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Abstract: The adaptive decomposition algorithm is a powerful tool for signal analysis, because it can
decompose signals into several narrow-band components, which is advantageous to quantitatively
evaluate signal characteristics. In this paper, we present a comparative study of four kinds of
adaptive decomposition algorithms, including some algorithms deriving from empirical mode
decomposition (EMD), empirical wavelet transform (EWT), variational mode decomposition (VMD)
and Vold–Kalman filter order tracking (VKF_OT). Their principles, advantages and disadvantages,
and improvements and applications to signal analyses in dynamic analysis of mechanical system
and machinery fault diagnosis are showed. Examples are provided to illustrate important influence
performance factors and improvements of these algorithms. Finally, we summarize applicable scopes,
inapplicable scopes and some further works of these methods in respect of precise filters and rough
filters. It is hoped that the paper can provide a valuable reference for application and improvement
of these methods in signal processing.

Keywords: signal processing; non-stationary signal; narrow-band signal; adaptive decomposition
algorithm

1. Introduction

At present, a great number of scholars conduct investigations about adaptive decomposition
algorithms. It is difficult to find a rigorous definition of the adaptive decomposition algorithm; however,
we think that such a type of method can form a series of sparse representations in the decomposition
process, which is different with “rigid” methods, such as the Fourier or wavelets transforms,
corresponding to the use of some basis (or frame) designed independently of the processed signal [1,2].
As many kinds of signals in engineering problems are non-linear and non-stationary, such as fault
signals of mechanical equipment [3–8], some modal test signals [9], acoustic signals of non-destructive
testing [10,11] and condition monitoring signals for rail track [12–14], the adaptive decomposition
algorithm has superiority for analyzing these signals, because of decomposition flexibility.

Currently, empirical mode decomposition (EMD), empirical wavelet transform (EWT), variational
mode decomposition (VMD) and Vold–Kalman filter order tracking (VKF_OT) are popular adaptive
decomposition algorithms. These methods show excellent capacity of processing non-linear and
non-stationary signals. Some important improvements have been done for EMD in some other algorithms
such as complementary ensemble empirical mode decomposition (CEEMD), complementary ensemble
empirical mode decomposition with adaptive noises (CEEMDAN) and improved complementary ensemble
empirical mode decomposition with adaptive noises (improved CEEMDAN), which are more competent
at processing non-linear and non-stationary signals. However, these adaptive decomposition algorithms
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have their own characteristics, which affect performances. Therefore, a comparative study that illustrates
factors to consider when applying these adaptive decomposition algorithms will be welcome to researchers
processing non-linear and non-stationary signals. Techniques that further process decomposition results of
these methods are also valuable, so we will summarize this kind of technology in this paper. Furthermore,
we present some further works that can be done for these methods in this paper, hoping some improved
versions can be proposed to solve problems when processing non-linear and non-stationary signals.

The remainder of this paper is organized as follows. Section 2 presents the principles and influence
factors of the decomposition result, improvements of algorithms deriving from EMD and investigations of
theory and application of EMD. Sections 3–5 present principles, advantages and disadvantages of EWT,
VMD and VFK_OT and investigations of theory and application of these algorithms. Section 6 summarizes
the characteristics of these adaptive decomposition methods and points out areas for future work.

2. Algorithms Deriving from Empirical Mode Decomposition

In 1998, Huang [1] proposed EMD, which takes intrinsic mode functions (IMFs) that are narrow-band
components to act as basic functions, to obtain sparse representation of analyzed signals, as mentioned
above. Decomposing signals into narrow-band components can result in advantages of time-frequency
analysis. For example, multi-component signals can be decomposed into amplitude and frequency
modulated (AM and FM) components, which makes it feasible for obtaining instantaneous frequency (IF)
and instantaneous amplitude (IA) by using Hilbert transform (HT). Valuable components can be extracted
by EMD, which is helpful for obtaining the necessary features of signals. Therefore, numerous researches of
theory and application were done for EMD. Among these works, ensemble empirical mode decomposition
(EEMD), complementary ensemble empirical mode decomposition (CEEMD), and complementary ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) are remarkable. Therefore we present the
principles of these methods, and the corresponding superiorities over EMD. The issue of the limitation of
frequency resolution of these algorithms and the influence of sampling frequency for decomposition results
are discussed to provide a reference for employing these algorithms.

2.1. Empirical Mode Decomposition

2.1.1. Principle of Empirical Mode Decomposition

EMD [1] decomposes a signal f (t) into a small number of IMFs. To be considered as an IMF,
a signal must fulfill two conditions: (1) the number of extrema (maxima and minima) and the number
of zero-crossings must be equal or differ at most by one; and (2) the local mean, defined as the mean of
the upper and lower envelopes (The definition of “envelope” can be found in Ref. [1]), must be zero.
The algorithm can be described as follows [1]:

(1) Set k = 0, and find all extrema of r0(t) = f (t).
(2) Interpolate between minima (maxima) of rk(t) to obtain the lower (upper) envelope emin(t) (emax(t)).
(3) The mean envelope is calculated by,

m(t) = (emin(t) + emax(t))/2 (1)

(4) The IMF candidate is obtained by,

dk+1(t) = rk(t)−m(t) (2)

(5) Repeat Steps (2)–(4) on dk+1(t), until m(t) is close to zero. Then dk+1(t) is an IMF noted as ck+1(t).
(6) Compute the residue by

rk+1(t) = f (t)− ck+1(t) (3)

and do k = k + 1.
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(7) Residue rk+1(t) is taken as f (t), and repeat Steps (1)–(6) to generate the next IMF and residue,
until the final r(t) satisfies the predefined stopping criterion. Therefore, the original signal f (t)
can be represented by the following formula:

f (t) =
n

∑
i=1

ci(t) + R(t) (4)

where ci(t) is the ith IMF and R(t) is the final residue.

The distribution of extreme values of a signal depends on the IA and IF of corresponding
mono-components. It can learn from the principle of EMD that EMD utilizes it to extract IMFs
in the process of sifting and iteration. Therefore, the method inevitably suffers from limitations in
some domains, such as frequency resolution and influence of sampling frequency. These issues are
presented in the following sections.

2.1.2. Limitation of Frequency Resolution

Frequency resolution is important for the adaptive decomposition algorithm, as it is a crucial
parameter determining the scope of application. Refs. [15–18] revealed that frequency resolution was
related to the number of sifting iterations, stopping criterion threshold setting and the amplitude ratio
between different mono-components. For stopping criterion threshold setting, at present, there is no
authoritative statement, which may result from EMD’s lack of theoretical basis, and the parameter
is set according to experience of a specific question [16]. Refs. [17,18] tried to improve frequency
resolution of EMD using different masking operations. For the amplitude ratio between different
mono-components, Ref. [15] pointed out the frequency resolution would decrease when amplitude
ratio is greater than a threshold. 100 was taken as a reasonable number of sifting iterations in [15].
A great amount of computation work will be done with several iterations greater than 100, and we set
this parameter as 2000, which may not be an ideal choice in a specific question. In the following section,
research is performed concerning frequency resolution of EMD with open source codes, setting the
number of sifting iterations as 2000, setting the stopping criterion threshold as 0.05, and this parameter
is also set as 2000 in the following algorithms deriving from EMD.

