological conditions over long geological time (Old Climatically- 
Buffered Infertile Landscapes, OCBILs; Hopper, 2009). The CR oc-
cupies < 1% of Brazil and yet hosts 15% of its plant species, including 
40% endemics (Silveira et al., 2019). The synergy among environ-
mental filters, geographical barriers related to changes in altitude and 
slope, and interactions between species is an important driving force 
for a wide variety of floral and faunal adaptations and speciation in 
the CR (Castro et al., 2019; Fernandes, 2016; Fernandes et al., 2018; 
Silveira et al., 2016). The CRs have been destroyed at alarming rates 
and these disturbances are reflected in their springs and headwater 
streams (Callisto et al., 2019; Callisto, Solar, et al., 2019). The CRs are 
located in the oldest South American mountains and are character-
ized by endemism and relict populations. Their headwater streams 
and riparian zones form meta- ecosystems forming natural corridors 
draining sky islands within the CR landscape matrix (Callisto, Solar, 
et al., 2019).

About 70%– 80% of the total channel length in river basins is 
formed by low (1st– 3rd) order streams (Wohl, 2017), and many of 
these originate on mountaintops (Callisto, Solar, et al., 2019), making 
them important for measuring beta biodiversity. Mountain head-
water streams play a fundamental role in processing and transport-
ing terrestrial and aquatic organic matter, and usually harbor high 
biodiversity (Boyero et al., 2016). Typically, aquatic communities in 
mountaintop headwater streams reflect adaptations to local envi-
ronmental conditions (e.g., low temperature and nutrient availability, 
high current velocity or wind, high channel slopes, coarse substrates, 
physical habitat diversity, and riparian zone, and terrestrial ecosys-
tem integrity) (Siebers et al., 2020). It is important to focus on both 
spatially extensive ecology (i.e., beta diversity) and site- extent ecol-
ogy (alpha diversity) because management of ecological systems 
must be extensive and local. But, there are simply too many possible 
sites to manage or study each one. Therefore, spatially extensive 
beta diversity studies have been valuable for determining patterns 
at national, continental, basin, biome, and ecoregion spatial ex-
tents in South American and North American countries (Dala- Corte 
et al., 2020; Stoddard et al., 2008).

Most studies of diversity and ecological interactions in lotic 
ecosystems of tropical regions have traditionally been conducted in 
forest ecosystems; riverine systems crossing non- forest ecosystems, 

including the CR, are seldom investigated (Linares et al., 2018). Thus, 
there is insufficient knowledge regarding how freshwater biodiver-
sity is distributed in non- forest montane streams. Given that these 
higher elevation streams connect upper to lower reaches in great 
river basins, such knowledge could support management strategies 
that would foster better conservation strategies for the headwaters 
of important South American river basins. Among the many taxa 
that compose the biodiversity in montane streams, benthic macro-
invertebrates are good indicators of water quality, reflect altitudi-
nal gradients (Castro et al., 2019) and participate in energy flux and 
nutrient cycling processes in freshwater ecosystems (Callisto, Solar, 
et al., 2019). To assess those macroinvertebrates, we focused our 
field sampling on leaf patches. Highly heterogeneous leaf patches 
and the biota living in them may promote turnover (species replace-
ment) more than nestedness (specific subset of biota from the spe-
cies pool) because each is driven to differing degrees by the regional 
species pool, species dispersal mechanisms, species interactions, 
landscape structure (elevation range, local relief and geomorphol-
ogy), disturbance regimes, and interactions among these factors 
(Castro et al., 2020; Leal et al., 2018).

