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Molecular fluorophores emitting in the second near-infrared (NIR-II) window with good
renal excretion ability are favorable for in vivo bio-imaging and clinical applications. So far,
renally excretable fluorophores are still less studied. Understanding the influences of
molecular structure on optical properties and renal excretion abilities are vital for
fluorophore optimization. Herein, a series of shielding unit-donor-acceptor-donor-
shielding unit (S-D-A-D-S) NIR-II molecular fluorophores are designed and synthesized
with dialkoxy chains substituted benzene as the S unit. The anchoring positions of dialkoxy
chains on benzene are tuned as meso-2,6, para-2,5, or ortho-3,4 to afford three
fluorophores: BGM6P, BGP6P and BGO6P, respectively. Experimental and calculation
results reveal that alkoxy side chains anchored closer to the conjugated backbone can
provide better protection from water molecules and PEG chains, affording higher
fluorescence quantum yield (QY) in aqueous solutions. Further, these side chains can
enable good encapsulation of backbone, resulting in decreased binding with albumin and
improved renal excretion. Thus, fluorophore BGM6P with meso-2,6-dialkoxy chains
exhibits the highest quantum yield and fastest renal excretion. This work emphasizes
the important roles of side chain patterns on optimizing NIR-II fluorophores with high
brightness and renal excretion ability.
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INTRODUCTION

To date, remarkable attention has been attracted for developing fluorophores for biological imaging
in the second near-infrared window (1,000–1700 nm, NIR-II) due to the merits of deep photon
penetration and low noise interference (Hong et al., 2017; Li and Pu, 2019; Lei and Zhang, 2021).
Fluorophores based on organic molecules exhibit superiority because of good biocompatibility and
easy tunability on optical performance (Antaris et al., 2016; Ding et al., 2018; Kenry et al., 2018).
Recently, indocyanine green (ICG) was utilized for the first in-human NIR-II imaging guided liver-
tumor surgery (Hu et al., 2020). However, great challenges need to be addressed for clinical
administration of most reported NIR-II molecular fluorophores due to their unfavorable metabolic
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pathway with apparently accumulation in functional tissues and
organs (Yang et al., 2017; Tian et al., 2019; Feng et al., 2021).
Molecular fluorophores with rapid clearance from body but low
retention in tissues and organs are preferred for preclinical
studies and clinical translation (Li et al., 2020). Renal
excretion can enable fast clearance of fluorophores after
intravenous injection treatment (Wan et al., 2018). However,
very few NIR-II fluorophores have been reported to be renally
excreted, and it still lacks guidance for designing molecular
fluorophores with simultaneously improved fluorescence
performance and renal excretion efficiency (Huang et al., 2019;
Yang et al., 2021). Therefore, it is of great significance to study the
relationship between molecular structure and optical properties
as well as renal excretion ability of NIR-II fluorophores.

A molecular architecture with shielding unit-donor-acceptor-
donor-shielding unit (S-D-A-D-S) backbone was previously
proposed by our group to develop water soluble NIR-II
molecular fluorophores (Yang et al., 2018; Ma et al., 2020;
Yang et al., 2021). The effects of backbone structures and side
chains of D units on fluorescence performance of S-D-A-D-S
fluorophores have been elucidated (Yang et al., 2018). It was
demonstrated that the optimized D units could result in less
molecular backbone distortion, weaker intermolecular
interaction and enhanced protection of molecular backbone
from interaction with water, which would effectively improve
the absorption coefficients and quantum yields (QYs) of
fluorophores in aqueous solutions (Yang et al., 2018). S units
also play an important role on influencing fluorescence
performance of the S-D-A-D-S fluorophores. It was showed
that altering the side chain length on S units could
simultaneously regulate the fluorescence performance and
renal excretion efficiency of fluorophores (Wan et al., 2018).