As indicated in Ref. [15], for a reasonable number of iterations, when the ratio between a relatively
low frequency and a relatively high frequency is larger than 0.75, the two components of a signal
cannot be separated. To illustrate the conclusion, we construct a sample signal fsig1,

fsig1 = s1(t) + s2(t) + s3(t)
s1(t) = sin(75× 2πt), 0 ≤ t ≤ 1

s2(t) = sin(100× 2πt), 0 ≤ t ≤ 1
s3(t) = sin(200× 2πt), 0 ≤ t ≤ 1

(5)

The sampling frequency is 2 kHz. When the amplitudes of tone components are equal, different
components tend to be isolated, so we set it as 1 in components of the sample signal fsig1. The waveform
of the sample signal fsig1 in the time domain is presented in Figure 1. Ref. [19] reveals that greater
correlation coefficients lead to more important corresponding IMFs for the original signals. Therefore,
we pick out the IMFs, whose correlation coefficients with the sample signal fsig1 are greater than
0.2. The coefficients of correlation between different IMFs and the sample signal fsig1 are shown in
Figure 2. The correlation coefficients of IMFs 1 and 2 are greater than 0.2, so these IMFs are kept,
and shown in Figure 3. As illustrated in Figure 3, the component s3 of fsig1 is extracted. IMF2 includes
the components s1 and s2, which mix together, as shown in Figure 3b. The decomposition result above
demonstrates the conclusion about frequency resolution of EMD. Furthermore, this conclusion just
tells us that, when the ratio is greater than 0.75, the two tones will be taken as a single component,
for a reasonable number of iterations.
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Figure 1. The waveform of the sample signal fsig1 between in time domain.

Figure 2. The coefficients of correlation different IMFs and the sample signal.

Figure 3. The waveforms of the IMFs 1 and 2 of fsig1 and the corresponding Fourier spectrums: (a)
waveforms and (b) Fourier spectrums.

2.1.3. Influence of Sampling Frequency on Decomposition Result

As mentioned above, EMD utilizes the distribution of extreme values of a signal to extract IMFs
in a process of sifting and iteration. Generally, the distribution of extreme values depends on the IF
and the IA of corresponding mono-components of the signal. However, for discrete signals, the true
extreme value may be different with the theoretical value. Increasing the sampling frequency is
advantageous for decreasing the difference, as shown in Figure 4. The first maximum extreme value of
the signal of 200 Hz is in a time of 0.00125 s, and the value is 1. With different sampling frequencies,
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the times of the extreme value are 0.00125, 0.001 and 0.002 s, and the corresponding values are about 1,
0.95 and 0.58, corresponding to sampling frequencies of 0.5, 2 and 20 kHz. Some false components may
be generated from the error of the envelope calculation of cubic spline interpolation and calculation of
mean value for the extreme values. To demonstrate it, we apply EMD on the signals with sampling
frequencies of 0.5 and 2 kHz, and the signal with a sampling frequency of 20 kHz is taken as the
original continuous signal. The decomposition results are shown in Figures 5 and 6, respectively.
As shown in Figure 5, when the sampling frequency is 0.5 kHz, the result of EMD is different to the
original signal, and false components occur, as can be seen in Figure 5b. It is deduced that, because
the sampling frequency is not great enough, based on the extreme values, the envelope calculation of
cubic spline interpolation and the further calculation of the mean value cannot generate the original
signal. As shown in Figure 6, when the sampling frequency is 2 kHz, the result of EMD corresponds to
the original signal. It is deduced that, because the sampling frequency is great enough, based on the
extreme values, the envelope calculation of cubic spline interpolation and the calculation of the mean
value can generate the original signal in sifting and iteration process.

The conclusion above suggests that, when EMD is applied to the process signal, a relatively
higher sampling frequency is advantageous for generating correct decomposition result. Otherwise,
an insufficient sampling frequency will result in false components occurring in IMFs.

Figure 4. The distributions of extreme values of a signal of 200 Hz with sampling frequencies of
0.5, 2 and 20 kHz.

Figure 5. The EMD result of the signal of 200 Hz with a sampling frequency of 0.5 kHz and the
corresponding Fourier spectrum: (a) the results of EMD and (b) the Fourier spectrum.
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Figure 6. The EMD result of the signal of 200 Hz with a sampling frequency of 2 kHz and the
corresponding Fourier spectrum: (a) the result of EMD and (b) the Fourier spectrum.

2.1.4. Phenomenon of Mode-Mixing Caused by Intermittent Signals

In the process of an IMF generation, EMD extracts the component with the highest frequency in
every time section. Therefore, every component cannot be intermittence; otherwise, mode-mixing will
occur. To demonstrate this, we construct a sample signal fsig2,

fsig2 = s1(t) + s2(t) + s3(t)

s1(t) =


0
sin(50× 2πt)
0

0 ≤ t ≤ 0.1
0.1 < t ≤ 0.6
0.6 < t ≤ 1

,

s2(t) =


0
sin(100× 2πt)
0

0 ≤ t ≤ 0.2
0.2 < t ≤ 0.7
0.7 < t ≤ 1

,

s3(t) =


0
sin(200× 2πt)
0

0 ≤ t ≤ 0.3
0.3 < t ≤ 0.8
0.8 < t ≤ 1

(6)

The sampling frequency is 2 kHz. The waveform of the sample signal fsig2 in the time domain is
presented in Figure 7, and the corresponding short-time Fourier transform (STFT) representation is
shown in Figure 8. We pick out the IMFs, whose correlation coefficients with the sample signal fsig2

are greater than 0.2. The coefficients of correlation between different IMFs and the sample signal fsig2

are shown in Figure 9. The correlation coefficients of IMFs 1, 2 and 3 are greater than 0.2, so these
IMFs are kept, and shown in Figure 10. If the conclusion mentioned above is correct (in the process of
an IMF generation, EMD extracts the component with the highest frequency in every time section),
the time-frequency distributions of IMFs 1–3 should be as follows: for IMF 1, the frequency of signal
in time interval [0.1 0.2] s is 50 Hz; and the frequency of signal in time interval [0.2 0.3] s is 100 Hz;
and the frequency of signal in time interval [0.3 0.8] s is 200 Hz. For IMF 2, the frequency of signal
in time interval [0.2 0.3] s is 50 Hz; the frequency of signal in time interval [0.3 0.7] s is 100 Hz;
for IMF 3, the frequency of signal in time interval [0.3 0.6] s is 50 Hz, as shown in Figure 11. As can
be seen in Figure 10, the frequencies in different time sections of IMFs 1 and 2 signed by different
red rectangles seem different. To make the time-frequency distribution visible, we do STFT for the
IMFs 1–3, as shown in Figure 12, which verifies the ideal time-frequency distributions of IMFs 1–3.
Therefore, our deduction is correct.
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As revealed in the discussion above, if components of a signal are intermittent, mode-mixing will
occur. To resolve this problem, EEMD was proposed.

Figure 7. The waveform of the sample signal fsig2 in time domain.

Figure 8. The STFT of the sample signal fsig2.

Figure 9. The coefficients of correlation between different IMFs and the sample signal fsig2.
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Figure 10. The waveforms of the IMFs 1–3.

Figure 11. The ideal time-frequency distributions of the IMFs 1–3: (a) IMF 1; (b) IMF 2 and (c) IMF 3.

Figure 12. The STFT representations of the IMFs 1–3: (a) IMF 1; (b) IMF 2 and (c) IMF 3.

2.2. Ensemble Empirical Mode Decomposition

2.2.1. Resolving the Problem of Mode-Mixing Caused by Intermittent Signals

Wu and Huang [19] proposed EEMD, which is a marked milestone in the development of EMD.
White noise can provide a uniformly distributed scale in the time-frequency space. It can provide similar
scales of reference gridings to automatically associate with the intrinsic oscillations in the signal with different
scales. Therefore, all the intrinsic oscillations become continuous in the whole signal. As mentioned above,
EMD extracts the component with the highest frequency in every time section. Since no intermittence occurs
in each intrinsic oscillation, the mode-mixing caused by intermittent signals can be avoided. Afterwards,
the mean operation “forces” the mode to stick to the original signal in those portions where new extrema
are created, while it remains unmodified in the rest of the signal (where no creation of extrema occurred).
Therefore, the mode-mixing caused by intermittent signals is solved. To illustrate this, we employ EEMD on
the sample signal fsig2. According to the coefficients of correlation between different IMFs and the sample
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signal fsig2, we extract valuable IMFs 1–3, and present them in Figure 13. As can be seen in Figure 13,
the mode mixing caused by intermittent signals is resolved (especially in Figure 13b).

Figure 13. The waveforms of the IMFs 1–3 and the corresponding Fourier spectrums: (a) waveforms
and (b) Fourier spectrums.