Therefore, the aim of this study was to assess the variation in 
taxonomic composition (measured as stream- level beta diversity) 
among CR stream sites. Given that the turnover component made 
up most of the beta diversity in other Cerrado studies (e.g., Castro 
et al., 2020; Ligeiro et al., 2010; Pompeu et al., 2019) and that altitude 
and elevation range were the main drivers for structuring benthic 
macroinvertebrate assemblages (Gueuning et al., 2017; Musonge 
et al., 2020), we proposed two hypotheses. (a) Taxa replacement (i.e., 
turnover) should be the main reason for differences in benthic mac-
roinvertebrate assemblages among stream sites; we predicted that 
turnover would be higher than nestedness in all streams. (b) Altitude 
and elevation range will be the main explanatory variables for differ-
ences in beta diversity, surpassing local site variables, which should 
account for only minor amounts of variation.

2  | METHODS

2.1 | Study area

The Espinhaço Meridional Mountain Range (EMMR) was recognized 
as a Biosphere Reserve by UNESCO in June 2005 (Conservation 
International, CI -  www.conse rvati on.org.br) because of its impor-
tance to the natural and cultural heritage of Brazil and the world. 
The EMMR extends for ~400 km from south- central Minas Gerais 
(Serra do Ouro Preto and Serra do Ouro Branco, SE) to north Minas 
Gerais, near the Diamantina municipality (Almeida- Abreu, 1995), 
with widths of 50– 100 km and altitudes of 700– 1,800 m a.s.l. 
(Giulietti et al., 1987). The EMMR climate is tropical altitude (Cwb) 
with cool summers and a 5- month dry season. Annual mean tem-
peratures range from 17.5 to 18.5°C, and mean rainfall is between 
1,450 and 1,600 mm/y (Alvares et al., 2013). The EMMR separates 
the São Francisco basin (to the west), the Doce basin (to the east), 

http://www.conservation.org.br
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and the Jequitinhonha basin (to the northeast) through a mega- 
geomorphologic cliff (Valadão, 2009). The EMMR is characterized 
by shallow and rocky soils, with frequent quartzite outcrops. Its 
geological history dates back to the end of the Paleoproterozoic 
(1.800 Ma), making it the second oldest mountain complex in Brazil 
(Almeida- Abreu, 1995) and extremely old biogeographically (Castro 
et al., 2019). Vegetation types include unique rocky grasslands (CRs), 
Cerrado (Neotropical Savanna), and gallery forests that vary with 
elevation, longitude and latitude (Silveira et al., 2016). We selected 
nine CR stream sites distributed in a matrix of natural native vegeta-
tion and having over 70% canopy cover through use of an ad hoc se-
lection based on access, level of conservation of riparian vegetation 
and minimum human disturbance. Three sites are in Rio Preto State 
Park, three are in Serra do Cipó National Park, and three are in Serra 
do Ouro Branco (Figure 1; Appendix S1, all appendices are available 
in Dryad: https://doi.org/10.5061/dryad.0p2ng f20g.).

2.2 | Abiotic data collection

In each sampling season and in each stream site, we measured 
water pH and conductivity (µS/cm) with a portable multiparameter 
meter (YSI Multiprobe). Water samples were placed in an ice chest 

and taken to the laboratory where dissolved oxygen (mg/L), total 
nitrogen (mg/L), total phosphorus (µg/L), and turbidity (NTU) were 
determined via standard methods (APHA, 2005). We also measured 
instantaneous discharge using a current meter at a cross- section 
having nonturbulent or near- laminar flow in or near the studied sites 
(Peck et al., 2006).

Each stream was assigned to its Hydrographic Basin and 
Mountain (i.e., geographic group). We calculated altitude of the site 
(m), catchment area (km2), slope of the catchment (m; mean and 
range), and elevation of the catchment (m; mean and range) using 
GIS procedures and a SRTM model (~30 m spatial resolution; USGS, 
2015) and determined each catchment's lithology (CODEMIG, 1997, 
2017). We used data from WorldClim (Fick & Hijmans, 2017) to es-
timate catchment precipitation (mm; mean and range) and air tem-
perature (°C; mean and range).