Herein, a series of S-D-A-D-S NIR-II molecules are designed
and synthesized with dialkoxy chains substituted benzene as S
unit, 3- (2-(2-(2-methyoxyethoxy)ethoxy)ethoxy (TEG)
substituted thiophene as D unit and benzo [1,2-c:4,5-c’]bis
[1,2,5]thiadiazole (BBTD) as A unit (Figure 1). The anchoring
positions of dialkoxy chains on benzene shielding unit are varied
as meso-2,6, para-2,5 or ortho-3,4 to afford fluorophores BGM6P,

BGP6P and BGO6P, respectively. These fluorophores exhibit
NIR-II fluorescence with emission peaks over 1,040 nm. It is
found that the closer arrangement of dialkoxy chains in S units to
molecular backbone can enable better protection of molecular
backbone, leading to higher fluorescence QY. As a result, BGM6P
with meso-2,6-dialkoxy chains substituted S unit exhibits the
highest QY of 0.12% (with reference to IR-26 with a QY of 0.05%
in dichloroethane) in aqueous solutions. Besides, the PEG chains
of BGM6P can form better encapsulation of hydrophobic
backbone, resulting in its weaker protein binding affinity.
Therefore, BGM6P also shows the highest renal clearance
efficiency and lowest liver, skin and muscle uptake within the
first 6 h post-injection in mice.

RESULTS AND DISCUSSION

Molecular Design
As illustrated in Figure 1, the conjugated backbone is constructed
with dialkoxy chains substituted benzene as S unit, thiophene as
D unit and BBTD as A unit because such backbone has been
reported to afford NIR-II fluorescent emission and renal
excretion ability (Wan et al., 2018). Four polyethylene glycol-
1500 (PEG-1500) chains are conjugated on the end of four alkoxy
chains via click reaction between terminal alkynyl groups of PEG
chains and azide groups of alkoxy chains. It is noteworthy that the
substitution positions of dihexyloxy chains on S unit are
elaborately engineered as meso-2,6, para-2,5 or ortho-3,4
position to yield three molecular fluorophores BGM6P, BGP6P
and BGO6P, respectively. It provides a chance to scrutinize the
influence of side chains substitution positions of S unit on optical
performance and renal excretion behaviors of the S-D-A-D-S
molecular fluorophores.

Optical Properties
The influence of dialkoxy substitution positions of S unit on
optical properties is investigated (Figures 2A–D and Table 1). In
toluene, all un-PEGylated fluorophores show similar absorption
spectra with peaks at ∼730 nm, which is consistent with the

FIGURE 1 | Structures of the S-D-A-D-S molecular fluorophores.
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similar calculated energy gap (Supplementary Figure S2).
Both BGO6 and BGP6 show high peak absorption
coefficient of around 19 × 103 M−1 cm−1, while the one of
BGM6 is slightly lower. It could be explained by the larger
backbone distortion of BGM6 than BGO6 and BGP6

(Supplementary Figure S3). Similar fluorescence spectra
with emission maximum located at 1,013 nm are observed
for all fluorophores in toluene, and comparable QYs of ∼2.0%
(QY of IR-26 with 0.05% in 1,2-dichloroethane as reference)
are determined.

FIGURE 2 | (A) Absorption and (B) emission spectra of un-PEGylated fluorophores in toluene (40 μM). (C) Absorption and (D) emission spectra of PEGylated
fluorophores in water (80 μM). An 808 nm laser is used for excitation with exposure time of 50 ms. The fluorescence intensity is normalized with the optical density (OD) of
the sample at 808 nm. The inset of Figure 2D displays the brightness of fluorophore aqueous solutions under an 808 laser excitation at same concentration.

TABLE 1 | Optical data of the fluorophores. QE (brightness) � QY × ε.

Fluorophores Solvent εmax (103 M−1 cm−1) λabs (nm) λem (nm) Stokes shift (nm) QY (%) Qe

BGM6 Toluene 15 728 1,013 285 2.0 300
BGP6 Toluene 19 727 1,013 286 2.0 380
BGO6 Toluene 19 733 1,013 280 2.0 380
BGM6P Water 8.1 736 1,047 311 0.12 9.72
BGP6P Water 9.7 736 1,060 324 0.056 5.43
BGO6P Water 11 741 1,060 319 0.019 2.01

TABLE 2 | Size distribution of fluorophores in water (0.05 mg/ml) by dynamic light scattering (DLS) method and kinetic binding assay of fluorophores to albumin measured by
bio-layer interferometry.