2.2.2. Principle of Ensemble Empirical Mode Decomposition

In EEMD [19], the “true” modes are defined as the average of the corresponding IMFs obtained
from an ensemble of the original signal plus white noise with different strengths. Let f be the analyzed
signal. The principle of EEMD can be described as follows:

(1) Signals fi(t) are generated by
fi(t) = f (t) + βω(i)(t) (7)

where β is the variance of added white noise, and ω(i)(t) (i = 1, ..., and i is the number that EMD is
conducted) denotes a zero mean unit variance white noises N(0, 1).

(2) Employ EMD to decompose completely each fi(t), and obtain the IMFs di
k(t) (k = 1, ..., k is the

number of IMFs of EMD).
(3) Calculate each final IMF by,

ck(t) =
1
I

I

∑
i=1

di
k(t) (8)

where ck(t) (k = 1, ..., k is the number of IMFs of EEMD) is the kth IMF of EEMD.
The extraction of every di

k(t) requires a different number of sifting iterations in EMD.

2.2.3. Limitation of Frequency Resolution

Because EEMD derives from EMD, they suffer a similar frequency resolution. When the ratio between
a relatively low frequency and a relatively high frequency is larger than 0.75, the two components of a signal
cannot be separated by EEMD, for a reasonable number of iterations. To demonstrate this, we decompose
the sample signal fsig1 by EEMD, and the valuable IMFs are shown in Figure 14. As illustrated in Figure 14b,
the components of 75 and 100 Hz cannot be separated. Therefore, this basic limitation of EMD is also
suitable for EEMD.
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Figure 14. The waveforms of the IMFs 1–3 of fsig1 and the corresponding Fourier spectrums:
(a) waveforms and (b) Fourier spectrums.

2.2.4. Influence of Sampling Frequency on Decomposition Result

As mentioned above, the decomposition result of EMD is influenced by the sampling frequency.
The similar conclusion can also be obtained for EEMD. To illustrate this, we employ EEMD on a signal
of 200 Hz with a sampling frequency of 0.5 kHz. IMF 1 is the valuable IMF for the decomposition
result and is shown in Figure 15. As can be seen in Figure 15, false components also occur as a result of
EEMD. Therefore, when the sampling frequency is not great enough for EEMD, correct extreme values
cannot be obtained, which results in the envelope calculation of cubic spline interpolation and the
calculation of mean value for the extreme values not being able to generate the original signal, either.
A higher sampling frequency is also welcome in the process of EEMD.

Figure 15. The EEMD result of the signal of 200 Hz with a sampling frequency of 2 kHz and the
corresponding Fourier spectrum: (a) the result of EEMD and (b) the Fourier spectrum.

2.3. Complementary Ensemble Empirical Mode Decomposition

Although EEMD can avoid mode-mixing resulting from intermittent signals, which is crucial in the
application of adaptive decomposition algorithms, adding white noise can introduce residue into the signal
reconstructed by decomposition results of EEMD. The residue of the added white noise in EEMD can be
extracted from the mixture of data and white noise via the ensemble IMFs with the positive added white
noise (it should be noted that the residue mentioned this section is defined as the difference between the
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original and the reconstructed signals, and this is different from the residue (or trend) generated in the
iterative calculation process of EMD). To suppress the residue, Yeh and Shieh [20] proposed CEEMD.

In CEEMD, white noise is added in pairs to the analyzed signal (i.e., one positive and one negative)
to generate two sets of ensemble IMFs. Therefore, two mixtures composed of the original data and
added noise can be derived by [

M1

M2

]
=

[
1 1
1 −1

] [
S
N

]
(9)

where S is the original data; N is the added white noise; M1 is the sum of the original data with positive
noise, and M2 is the sum of the original data with the negative noise.

Then, the ensemble IMFs obtained from those positive mixtures contribute to a set of IMFs
with positive residues of the added white noises. Similarly, the ensemble IMFs obtained from those
negative mixtures contribute to another set of ensemble IMFs with negative residue of the added
white noises. Thus, the final IMF is the ensemble of both the IMFs with the positive and negative
noises. This operation can suppress the residue result from adding the white noise. To illustrate this,
we construct a sample signal fsig3, and it is shown in Figure 16,

fsig1 = s3(t) + s2(t) + s3(t)
s1(t) = sin(50× 2πt), 0 ≤ t ≤ 1

s2(t) = sin(100× 2πt), 0 ≤ t ≤ 1
s3(t) = sin(200× 2πt), 0 ≤ t ≤ 1

(10)

We employ EEMD and CEEMD to process the signal fsig3. The coefficients of correlation between
different IMFs and the sample signal fsig3 show that IMFs 1–3 are valuable IMFs in EEMD and CEEMD.
We present these IMFs in Figure 17. A visual comparison of the results from EEMD and CEEMD shows
almost no significant difference. However, differences between the reconstructed signals via the IMFs
obtained by EEMD and CEEMD and the original signal are very large. There is a significant different
between the final residues derived from EEMD and CEEMD, defined as the differences between the
original and the reconstructed signals and are shown in Figure 18. While the residue from EEMD
has an average amplitude of around 0.03, the corresponding residue from CEEMD has an average
amplitude close to 0 (of the order of 10−15). Such an error could be very well attributed to the numerical
error generated in the calculation. Thus, CEEMD can improve the decomposition results by removing
the residue of the added white noise.

Figure 16. The waveform of the sample signal fsig3.



Sensors 2018, 18, 0 12 of 51

Figure 17. The waveforms of the IMFs 1–3 of fsig3 by EEMD and CEEMD: (a) EEMD and (b) CEEMD.

Figure 18. Residues of added white noises derived by EEMD and CEEMD: (a) EEMD and (b) CEEMD.

2.4. Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise

The computation quantity of an algorithm is an important performance index. As shown in
Figures 2 and 9, some useless IMFs are generated in EMD and EEMD, which degrades performance of
these algorithms. Therefore, reducing the number of these useless IMFs is advantageous for improving
the computation efficiency of these techniques. Torres [21] proposed CEEMDAN, and Colominas [22]
proposed an improved version of CEEMDAN. Fewer IMFs may be generated on the premise of
successfully separating different components of a signal by using the two algorithms, which can
reduce the computational cost.
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2.4.1. Principle of Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise

In CEEMDAN, the decomposition modes will be noted as d̃1 and is proposed to calculate a unique
first residue as:

r1(t) = f (t)− d̃1(t) (11)

where d̃1 is obtained in the same way of EEMD. Then, the first EMD mode is computed over
an ensemble of r1 plus different realizations of a given noise obtaining d̃1 by an averaging calculation.
The next residue is defined as: r2(t) = r1(t)− d̃2(t). This procedure continues with the rest of the
modes until reaching the stopping criterion.

The operator Ej(·) is defined which generates the jth mode obtained by EMD. ωi is denoted as the
white noise with N(0, 1). If f (t) is the analyzed signal, the method can be described by the following
steps [21]:

(1) I realizations f (t) + ε0ωi(t) are decomposed by EMD to obtain their first modes by

d̃1(t) =
1
I

I

∑
i=1

di
1(t) = d1(t) (12)

(2) At the first stage (k = 1), the first residue is calculated as in Equation (11):

r1(t) = f (t)− d̃1(t) (13)

(3) Decomposition of realizations r1(t) + ε1E1(ω
i(t)), i = 1, . . . , I is done, until their first EMD mode.

The second mode is defined as:

d̃2(t) =
1
I

I

∑
i=1

E1(r1(t) + ε1E1(ω
i(t))) (14)

(4) The kth residue is calculated by (k = 2, . . . , K):

rk(t) = rk−1(t)− d̃k(t) (15)

(5) Decompose realizations rk(t) + εkEk(ω
i(t)), i = 1, . . . , I, until their first EMD mode and define

the (k + 1)th mode as,

d̃(k+1)(t) =
1
I

I

∑
i=1

E1(rk(t) + εkEk(ω
i(t))) (16)

(6) Go to step 4 for next k.