2.3 | Biological data collection

In a 100 m long reach of each of the nine stream sites, two sampling 
stations were set where we collected as targeted samples, with a 
Surber sampler (30 × 30 cm; 250 μm mesh), five leaf patches in rif-
fles, and five in pools in both dry (July 2006) and rainy (March 2007) 

F I G U R E  1   Map of the Espinhaço 
Meridional Mountain Range stream site 
locations (A– I) and their mountain areas 
(dotted lines). Sites A, B and C are in the 
Jequitinhonha River basin; sites E and F 
are in the São Francisco River basin and 
sites D, G, H and I are in the Doce River 
basin

https://doi.org/10.5061/dryad.0p2ngf20g
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seasons, totaling 180 samples. In pool habitats, we used a Surber 
sampler simply to ensure the same collection area in pools as riffles, 
placed leaf deposits into the net by hand and transferred the net 
contents into plastic bags for subsequent processing. Leaf patches 
were chosen because, as Ligeiro et al. (2020) reported, they con-
centrate high abundance and diversity of macroinvertebrates, acting 
as biodiversity hotbeds. Consequently, they limit assemblage re-
sponses to the disturbance gradient when this substrate is targeted, 
as opposed to using multi- habitat sampling. At the sites, leaves were 
washed with stream water over a sieve (mesh size: 250 μm), sepa-
rated manually and then the macroinvertebrates and fine particulate 
organic matter were placed in plastic jars and fixed with 70% etha-
nol. In the laboratory, invertebrates were identified to family using 
taxonomic keys (Costa et al., 2006; Fernández & Domínguez, 2001; 
Merritt & Cummins, 1996; Mugnai et al., 2010; Pérez, 1988).

2.4 | Data analyses

We ran a permutational multivariate analysis of variance 
(PERMANOVA) pairwise contrasts analysis to test if benthic mac-
roinvertebrate assemblages in pools and riffles in the rainy and 
dry seasons showed different taxonomic compositional profiles. 
Because we found insignificant variation between seasons and 
habitat types, we pooled all the samples at each site together. As 

complementary analyses we also ran NMDS using Bray– Curtis 
distance and PERMANOVA pairwise contrasts analyses to as-
sess the assemblage composition variation among sampling sites 
(Anderson, 2017; Cáceres & Legendre, 2009; Wasserstein & 
Lazar, 2016). These analyses were run using the vegan package 
(Oksanen et al., 2017). We computed average pairwise beta diversity 
among sampling stations and seasons within each of the nine stream 
sites, with the Jaccard (presence- absence) and Bray– Curtis (abun-
dance) indices (Baselga, 2010, 2012), following the methodology 
described in Baselga and Orme (2012). We then calculated the per-
centage contribution of taxa replacement (i.e., turnover) and nested-
ness for all nine stream sites following Baselga and Orme (2012). All 
beta diversity analyses were calculated using the betapart package 
(Baselga & Orme, 2012) in R (R Development Core Team, 2017).

Because the stream site locations may have resulted in spatial 
autocorrelation, we ran Moran's I tests for spatial autocorrelation 
(Lecocq et al., 2019; Smeraldo et al., 2020), for both the Jaccard 
(family presence- absence) and Bray– Curtis (family relative abun-
dance) indices. Spatial autocorrelation was not significant among 
our stream sites for Jaccard (p = 0.69) and Bray– Curtis (p = 0.64) 
indices. For these analyses we used the ape package (Paradis & 
Schliep, 2019) in R.

To determine which were the main explanatory variables for beta 
diversity differences among stream sites, we used all the abiotic vari-
ables (Appendix S3) as predictor variables in two generalized linear 

F I G U R E  2   Non- metric multidimensional scaling (NMDS) of Bray– Curtis similarity results for benthic macroinvertebrate assemblages 
of the Espinhaço Meridional Mountain Range sites. Stress level is 0.223. Ellipses circumscribe the site comparisons; large dots indicate the 
centroids of each ellipse of the same color
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models (GLMs) with a Gaussian distribution, where the Jaccard and 
Bray– Curtis values for each of the nine stream sites were the re-
sponse variables. We then constructed a multimodel selection pro-
cedure based on all possible additive variable combinations that may 
have influenced beta diversity variation and calculated the cumula-
tive AICc weights (w+) for each variable to determine which were the 
most likely variables (w+ ≥ 0.50) to have influenced beta diversity 
variation (Burnham & Anderson, 2002). Statistical analyses were im-
plemented using the MuMIn package (Bartón, 2019) in R.