Fluorophores Size Protein binding

Mean hydrodynamic
diameter (nm)

PDI Kd (µM)

BGM6P 3.3 ± 0.24 0.236 ± 0.024 1.20 ± 0.27
BGP6P 2.9 ± 0.41 0.210 ± 0.013 0.76 ± 0.17
BGO6P 3.4 ± 0.26 0.228 ± 0.031 0.44 ± 0.13
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FIGURE 3 | (A) The front view (up) and top view (below) of fluorophores in aqueous environment from molecular dynamics (MD) simulations. PEG chain: the bray
and red thin part; carbon atom: brown; oxygen atom: red; sulfur atom: yellow; nitrogen: blue. (B) Radial distribution function (RDF) of oxygen atoms in water molecules
and (C) counted the number of water molecules around the BBTD unit of fluorophores. (D) Radial distribution function (RDF) of oxygen atoms in PEG chains and (E)
counted umber of oxygen atoms in PEG chains around the BBTD unit of fluorophores, where g(R) represents RDF (left), R(Å) means the radius in angstrom.
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The fluorophores BGO6P, BGP6P and BGM6P with PEG
chains exhibit similar absorption spectra in water with peaks at
∼740 nm, slightly red-shifted compared to those in toluene. The
peak absorption coefficient of BGM6P (8.1 × 103 M−1 cm−1) is
slightly lower than those of BGO6P and BGP6P (11 ×
103 M−1 cm−1 and 9.7 × 103 M−1 cm−1) (Figure 2C). All
PEGylated fluorophores show similar emission spectra with
peaks at 1,047–1,060 nm, which are all redshifted when
compared with their counterparts in toluene. Interestingly, the
dialkoxy chains anchoring positions on S unit makes a distinct
difference on the QYs of fluorophores in water. The highest QY of
0.12% is measured for BGM6P, outperforming 0.056% of BGP6P
and 0.019% of BGO6P. Consequently, BGM6P aqueous solution
displays the highest brightness of 9.72 at the same concentration
under an 808 nm laser excitation, higher than 5.43 of BGP6P and
2.01 of BGO6P (Figure 2D), suggesting its superiority for
applications on in vivo biological imaging. Large Stokes shifts
of over 310 nm can be observed for all fluorophores in water,
which can prevent the self-absorption of fluorescence and thus
further improve biological imaging quality.

Molecular Dynamics Simulation in the
Aqueous Environment
Molecular dynamics (MD) simulations are conducted to reveal
the interactions between fluorophores and surrounding water
molecules (Yang et al., 2018; Ma et al., 2020; Zhu et al., 2020). As
shown in Figure 3A, four meso-2,6 alkoxy chains on two S units
of BGM6P are all extended toward backbone center and thus
can effectively cover both thiophene D units and BBTD unit. For
BGP6P, it is found that two 2-alkoxy chains are extended toward
backbone center while two 5-alkoxy chains are extended away
from the molecular backbone, affording half coverage effect on
thiophene and BBTD units. By contrast, ortho-3,4 dialkoxy
chains are all extended away from the molecular backbone
center for BGO6P, leading to absence of coverage on
thiophene and BBTD units. Radial distribution function
(RDF) of oxygen atoms in water molecules and counted
number of water molecules (defining the BBTD acceptor unit
as the center) are also evaluated (Figures 3B,C). As expected,
obviously higher RDF values and more counted number of
water molecules surrounding BBTD center can be observed for
BGO6P than BGM6P and BGP6P. Considering the fluorescence
performance in water can be suppressed with enhanced
interaction between molecular backbone and water
molecules, the poor protection of ortho-3,4-dialkoxy chains
on molecular backbone results in the lowest QY of BGO6P.
It should be pointed out that both BGM6P and BGP6P show
similar RDF values and counted numbers of water molecules
surrounding BBTD center, however, their QYs are different
(0.12% for BGM6P while 0.056% for BGP6P). Due to the
flexibility of long PEG chains, the twining PEG chains will
interact with molecular backbones and decrease the
fluorescence performance of fluorophores. Hence, RDF of
oxygen atoms in four PEG chains and counted oxygen atoms
number (defining the BBTD unit as the center) are calculated
(Figures 3D,E). It is revealed that BGM6P exhibits the lowest

oxygen atom RDF value and the least counted number of oxygen
atoms surrounding BBTD unit. It suggests the weakest
interaction between PEG chains and molecular backbone of
BGM6P, resulting in the highest QY in aqueous solutions.