Steps 4 to 6 are conducted until the obtained residue is no longer feasible to be decomposed
(the residue does not have at least two extrema). The final residue satisfies:

R(t) = f (t)−
K

∑
k=1

d̃k(t) (17)

with k is the number of modes. Therefore, the analyzed signal can be expressed as:

f (t) =
K

∑
k=1

d̃k(t) + R(t) (18)

Equation (18) makes the proposed decomposition complete and provides an exact reconstruction
of the original signal.
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According to Equations (14) and (16), the coefficients εk can be adjusted to select the signal:noise
ratio (SNR) at each stage. For the amplitude of the added noise, Ref. [21] suggested that
small-amplitude values are adopted for signals dominated by high-frequency signals, and vice versa.
In CEEMDAN, a few hundreds of realizations are done with a fixed SNR for all the stages. This value
might depend on the characteristics of the analyzed signal.

2.4.2. Principle of Improved Complementary Ensemble Empirical Mode Decomposition with
Adaptive Noises

In the original CEEMDAN [21], the first mode is obtained in the same way as in EEMD. To extract
the rest of the modes, a different noise must be added to the current residue. That particular noise
is an EMD mode of white noise. For example, to extract the second mode, different copies of
r1(t) + ε1E1(ω

i(t)) must decomposed, where r1 is the first residue. This operation generates a strong
overlapping in the scales, and we are focusing in for the first two modes (first one extracted adding
white noise and the second one adding E1(ω

i(t)). To reduce this overlap, Colominas [22] proposed
an improved version of CEEMDAN to make no direct use of white noise but use Ek(ω

i(t)) to extract
the kth mode.

In the improved version of CEEMDAN, the operation M(·) is denoted as the operator, which
produces the local mean of the upper envelope and the lower envelope, and the operation Ek(·) is
defined which generates the kth mode obtained by EMD, and ωi is denoted as the white noise with
N(0, 1). The steps of the algorithm are as follows:

(1) The local means of I realizations f (i) = f + β0E1(ω
(i)) are calculate by EMD to obtain the

first residue
r1 =

〈
M( f (i))

〉
(19)

(2) At the first stage (k = 1), calculate the first mode by

d̃1(t) = f (t)− r1(t) (20)

(3) The second residue is calculated as the average of local means of the realizations r1(t) + β1E2(ω
i(t)).

The second mode is defined as,

d̃2(t) = r1(t)− r2(t) = r1(t)−
〈

M(r1(t) + β1E2(ω
i(t)))

〉
(21)

(4) For k = 3, ..., K, the kth residue is calculated by

rk(t) =
〈

M(rk−1(t) + βk−1Ek(ω
i(t)))

〉
(22)

(5) The kth mode is calculated by
d̃k(t) = rk−1(t)− rk(t) (23)

(6) Repeat Steps (4) and (5) to calculate the next rk(t) and d̃k(t).

Constants βk−1 = εkstd(rk) (std(r) means the standard deviation of r) are chosen to obtain
a desired SNR between the added noise and the residue to which the noise is added. It should be
noticed that, in EEMD, the SNR between the added noise and the residue increases with the order
k. This is because the energy of the noise in the kth residue, k > 1, is only a fraction of the energy
of the noise added at the beginning of the algorithm. To emulate this behavior, in the algorithm,
β0 is selected in a way that ε0 is exactly the reciprocal of the desired SNR between the first added
noise and the analyzed signal: if the SNR is defined as a quotient of standard deviations, we have
β0 = ε0std( f )/std(E1(ω

(i))). To obtain noise realizations with a smaller amplitude for the following
stages of the decomposition, the added noise is calculated as (βk−1 = εkstd(rk), k ≥ 1).
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2.4.3. Comparisons among These Algorithms

We construct a sample signal fsig4, defined as,

fsig4 = s1(t) + s2(t)

s1(t) =


0
sin(65× 2πt)
0

0 ≤ t ≤ 0.5
0.5 < t ≤ 0.75
0.75 < t ≤ 1

s2(t) = sin(255× 2πt), 0 ≤ t ≤ 1

(24)

The sampling frequency of fsig4 is 1 kHz. The waveform is shown in Figure 19. We employ
EMD, EEMD, CEEMD and improved CEEMDAN on fsig4 to obtain comparisons among EMD, EEMD,
CEEMD and improved CEEMDAN. The decomposition results are presented in Figure 20. Because the
principles of CEEMDAN and improved CEEMDAN are similar in a certain degree, therefore a test for
improved CEEMDAN is just done on paper. To quantify the performance of the methods, we set the
total number of decompositions as 100, and the amplitude of noise ε0 as a recommended value of 0.2
for the three noise-assisted EMD variations (EEMD, CEEMD and improved CEEMDAN).

As illustrated in Figure 20, for EMD, as mentioned above, in the process of an IMF generation, EMD
extracts the component with the highest frequency in every time section, so the component of 255 Hz in
time section [0.5 0.75] s is extracted in IMF1 first by EMD (as shown in Figure 20), and mode-mixing occurs.
The other noise-assisted EMD variations resolve this problem. However, fewer IMFs are generated in the
improved CEEMDAN. To test the accuracy of decomposition result, we define the error with two-norm,

err =
‖IMFi− si‖2
‖si‖2

(25)

where IMF i represents the ith IMF of the decomposition result, and the si is the corresponding
component of the original signal. The errors of decomposition results of EEMD, CEEMD and improved
CEEMDAN are shown in Figure 21. As can be seen in Figure 21, the result errors of improved
CEEMDAN also are less than that of EEMD and CEEMD.

Figure 19. The waveform of the sample signal fsig4.
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Figure 20. Comparisons among EMD, EEMD, CEEMD and improved CEEMDAN.

Figure 21. The errors of decomposition results of EEMD, CEEMD and improved CEEMDAN.

2.5. Applications and Other Improvement Works of Empirical Mode Decomposition

EMD can decompose a signal into several narrow-band components, which introduces the
attractive feature of robustness in the presence of non-linear and non-stationary data. Therefore, a great
number of investigations of theory and application have been done for EMD [23–58]. Ref. [6] reviewed
the essential problems in improvement work and application. Ref. [23] reviewed recent mathematical
progress on constructing a large bank of basic functions, establishing a fast adaptive decomposition
algorithm, piecewise linear spectral sequences and a Bedrosian identity. Ref. [24] reviewed works
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on new stopping criteria and an online version of the algorithm. Ref. [25] discuss the way EMD
behaves in stochastic situations involving broadband noise. In addition, the references above are all
valuable for understanding and employing EMD. In this paper, we summarize some works that were
published recently in mechanical engineering, consisting of three parts that are currently popular
research issues, i.e., current applications of parameter identification of the mechanical system assisted
by algorithms deriving from EMD, techniques applied to process decomposition results obtained by
using EMD, or improved methods deriving from EMD about fault diagnosis and other improvement
works of EMD about fault diagnosis. The applications of EMD above are based on precisely extracting
targeted mono-components, which can be taken as a kind of precise filter. Another application of
EMD can be taken as rough filter. Extracting fault signals can be taken as a typical application of
rough filter. In addition, the aim focuses on highlighting some quantitative evaluation parameters of
fault information.