3  | RESULTS

We found a total of 17,431 individuals and identified 63 
taxa (Appendix S4). Chironominae, Simuliidae, Tanypodinae, 
Orthocladiinae (Diptera), and Elmidae (Coleoptera) were the most 
abundant families and subfamilies. Some sites were weakly to mod-
erately similar to others (Figure 2, Appendix S2). The two sites that 
were most different from each other (Indaiá, Garcia) are in the same 
basin and at slightly different elevations. The pairs of sites that were 
most similar to each other (Colonia –  Das Pedras, Indaiá –  SGRP, 
Alecrim –  Boleiras, Cachoeira –  Garcia) are sometimes in the same 
basin and sometimes not in the same basin, but usually at similar 
elevations. The turnover component of beta diversity was higher for 
most stream sites (Figure 3; Appendix S5). For the Jaccard index, 
turnover was higher in all stream sites, varying from 52.97% to 
88.57% of the dissimilarity. For the Bray– Curtis index, turnover was 
lower in only one of the nine stream sites (Das Pedras), reaching only 
48.87%, whereas it was higher in all the other stream sites, varying 
between 52.20% and 94.38%.

For our second hypothesis, we found that the importance of en-
vironmental variables varied depending on the beta diversity index 
considered (Table 1). No variable showed significant influence on the 
variation in the Jaccard dissimilarity index, however, the Bray– Curtis 
distance index was negatively related to elevation range and posi-
tively related to dissolved oxygen.

4  | DISCUSSION

Our first hypothesis, that taxa turnover would be the main reason 
for differences in macroinvertebrate assemblages among stream 
sites was confirmed because beta diversity was mostly due to turno-
ver in all but one stream site for Bray– Curtis distance. The preva-
lence of turnover as the main driver of beta diversity likely reflects 
the general trend of macroinvertebrate taxonomic composition to 
be influenced by the large amount of naturally rare taxa that are re-
placed within and among stream sites (Castro et al., 2020; Perez- 
Rocha et al., 2019). Rare taxa are mostly sensitive and specialist taxa, 
and therefore more likely to be affected by subtle differences in 
environmental conditions among stream sites (Arscott et al., 2006; 
Monaghan et al., 2005). Our results suggest that these Neotropical 
savanna montane stream sites may act as both reservoirs and ref-
uges for rare or endemic macroinvertebrate taxa, highlighting their 
uniqueness for biodiversity conservation in a global change scenario.

Our second hypothesis, that catchment variables (i.e., altitude 
and elevation range) would be the main explanatory variables for di-
versity differences among stream sites, was partially corroborated. 
Similar to Castro et al. (2019), we found that elevation range was a 
more important driver for Bray– Curtis beta diversity among stream 

F I G U R E  3   Proportion of taxa turnover 
and nestedness for Jaccard dissimilarity 
(left map) and Bray– Curtis distance (right 
map) for average pairwise beta diversity 
among sampling sites and seasons in each 
stream site



2556  |     CALLISTO eT AL.