Excretion Behaviors of Fluorophores
Excretion behaviors of BGM6P, BGP6P and BGO6P were
investigated to study the influence of molecular structure on
renal excretion ability of fluorophores (Figures 4A–C). After
intravenous administration of these fluorophores in phosphate
buffer saline (PBS) solutions into mice, the real-time distribution
of fluorophores was monitored to assess their metabolic progress.
Renal excretion pathway can be obviously observed for all three
fluorophores, though renal excretion efficiency is different. As
shown in Figures 4A,B, for BGM6P treated mouse, the
fluorescence signal of bladder reaches the peak value at 5 min
post-injection (p. i.), while fluorescence in liver, skin and muscle
is almost undetectable. The fluorescence signal in bladder
disappears at 6 h p. i. Strong fluorescence signal can also be
observed in bladder for BGP6P treated mouse and reaches the
peak value at 20 min p. i. and disappears at 12 h p. i. However,
conspicuous fluorescence can be figured out in liver, skin and
muscle and remained detectable even at 24 h p. i. Presumably due
to the inferior fluorescence performance of BGO6P, weak
fluorescence signal can be observed in bladder and reaches the
peak value at 20 min p. i. and disappears at 12 h p. i. The
fluorescence signal in skin and muscle can also be observed at
24 h after intravenous injection. The fluorescence intensity ratio
of bladder to liver/skin and muscle are characterized for these
three fluorophores and demonstrated that mouse with treatment
of BGM6P shows the highest fluorescence ratio of bladder to
liver/skin and muscle at any time point after injection
(Figure 4C). These results strongly demonstrate that BGM6P
with meso-2,6 dialkoxy chains substituted S units exhibits the most
effective renal excretion and lowest liver/skin and muscle uptake.
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay was used to evaluate the in vitro cytotoxicity of the
fluorophores. It is found that more than 95% of cell lines stay alive
after incubating with BGM6P (up to 0.1 mgml−1) for 12 h
(Supplementary Figure S7), indicating low cytotoxicity of the
fluorophore. The biodistribution of BGM6P was measured
within 2 h p. i. in mouse (Supplementary Figure S8). The
result reveals that there are very weak NIR-II fluorescent signals
in all tested main organs, indicating the fast excretion feature of
BGM6P.

Excretion Mechanism of Fluorophores
After observing that BGM6P exhibits the most effective renal
clearance and lowest liver, skin and muscle retention than the
other two fluorophores, we attempted to elucidate the
relationship between the molecular structure and renal
excretion efficiency of these fluorophores. In previous reports,
it has been found that the size, hydrophilicity and protein binding
affinity of fluorophores are closely related to their excretion
ability (Tian et al., 2019). By measuring the size of these
fluorophores through the dynamic light scattering (DLS)
method (Figure 5A), it is observed that all fluorophores show
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similar hydrodynamic size of ∼3 nm (Table 2), smaller than the
renal cutoff (∼5 nm), which is generally considered as an
important requirement for renal excretion. In order to identify
the underlyingmechanism for the higher renal clearance ability of
BGM6P than BGP6P and BGO6P, it should be noted that all
meso-2,6 dialkoxy chains and backbone of BGM6P are more
perfectly encapsulated by the winding PEG chains than those of
BGP6P and BGO6P (Figure 3A). It can afford lower lipophilicity
for BGM6P than the other two fluorophores. In this regard, the
binding affinities with albumin (the most abundant protein in
plasma) of three fluorophores were tested (Figures 5B–D), the
dissociation constant (Kd) values are measured to be ∼1.20 μM,
∼0.76 and ∼0.44 μM for BGM6P, BGP6P and BGO6P,
respectively (Table 2). The higher Kd value of BGM6P
suggests that it is more difficult for BGM6P to bind with

protein, thus leading to its superior renal excretion efficiency
to the other two fluorophores.