For precise filter operation, as time–frequency transformations generally offer useful insight into
the dynamics of non-linear systems, EMD was widely employed to make parameter identification
of mechanical systems more achievable. Yang [26,27] used EMD to isolate different modal responses
from free vibrations, and then HT was applied to the instantaneous amplitude and phase angle
time histories, which provide a basis for identifying the natural frequency and damping ratio of
multi-degree-of-freedom linear systems. Khan [28] employed EEMD and Pareto technique to extract
valuable components. After that, Recursive Stochastic Subspace Identification was employed to
carry out the continuous modal parameter identification of the cable-stayed bridge. Pai [29] took
time-varying amplitude and frequency of the first component extracted by EMD and HT as indicators
for pinpointing times and locations of impulsive external loads to obtain extracting characteristics of
non-linear systems and intermittent transient responses. Lee [30] developed a time-domain non-linear
system identification technique based on EMD. Eriten [31] applied EMD to decompose a given
measured velocity signal in terms of IMFs that provided information about the modal content of the
signal, which provided a foundation for a non-linear system identification of frictional effects in a beam
with a bolted joint connection., presenting a novel method based on Hilbert Huang Transform (HHT),
combined by EMD and HT, for analyzing the non-linear and non-stationary Aerial Planting Projectile
flight data signal. Chen [33] performed non-linear system identification on the acceleration signals
that were experimentally measured at ten almost evenly spaced positions along a cantilever beam
undergoing vibro-impacts between two rigid stops with clearances. In addition, EMD was used to
obtain sets of intrinsic modal oscillators governing the vibro-impact dynamics at different time scales.
Poon [34] attempted to use EMD to identify properties of non-linear elastic multi-degree-of-freedom
structures. The IMFs obtained by EMD were used in the context of the non-linear normal mode method
to estimate the properties of the non-linear elastic structure. Pai [35] presented a signal-processing
methodology based on EMD and a new conjugate-pair decomposition method for characterization
of non-linear normal modes and parametric identification of non-linear multiple-degree-of-freedom
dynamical systems.

To make fault diagnosis more convenient, some scholars employed some techniques on
decomposition results. Bustos [36] proposed an efficient methodology based on EMD, which provided
a set of parameters for the fast identification of the operating state of a high-speed train.
Van [37] presented a novel two-stage feature selection, hybrid distance evaluation technique-particle
swarm optimization to select the superior combining feature subset that discriminates well among
classes. On this basis, a comparison among three types of popular classifiers—K-nearest neighbors,
probabilistic neural network and support-vector machine—was made to establish the sensitivity of
each classifier corresponding to the irrelevant and redundant features, and the curse of dimensionality.
Wang [38] applied sample entropy to characterize the complexity of IMFs obtained by using CEEMD
in different time scales. Then, a random forest classifier was untiled for identification and classification
of fault modes of centrifugal pumps. Ali [39] used an artificial neural network to classify bearings
defects, and a mathematical analysis to select the most significant IMFs. Zhang [40] utilized support
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vector machines optimized by inter-cluster distance in the feature space to classify the fault type.
The permutation entropy values of the first few IMFs obtained by using EEMD were taken to reveal the
multi-scale intrinsic characteristics of signals. Georgoulas [41] extracted fault features by using HHT,
and then trained a hybrid ensemble detector to obtain detection of any deviation from the normal
condition. Further, Georgoulas [42] employed hidden Markov models to automatically identify fault,
and the inputs were feather parameters obtained by using complex EMD and HT. Meng [50] also
employed a hidden Markov model classifier for malfunction recognition, in which the instantaneous
energy distribution of signals were taken as the inputs. Zhao [45] quantitatively evaluated the
complexity of the IMFs to obtain quantitative diagnosis of a spall-like fault of a rolling element bearing.
Djebala [46] used an optimized wavelet multi-resolution analysis to analyze envelope spectrums of
optimal IMFs and highlight the fault characteristic frequency. Bi-spectrums, a third-order statistic,
which helps to identify phase coupling effects of IMFs were used to detect outer race bearing defects
by Saidi [47]. Le [48] employed the radial basis function neural network based on chemical reaction
optimization algorithms to identify the work condition of the gear, in which, the energy features
extracted from valuable IMFs were taken as the inputs. Wang [49] applied independent component
analysis (ICA) technique on IMFs that contained information of compound faults to effectively separate
component fault features.

Apart from the mentioned techniques, i.e., EEMD, CEEMD, CEEMDAN and improved CEEMDAN,
some other improved versions of EMD were also proposed, which also have superior qualities to
EMD. Zheng [51] proposed an adaptive data-driven analysis approach called generalized empirical
mode decomposition (GEMD), in which different baselines were firstly defined and separately
subtracted from the original data, and then different pre-generated intrinsic mode functions were
obtained. Next, the pre-generated intrinsic mode function was subtracted from the original signal.
A demodulating method called empirical envelope demodulation (EED) was introduced. Results
revealed that the method consisting of GEMD and EED performed better in restraining the end effect,
gaining a better frequency resolution and more accurate time frequency distribution. Zheng [53] also
presented another improved version of EMD called partly ensemble EMD (PEEMD) to resolve the
mode-mixing problem. In PEEMD, after the intermittency or noise signal was obtained in an ensemble
way and was detected by permutation entropy, the residual signal was decomposed directly by
using EMD. Similarly to Ref. [49], Jiang [54] put forward an algorithm called improved EEMD with
multiwavelet packet, in which multiwavelet packet was used as the pre-filter to improve EEMD
decomposition results. The result showed that the method can keep weak multi-fault characteristic
components. Table 1 is designed to make this section more readable.

Table 1. Summary of works for EMD.

Objects References Methodologies

Precise filter operation

Non-linear system
Lee et al. [30]

EMD
Chen et al. [33]

Poon et al. [34]

Beam with a bolted joint
connection Eriten et al. [31]

Non-linear system
Yang et al. [26,27]

EMD + HT
Pai et al. [29]

Aerial Planting Projectile
flight data Goodarzi et al. [32]

Non-linear system Pai et al. [35] EMD + conjugate-pair decomposition method

Cable-stayed bridge Khan et al. [28] EEMD + Pareto technique
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Table 1. Cont.

Objects References Methodologies

Rough filter operation

Bear

Van et al. [37]

EMD + non-local-means de-noising + particle
swarm optimization + K-nearest neighbors,

probabilistic neural network and
support-vector machine

Ali et al. [39] EMD + artificial neural network

Georgoulas et al. [41] EMD + HT

Georgoulas et al. [42] EMD + HT+ hidden Markov model

Meng et al. [50] EMD + hidden Markov model classifier

Zhao et al. [45] EMD + the approximate entropy method

Djebala et al. [46] EMD + optimized wavelet multi-resolution

Saidi et al. [47] EMD + Bi-spectrums, a third-order statistic

Wang et al. [49] EMD + ICA

Zhang et al. [40] EEMD + support-vector machine

Zheng et al. [51] GEMD + EED

Zheng et al. [53] PEEMD

High-speed train Bustos et al. [36] EMD

Centrifugal pumps Wang et al. [38] CEEMD + random forest classifier

Gear Le et al. [48] EMD + radial basis function neural network

Rotating machinery Jiang et al. [54] EEMD + multiwavelet packet

3. Empirical Wavelet Transform

In 2013, Gilles [59] proposed a novel adaptive decomposition entitled EWT, which combines merits
of EMD and WT. EWT utilizes the Meyer wavelet siding along the time axis to conduct reconstruction
instead of the orthogonal basis of sine wave, so the local characteristics of signals tend to be more
accurately described than Fourier transform (FT). Moreover, in contrast with adaptive decomposition
algorithms such as EMD, the basic function of Meyer wavelet generates in the calculation process
of the inner product between the Fourier spectrum of signals and the Fourier spectrum of the
Meyer wavelet; therefore, the frequency resolution of EWT depends on the frequency resolution
of FT posing a promising frequency resolution, which can be easily deduced from Heisenberg’s
uncertainty principle.

3.1. Principle of Empirical Wavelet Transform

The principle can be found in Ref. [59], and we briefly explain the theory of EWT in the paper.
There is an assumption in EWT that the Fourier support is segmented into contiguous segments.
Segmenting the Fourier spectrum generates the limits between each segment (where ω0 = 0 and
ωN = π, the total number of segmenting section is N). Λn = [ωn−1, ωn] represents each segment. It is
defined that a transition phase Tn centers around each ωN . The empirical wavelets act as bandpass
filters on each Λn, as shown in Figure 22. When ∀n > 0, Equations (26) and (27) define the empirical
scaling function and the empirical wavelets, respectively.