sites than dissolved oxygen. Other authors have reached different 
conclusions for fish in Amazonian streams (Leal et al., 2018), mac-
roinvertebrates in Cerrado streams (Castro et al., 2018; Firmiano 
et al., 2021), and fish in Cerrado streams (Pompeu et al., 2019). 
Different results also have been reported for tropical streams in 
Malaysia (Al- Shami et al., 2013), subtropical streams in South Africa 
(Rivers- Moore, 2012) and for variability in MMI (multimetric index) 
scores of 3,420 temperate (USA) stream and river sites (Herlihy 
et al., 2020). Our results agree with those of Macedo et al. (2014), 
who reported that catchment- extent predictors explained more 
of the variability in macroinvertebrate and fish taxa richness for 
lower elevation Cerrado sites. However, Leitão et al. (2018) found 
that local and catchment variables predicted similar amounts of 
fish species richness variability in Amazonian streams. Such differ-
ences likely arise for multiple reasons, including the spatial extent of 
the study area, the number of stream sites studied, the degrees of 
variability in the catchment- extent and local- extent predictor vari-
ables, interactions between catchment and local predictor variables, 

and the types of statistical analyses employed (Infante et al., 2019; 
Mostafavi et al., 2019; Wang et al., 2006).

The NMDS and Permanova analyses results reinforce the ar-
guments of Moya et al. (2011), Stoddard et al. (2008) and Omernik 
et al. (2017) that ecoregional- type drivers are stronger biotic drivers 
than basin drivers. Nonetheless, many regional aquatic ecologists 
favor river basins as critical drivers of biota (e.g., Abell et al., 2008), 
and they are to some degree. But at both larger and smaller spa-
tial extents, as in our study, moderate differences in elevation range 
encompass other environmental variables that are associated with 
elevation range, such as catchment size, temperature, precipitation, 
DO, channel slope, and substrate size, which are often more import-
ant drivers of assemblage composition and richness than basin (Pont 
et al., 2009). Therefore, such drivers are frequently used for cali-
brating metrics employed in multimetric indices globally to increase 
their precision and assessment accuracy (Chen et al., 2019; Hering 
et al., 2006; Moya et al., 2011; Ruaro et al., 2020; Silva et al., 2017; 
Stoddard et al., 2008).

The lack of a significant result for the Jaccard dissimilarity index 
is likely because the studied stream sites are minimally disturbed ref-
erence streams and that presence/absence data are known to over-
value rare species (Jost, 2007), common in such streams (Martins 
et al., 2018). These ecosystems can show similar assemblage 
structure across different biomes (Santos et al., 2019). The natural 
variation found in reference streams may not be enough to affect 
patterns of family presence/absence. In contrast, abundances, eval-
uated through the Bray– Curtis distance index did detect variances, 
indicating that it is more sensitive to natural variability.

The leaves that fall from riparian vegetation are an important 
source of energy and nutrients for the metabolism of headwater 
streams. In the Neotropical Savanna (Cerrado biome), leaf fall is con-
tinuous throughout the year, with greater accumulation at the end of 
the dry season (Tonin et al., 2017). These leaves accumulate on the 
streambed, forming habitats that are important for aquatic macro-
invertebrates, where they find food and shelter against predators 
(Mendes et al., 2017). Often, micro- scale habitat features (e.g., plant 
species composition, age, chemical composition, leaf area, ash- free dry 
mass of leaf patches per unit area) may influence macroinvertebrate 
assemblage composition (Graça, 2001), but they were not measured 
in this study. Also, Macedo et al. (2014) reported that landscape- 
extent predictor variables accounted for more of the variation in mac-
roinvertebrate taxa richness than did local site variables. Leaf patches 
represent temporary islets where the biodiversity of aquatic macroin-
vertebrates is high (biodiversity hotbeds), concentrating greater taxa 
richness, biomass, and abundance (Ligeiro et al., 2020).

Highly heterogeneous leaf patches and the biota living in them 
may promote turnover (species replacement) more than nestedness 
(specific subset of biota from the species pool), although both are 
driven by the regional species pool, species dispersal mechanisms, 
species interactions, landscape structure, disturbance regimes, and in-
teractions among these factors (Castro et al., 2020; Leal et al., 2018). 
Leaf patches tend to be more heterogeneous in terms of plant species 
composition, age, chemical composition, leaf area, and edibility (Graça, 