CONCLUSION

In summary, the influence of dialkoxy chains anchoring positions of S
units on optical and renal excretion ability of S-D-A-D-S NIR-II
molecular fluorophores has been investigated. It is found that meso-
2,6 substitutions make the dialkoxy chains arranged closer to molecular
backbone than para-2,5 and ortho-3,4 positions. This close arrangement
can form favorable protection of molecular backbone from interactions
with water as well as PEG chains, thus affording higher fluorescence
performance for fluorophore BGM6P. Interestingly,meso-2,6 anchored
dialkoxy chains on the S units can also make the backbone better

FIGURE 4 | (A) Wide-field fluorescence imaging of mice injected with BGM6P, BGP6P and BGO6P as function of time. (B) The real-time NIR-II fluorescence
intensity in bladder for BGM6P, BGP6P and BGO6P, respectively (C) Representative background subtracted signal of bladder to liver as a function of time for mice
injected with BGM6P, BGP6P and BGO6P, respectively. All the fluorescence imaging was taken in the NIR-II window (imaging condition: 808 nm laser excitation, power
density: 60 mW/cm2, exposure time: 100 ms, 1,100 nm long pass (LP) filter, injection dose: optical density (OD) value � 3.4, 200 µL).
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encapsulated by flexible PEG chains than para-2,5 and ortho-3,4
dialkoxy chains, affording weaker protein binding affinity for
BGM6P. Consequently, BGM6P shows the fastest renal excretion
and lowest liver, skin and muscle accumulation when intravenously
injected inmice. This study provides guidelines for the design of NIR-II
fluorophores with enhanced fluorescence performance and renal
clearance efficiency. It also reveals the importance of tuning side
chain substitution positions for optimizing fluorophore design.

MATERIALS AND METHODS

Materials
Unless otherwise noted, all chemical reagents are obtained
commercially and utilized without further purification.
Tetrahydrofuran (THF), toluene, and dimethyl formamide
(DMF) used for reactions were purified by a solvent purification
system (Innovative Technology, Inc.) before using. All air and
moisture sensitive reactions were carried out in flame-dried
glasswares under a nitrogen atmosphere.

Methods
General Measurements
1H and 13CNMR spectra were performed on 500 and 400MHzNMR
spectrometers (Bruker AVANCE) using CDCl3. Mass spectra were
recorded on a Q-STAR Elite (ABI) instrument. Ultraviolet-visible-
near infrared (UV-Vis-NIR) absorption spectra were recorded on
Shimadzu UV-3600PLus. All UV-Vis-NIR measurements were
conducted using quartz cuvettes with 1 cm light path and the

sample volume was 3ml. Background measurement was made by
using deionized toluene or water without any sample. Size exclusion
chromatography (SEC) was performed onMalvern Viscotek 270max
with 10 µmPLgel 600 × 7.5mm column. THFwas used as themobile
phase at a flow rate of 1.0ml/min at 40°C.

Animal Experiments
Animal experiments were approved by the Institute of Radiation
Medicine, Chinese Academy of Medical Sciences administrative
panel on Laboratory Animal Care. All experiments were
performed in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. C57BL/6 and
nude mice were purchased from Charles River. Bedding, nesting
materials, food and water were provided ad libitum. Ambient
temperature was controlled at 20–22°C with 12-h light/12-h dark
cycles.

In vivo NIR-II Fluorescence Imaging
For dynamic NIR-II imaging, fluorophores were injected from
tail vein, injection dose: OD � 3.4, 200 µL. NIR-II fluorescence
images were collected using a liquid-nitrogen-cooled, two-
dimensional InGaAs array (Princeton Instruments, 640 ×
512 pixels). The excitation light was provided by a fiber-
coupled 808-nm diode laser (RMPC) with an in-plane
excitation power density of 60 mW/cm2. The light was
collimated and filtered through a 4.5 mm collimator and an
850-nm and a 1000-nm short pass filter (Thorlabs). The
emission light was filtered using a 1100-nm, long pass filter
(Thorlabs), and focused onto the detector.

FIGURE 5 | (A) Size of fluorophores tested by dynamic light scattering (DLS) method. Kinetic binding assay to albumin results of BGM6P (B), BGP6P (C) and
BGO6P (D) measured by bio-layer interferometry.
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