ϕ̂n(ω) =


1 , |ω| ≤ ωn − τn

cos
[

π
2 β( 1

2τn
(|ω| −ωn + τn)

]
, ωn − τn ≤ |ω| ≤ ωn + τn

0 , otherwise

(26)
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and

ψ̂n(ω) =



1 , ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[

π
2 β( 1

2τn
(|ω| −ωn+1 + τn+1))

]
, ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[

π
2 β( 1

2τn
(|ω| −ωn + τn))

]
, ωn − τn ≤ |ω| ≤ ωn + τn

0 , otherwise

(27)

The function β(x) is an arbitrary function Ck([0, 1]) that subjects to
β(x) = 0 , x = 0

β(x) + β(1− x) = 1 , ∀x ∈ (0, 1)

β(x) = 1 , x = 1

(28)

To obtain τn, proportional is chosen to ωn : τn = γωn where 0 < γ < 1. Consequently, ∀n > 0,
Equations (26) and (27) can simplify to Equations (29) and (30),

ϕ̂n(ω) =


1 , |ω| ≤ (1− γ)ωn

cos
[

π
2 β( 1

2γωn
(|ω| − (1−ω)ωn))

]
, (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 , otherwise

(29)

and

ψ̂n(ω) =



1 , (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[

π
2 β( 1

2γωn
(|ω| − (1− γ)ωn+1))

]
, (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[

π
2 β( 1

2γωn
(|ω| − (1− γ)ωn))

]
, (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 , otherwise

(30)

To get the boundaries ωn, we can segment the Fourier spectrum of signal on the basis of local
maxima. The parameter γ can be set as value in internal [0, γ0) (Then the set

{
ϕ1(t), {ψn

(
t)}N

n=1

}
is

an orthonormal basis of L2(R) and γ0 is calculated by,

γ0 = argmin(
ωn+1 −ωn

ωn+1 + ωn
) (31)

Figure 22. Segmenting Fourier spectrum into N contiguous segments.
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Wε
f (n, t) is defined as the Empirical Wavelet Transform. The detail coefficients are given by the

inner product with the empirical wavelets:

Wε
f (n, t) = 〈 f , ψn〉 =

∫
f (τ)ψn(τ − t)dτ = ( f̂ (ω)ψ̂n(ω))

∨
(32)

and the approximation coefficients Wε
f (0, t) is adopted to denote them) by the inner product with the

scaling function:

Wε
f (0, t) = 〈 f , ϕ1〉 =

∫
f (τ)ϕ1(τ − t)dτ = ( f̂ (ω)ϕ̂1(ω))

∨
(33)

where ϕ̂1(ω) and ψ̂n(ω) are defined by Equations (27) and (28), respectively. The reconstruction is
obtained by

f (t) = f0(t) +
N
∑

n=1
fn(t) = Wε

f (0, t) ∗ ϕ1(t) +
N
∑

n=1
Wε

f (n, t) ∗ ψn(t)

=

(
Ŵε

f (0, ω) · ϕ1(ω) +
N
∑

n=1
Ŵε

f (n, ω) · ψn(ω))∨
(34)

where, ∗ denotes the convolution operators.

3.2. Advantage of Empirical Wavelet Transform

As mentioned above, the frequency resolution of algorithms deriving from EMD is a basic
limitation. When the ratio between a relatively low frequency and a relatively high frequency is larger
than 0.75, the two components of a signal cannot be separated. This limitation can be broken by EWT,
as its frequency resolution depends on Fourier spectrum posing a promising frequency resolution. To
illustrate it, a sample signal fsig5 is employed.

fsig5 = s1(t) + s2(t) + s3(t)
s1(t) = sin(50× 2πt), 0 ≤ t ≤ 1

s2(t) = sin(600× 2πt), 0 ≤ t ≤ 1
s3(t) = sin(800× 2πt), 0 ≤ t ≤ 1

(35)

The sampling frequency is 2 kHz, as shown in Figure 23. EWT successfully separate components
of 50, 600 and 800 Hz, as shown in Figure 24. In Sections 2.1.3 and 2.2.4, it has been shown that
the sampling frequency can influence the decomposition result by using algorithms deriving from
EMD. When the sampling frequency is not sufficient enough, the errors of extreme location can result
in error of decomposition result. However, EWT is immune to this within limitation of Shannon’s
sampling theorem. To illustrate this, we show the EWT result and the original signal of 800 Hz within
[0.4 0.45] s in Figure 25. As shown in Figure 25, the EWT result almost overlaps with the original
signal, which indicates a high accuracy of EWT.

Figure 23. The waveform of the sample signal fsig5.
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Figure 24. The waveforms of EWT result of fsig5 and the corresponding Fourier spectrums: (a) waveforms
and (b) Fourier spectrums.

Figure 25. The EWT result and the original signal of 800 Hz within [0.4 0.45] s.

3.3. Disadvantage of Empirical Wavelet Transform

3.3.1. Limitation of Segmenting Fourier Spectrum

Since empirical wavelets are generated by segmenting Fourier spectrum, when different
components of a signal cannot be separated in Fourier spectrum, decomposition results of EWT
will not be correct. To illustrate this, we construct a sample signal fsig6

fsig6(t) = s1(t) + s2(t) + s3(t), 0 ≤ t ≤ 1

s1 =

4t sin[(50 + 100t) · 2π · t]

− 4
3 (t− 1) sin[(50 + 100t) · 2π · t]

, 0 ≤ t < 0.25

, 0.25 ≤ t < 1

s2 =

2t sin[(100 + 200t)2π · t]

−2(t− 1) sin[(100 + 200t) · 2π · t]

, 0 ≤ t < 0.5

, 0.5 ≤ t < 1

s3 =


4
3 t sin[(200 + 400t) · 2π · t]

−4(t− 1) sin[(200 + 400t) · 2π · t]

, 0 ≤ t < 0.75

, 0.75 ≤ t < 1

(36)

The sampling frequency is 2 kHz. The waveform of fsig6 is shown in Figure 26, and the corresponding
STFT representation is shown in Figure 27. The IF and IA of the sample signal fsig6 are shown in Figure 28.
We employ EWT to process the sample signal fsig6, and the result is shown in Figure 29. It is easy to establish
that the EWT of the sample signal fsig6 is unsuccessful. Moreover, there are some negative factors for finding
boundaries of different mono-components, for example white noise that can introduce redundant extremes
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in the Fourier spectrum, which are essential for establishing boundaries of mono-components. Therefore,
further work can be done to eliminate such negative influences.

Figure 26. The waveform of the sample signal fsig6.

Figure 27. The STFT of the sample signal fsig6: (a) 2D figure and (b) 3D figure.

Figure 28. The IF and IA of the sample signal fsig6: (a) IF and (b) IA.
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Figure 29. The waveforms of EWT result of fsig6 and the corresponding Fourier spectrums: (a) waveforms
and (b) Fourier spectrums.

3.3.2. Limitation of Selection of Detection Method of Boundary

Successful decomposition of multi-component signals depends on segmenting the corresponding
Fourier spectrum by using EWT. To improve the adaptivity of EWT, several detection methods of
boundary are available in the code of EWT [60]. The same computation results may be obtained
when the Fourier spectrum of the signals are simple. However, when the spectrum is complicated,
a suitable method should be selected to improve decomposition result. To illustrate this, we construct
a sample signal fsig7, as shown in Figure 30, and the corresponding STFT representation is shown in
Figure 31. Each component of the sample signal fsig7 is shown in Figure 32. It consists of components
of 50, 100 and 200 Hz, and the component of 200 Hz is amplitude-modulated. They are defined as
components 1–3. The sampling frequency is 2 kHz. As presented in Figure 32b, the Fourier spectrum
of component 3 is complicated. We process fsig7 by EWT, setting parameters used in processed code
as follows, params.detect is set as “adaptivereg”, params.typeDetect is set as “otsu”. As shown in
Figure 33, it is clear that the decomposition result of fsig7 is not promising. Therefore, when the signal
is non-stationary, the Fourier spectrum tends to become complicated, and EWT will easily fail when
doing mode separation. Though we can obtain a successful result by changing the detection method
of the boundary, robustness of EWT is not promising. Researchers should pay attention to these
characteristics to guarantee that the employment of EWT is correct.