TA B L E  1   Cumulative AICc weights (w+) and estimates of 
variable coefficients (β) for predictor variables used to model the 
contributions to beta diversity (Jaccard dissimilarity and Bray– 
Curtis distance), of aquatic macroinvertebrates in nine Campos 
Rupestres (CR) stream sites in the Espinhaço Meridional Mountain 
Range (EMMR; Minas Gerais, Brazil)

Metric

Jaccard Bray– Curtis

w+ β w+ β

Altitude 0.11 — <0.01 — 

Discharge 0.37 — <0.01 — 

Dissolved Oxygen 0.03 — 0.50 0.0619

pH 0.12 — 0.47 — 

Conductivity 0.02 — <0.01 — 

Turbidity 0.02 — 0.01 — 

Total Nitrogen 0.09 — <0.01 — 

Total Phosphorus 0.02 — <0.01 — 

Hydrographic Basin 0.12 — <0.01 — 

Mountain 0.02 — <0.01 — 

Lithology 0.05 — <0.01 — 

Catchment Area 0.03 — 0.08 — 

Slope mean 0.22 — <0.01 — 

Slope range 0.02 — <0.01 — 

Temperature mean 0.02 — 0.02 — 

Temperature range 0.21 — <0.01 — 

Precipitation mean 0.08 — <0.01 — 

Precipitation range 0.06 — <0.01 — 

Elevation mean 0.02 — 0.39 — 

Elevation range 0.15 — 0.97 −0.0004

Note: Values of w + in bold are those considered to be more likely 
(w+ ≥ 0.50) to have influenced beta diversity variation. Estimates 
of variable effects are based on the most parsimonious model that 
included that variable and are given only for variables with w+ ≥ 0.50.
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2001) compared with any single mineral substrate; therefore, the biotic 
heterogeneity in them favors greater species extirpation and replace-
ment versus supporting a specific subset of the species pool. Likewise, 
macroinvertebrate dispersal mechanisms on montane streams do not 
favor any specific subset of the macroinvertebrate species pool to 
arrive at and then colonize a leaf patch that is in continuous flux, as 
opposed to a more stable mineral substrate such as gravel or cobble. 
Lastly, species interactions in a matrix of organic materials of varying 
ages, consistency and interstices sizes are likely to favor greater taxa 
turnover than any single mineral substrate (Ligeiro et al., 2020).

Weak fluvial connectivity among different CR streams helped 
ensure that aquatic macroinvertebrates that live in leaf patches in 
headwater streams showed high beta diversity. In fact, such areas in 
tropical montane streams have already been reported as sky islands 
for biodiversity (Gueuning et al., 2017). This is because, the same el-
evation across different sky islands supports more similar taxa than 
different elevations within the same stream. For example, Villamarin 
et al. (2021) reported that Chironomidae subfamilies and water 
quality also were associated with elevation bands instead of river 
basins in southwestern Ecuadorean Andean streams. The CR eleva-
tion gradients reflect environmental conditions that are steep and 
geologically stable, thereby supporting ecological and genetic dif-
ferentiation, as proposed by von Humboldt over two centuries ago 
(Callisto, Solar, et al., 2019; Gueuning et al., 2017; Nicolson, 1987).

The waters of mountain streams combine to form hydrographic 
basins that connect landscapes along the river continuum, supply-
ing ecosystem goods and services to half the human population 
on Earth (Callisto, Solar, et al., 2019). The beta diversity of aquatic 
macroinvertebrates associated with leaf patches in headwater 
streams of the Espinhaço Meridional Mountain Range represents 
important information in response to global warming and supports 
three conservation practices. (a) Maintaining riparian vegetation 
is an important legal obligation by national law (Federal Brazilian 
Law #12651/2012). (b) Conserving headwater streams favors the 
conservation of rare species in protected area networks that main-
tain biotic diversity and ecological processes (Socolar et al., 2015). 
(c) Guaranteeing water supplies for human populations in the São 
Francisco, Doce and Jequitinhonha River basins can directly assist 
conservation planning in Neotropical mountain streams.
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