Figure 30. The waveform of the sample signal fsig7.
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Figure 31. The STFT of the sample signal fsig7: (a) 2D figure and (b) 3D figure.

Figure 32. Each component of the sample signal fsig7: (a) the waveform and (b) the Fourier spectrum.

Figure 33. The waveforms of EWT result of fsig6 and the corresponding Fourier spectrums: (a) waveforms
and (b) Fourier spectrums. The parameters used in processed code are as follows: params.detect is set as
‘adaptivereg’, params.typeDetect is set as ‘otsu’.

3.4. Application and Improvement Works of Empirical Wavelet Transform

As illustrated above, EWT can separate different mono-components that do not overlap in the
Fourier spectrum. Sometimes, we can employ this method to extract specific mono-components to
a high accuracy. Yuan [61] presented a technique that combined the second-order blind identification
method with the EWT to delineate closely spaced frequencies. In addition, EWT operated on the modal
responses estimated by the SOBI and yielded the closely spaced natural frequencies. Hu [62] proposed
a hybrid model that was composed of EWT, partial auto-correlation function and Gaussian process
regression method for short-term wind speed prediction. In this approach, EWT was employed to
extract meaningful information from a wind speed series by designing an appropriate wavelet filter
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bank. Reddy [63] applied EWT to extract the actual fundamental frequency component and disturbance
components from distorted signals. In addition, then, time-varying power quality indices for accurate
assessment of Power Quality Disturbances were estimated. Thirumala [64,65] proposed two different
algorithms for the estimation of power-quality indices based on EWT. The results confirmed that
EWT efficiently extracts the mono-component signals from the actual distorted signal and thereby
accurately estimates the power quality indices. Li [66] proposed a novel approach for capturing the
instantaneous pitch that may reveal some innate character of the speech, and EWT was employed to
pick out the mode containing the pitch. Liu [67] presented an algorithm combining EWT, HT and short
time Fourier transform obtain the TFD of ultrasonic testing waves. The different wave packages were
isolated using EWT.

In some situations, some residual noise is tolerable under the premise that the specific signal
feature is strong enough, for example in fault diagnosis of machines, which is a popular research issue
at present. In addition, EWT also can remove other unvalued components. Therefore, EWT and its
improved version have been successfully employed in fault diagnosis of machines [68–82].

Since the main idea of EWT is defining a bank of wavelet filters based on the “well-chosen” Fourier
supports, establishing targeted boundaries of the filters is key to extracting fault components from raw
signals. To guarantee the obtaining of correct boundaries, some scholars also conducted investigations
on the issue. Gilles [68] proposed a parameterless scale-space approach, which is easy to implement,
is fast, and does not require any parameter, to find meaningful modes in histograms-application
spectrum segmentation. The algorithm is based on the behavior of local minima in a scale-space
representation, and the detection of such meaningful modes is the equivalent to a two-class clustering
problem on the length of minima scale-space curves. Based on this method, Zheng [69] presented
an improved version of EWT called adaptive parameterless EWT, in which the adaptive segmentation
of Fourier spectrum led to the adaptive separation of empirical wavelets. In Ref. [70], the peak
characteristic of autocorrelation function was used to judge the periodicity of each signal, and the
most obvious signal was taken as the characteristic signal. An iteration decomposition of trend was
presented. Kedadouche [71] presented another method of segmentation of the Fourier spectrum.
The aim of the method was to separate different portions of the spectrum which were centered on
a specific frequency, which presented the highest amplitude. To remove more useless components,
the decomposition target was not the raw testing signal, but Combined Mode Function obtained by
combining neighboring IMFs obtained from the EMD of the raw signal. Moreover, Kedadouche [72]
also pointed out that EWT acts like a filter bank and employed operational modal analysis to define
the support boundaries of the filter, and the algorithm was called operational modal analysis-empirical
wavelet transform, which was better than the original version of EWT presented in Ref. [49] at
decomposing multiple-component signals. To avoid the inaccurate segmentation of Fourier spectrum
resulted from noises, Chen [73] conducted a de-noising operation by using wavelet spatial neighboring
coefficient de-noising with a data-driven threshold. The result indicated that the technique was effective
on weak fault and compound fault diagnosis. Pan [74] proposed a data-driven adaptive Fourier
spectrum segment method for mechanical fault identification. In this technique, the inner product was
first calculated between the Fourier spectrum of the analyzed signal and the Gaussian function for scale
representation, and then, local minima of the scale representation were detected to obtain the adaptive
spectrum segment. Hu [75] modified the segmentation algorithm by using the envelope approach
based on the order statistics filter and applying criteria to pick out useful peaks. The proposed method
obtained a perfect segmentation in decomposing noisy and non-stationary signals.

In some references, EWT or its improved version is firstly employed to decompose signals
to obtain valuable components that carry defect information. Then, another technique is used to
process these valuable components to obtain detection of fault. Specifically, Huang [76] used one-class
support vector machine to value components to achieve fault detection of high-voltage circuit breakers.
Following HHT, HT is used to obtain IFs and IAs of valuable components to obtain early detection of
tooth-crack damage in a gearbox [77,78]. In Ref. [79], each single fault frequency was incorporated into
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a duffing oscillator to establish its corresponding fault isolator, and the single faults were identified
one by one from the empirical modes by directly observing the chaotic motion from the Poincar
mapping of the isolator outputs. Zheng [69] presented an improved version of HT called quadrature
derivative-based normalized Hilbert transform to process valuable components, and the proposed
method could effectively fulfill the fault diagnosis of rotor rubbing.

4. Variational Mode Decomposition

As mentioned above, the selection of detection method of boundary is an inconvenience of EWT.
Therefore, an adaptive decomposition algorithm without this operation may be more welcome. In 2014,
Dragomiretskiy [83] proposed VMD, determining the relevant bands adaptively. The method can
estimate the corresponding modes concurrently, thus perfectly balancing errors between them to
obtain separation of different components from signals.

4.1. Principle of Variational Mode Decomposition

In VMD, Wiener filtering, the HT and heterodyne demodulation are combined, and an alternate
direction method of multipliers (ADMM) is employed to obtain decomposing modes. The decomposed
modes are localized on central frequencies. The bandwidth of a decomposed mode is generated in the
following ways [83]:

(1) HT is employed to estimate the one-sided frequency spectrum of a real signal using an
analytic representation.

(2) The modulation properties are utilized to obtain the shift of the frequency spectrum of the mode
is shifted to the estimated base-band frequencies.

(3) The H1 Gaussian smoothness of the demodulated signal is applied to estimate the bandwidth.

VMD represents a signal f (t) with a set of components called modes ϕk(t) localized on the center
frequency ωk. ADDM is employed to resolve the constrained variational optimization problem,
which can be expressed by

min
{ϕk},{ωt}

{
K
∑

k=1

∥∥∥∂t[(δ(t) +
j

πt ) ∗ ϕk(t)]e−jωkt
∥∥∥2

2

}
,

Subject to f (t) =
K
∑

k=1
ϕk(t)

(37)

where δ denotes the Dirac distribution, and ∗ and ∂ denote the convolution and partial differential
operators, respectively. Equation (37) can be addressed by introducing a quadratic penalty and
Lagrangian multipliers. The augmented Lagrangian is given as follows:

L({ϕk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∂t[(δ(t) +
j

πt ) ∗ ϕk(t)]e−jωkt
∥∥∥2

2
+∥∥∥ f (t)−

K
∑

k=1
ϕk(t)

∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
ϕk(t)

〉
.

(38)

The modes ϕk(t) in the frequency domain are estimated using ADDM in the form of the Wiener
filter structure as follows:

ϕ̂k(ω) =

f̂ (ω)− ∑
i 6=k

ϕ̂i(ω) +
(
λ̂(ω)/2

)
1 + 2α(ω−ωk)

2 (39)

where ϕ̂k(ω), f̂ (ω), ϕ̂i(ω) and λ̂(ω) are the FT of the components. Finally, the modes in the time
domain are obtained computing the inverse FT of the filtered signal, and the center frequencies are
estimated by
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ωk =

∞∫
0

ω|ϕ̂i(ω)|2dω

∞∫
0
|ϕ̂i(ω)|2dω

(40)

Thus, it is feasible to analyze the sub-components of a signal with the modes having localized
center frequency properties. In this paper, we briefly illustrate the principle of VMD. The detail of
calculation process can be found in Ref. [83].

4.2. Advantage of Variational Mode Decomposition

As mentioned above, VMD can determine the relevant bands adaptively. To invalidate this
characteristic, we employ VMD to process the sample signal fsig7. Figure 34 shows the decomposition
result of fsig7. As presented in Figure 34, the three sub-components of fsig7 are separated by VMD.
Comparing Figure 33 with Figure 34, it is easy to learn that the decomposition result obtaining be VMD
is of a high accuracy, except for some end errors. So the end effect is also a research issue that needs
to be resolved. Moreover, another advantage should be noted for VMD. The resulting optimization
scheme is very simple and fast. In VMD, the narrow-band Wiener filter that corresponds to the current
estimate of the mode’s center-frequency is applied to the signal estimation residual of all other modes,
which generates each mode in iteratively updating directly Fourier spectrum. The center frequency
is re-estimated as the center of gravity of the mode’s power spectrum. The computation intensity of
these processes is low.

Figure 34. The decomposition result of fsig7: (a) the waveform and (b) the Fourier spectrum.

4.3. Disadvantage of Variational Mode Decomposition

VMD segments the Fourier spectrum to obtain separating different components of a signal. Similar to
EWT, therefore, this method also suffers from the limitation of the Fourier spectrum, i.e., when different
components cannot be separated in the Fourier spectrum, they cannot be separated by VMD. There, VMD
is also employed to process fsig6, and the result is shown in Figure 35, and the STFT representations of
the Comps 1–3 are shown in Figure 36. As shown in Figure 28a, the frequencies of components 1–3 are,
respectively, in intervals [50 150], [100 300] and [200 600]. However, the frequencies of components 1–3 are
in intervals [50 250], [150 600] and [400 600], as shown in Figure 35b. So the VMD of fsig6 is unsuccessful,
which can be further verified by comparing Figure 27 with Figure 36.

However, a promising decomposition result can be obtained by using EMD. Figure 37 shows the
decomposition result of fsig6 by using EMD, and the corresponding STFT representations are shown in
Figure 38 (it should be noted that IMFs 1–3 correspond to components 3–1 of fsig6). As presented in
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Figures 37 and 38, EMD successfully separates the three components of fsig6. Therefore, EMD does not
suffer this limitation of the Fourier spectrum.

Figure 35. The decomposition result of fsig6 by using VMD: (a) the waveform and (b) the
Fourier spectrum.

Figure 36. The STFT representations of the Comps 1–3: (a) Comp 1; (b) Comp 2 and (c) Comp 3.

Figure 37. The decomposition result of fsig6 by using EMD: (a) the waveform and (b) the Fourier spectrum.

Figure 38. The STFT representations of the IMFs 1–3: (a) IMF 1; (b) IMF 2; and (c) IMF 3.
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4.4. Application and Improvement Works of Variational Mode Decomposition

As illustrated above, in VMD, separating different modes of a signal is translated into a constrained
variational optimization problem. Therefore VMD allows adaptive decomposition of the signal into
various modes by identifying a compact frequency support around its central frequency. Similar
to EWT, the method can be employed to accurately extract specific mono-components from raw
signals, and then some parameter estimations can be obtained. Upadhyay proposed approaches
to obtain the instantaneous detection of voiced/non-voiced regions in the speech signals [84] and
determine instantaneous fundamental frequency [85] of speech signals based on VMD. Yin [86]
presented a microwave propagating mode extraction algorithm for microwave waveguide using VMD.
A coated steel defect detection experiment was conducted using an X-band open-ended rectangular
waveguide to evaluate the efficacy of VMD. In addition, for two samples, the VMD results could
accurately identify the defects. Gao [87] proposed an online evaluation of metal burn degrees based
on acoustic emission and VMD, and VMD was applied to extract the main frequency of AE burn
signals. To resolve the problem that the features of ship-radiated noise were difficult to extract and
were inaccurate, Li [88] presented a method based on VMD, multi-scale permutation entropy) and
a support vector machine to extract the features of ship-radiated noise.

Similar to EWT, as the fault diagnosis of machinery is a popular issue of dynamic analysis, a great
amount of research regarding application and improvement has been undertaken for VMD in this
domain [89–111]. After decomposition of signals by using VMD, signal characteristics of fault are
obtained by some other methods. Aneesh [90] employed support vector machine to obtain detection
of faults with statistical parameter vector of IMF candidates. In addition, classification results using
support vector machine shows that VMD outperforms EWT for feature extraction processes and the
classification accuracy is recorded. Lv [92] adopted multikernel support vector machine optimized by
Immune Genetic Algorithm to diagnose outer ring damage, rolling damage, and inner ring damage of
a bearing. The experiments of mechanical faults showed that, compared to traditional fault diagnosis
models, the proposed method significantly increased the diagnosis accuracy of mechanical faults
and enhances the generalization of its application. Muralidharan [93] used the J48 decision tree
algorithm to identify the useful features, and the selected features were used for classification using
the decision trees, namely Random Forest, REP Tree and Logistic Model Tree algorithms, and the
performance analyses of these algorithms were done in detail. Liu [94] presented an algorithm to
extract fault features of a rolling bearing, combining singular value decomposition and standard fuzzy
C means clustering. The result showed that, in comparison to a similar process based on EMD, VMD
was not sensitive to the initialization of standard fuzzy C means clustering and exhibited a better
classification performance in the same load fault diagnosis. Tang [95] proposed a method to solve
the underdetermined problem and to extract fault features based on VMD. After decomposition
of signals by using VMD, the demodulated signals with HT of these multi-channel functions were
used as the input matrix for ICA to separate compound faults of roller bearings. An [98] took
permutation entropy of components carrying key fault information obtained by VMD of signals as
a bearing fault characteristic value, and the nearest neighbor algorithm was employed as a classifier to
identify faults in a roller bearing. An [100] also used the K nearest neighbor algorithm to extract energy
characteristic parameters from components carrying defect information decomposed by VMD to obtain
fault diagnosis of rolling bearings of a wind turbine. Yang [101] employed local linear embedding to
reduce the dimensionality of these extracted features extracted from both VMD sub-signals and the
original one and made the samples more separable. Then, multiclass support vector machine was
used to diagnose mechanical faults of a rotor-bearing-casing system. Huang [102] divided the IMF
matrix obtained by using VMD into submatrices to compute the local singular values. In addition,
a multi-layer classifier composed of two one-class support vector machines and a support vector
machine was constructed to identify the fault type of high-voltage circuit breakers with the maximum
singular values of each submatrix.
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To obtain more promising decomposition results and enhance the adaptivity of the method,
scholars have made improvements to VMD. Yi [103] optimized local extremum of individual particles
and global extremum of group particles by using a particle swarm optimization algorithm to
improve VMD. The results indicated that the method was much more robust to sampling and noise.
Liu [104] improved VMD by using the correlation coefficient criterion to determine the number of
mono-components adaptively. Zhu [105] employed kurtosis as an optimization index to determine
the number of decomposition modes and data-fidelity constraint of VMD by using an artificial fish
swarm algorithm.

As VMD can decompose a multi-component signal into different mono-components, the algorithm
can separate noise from signals. Some applications and researches were done to the de-noising issue by
using VMD. Zhang [96] employed majoriation–minization-based total variation denoising to eliminate
stochastic noise in the raw signal. An [106] took the approximate entropy of modes obtained by
using VMD as evaluation parameter of the significance of the mode for the original signal, and the
de-noising signal was constructed with modes with approximate entropies greater than threshold.
The results showed that the method had better de-noising performance than WTs in terms of SNR,
root mean square error and partial correlation index. Liu [107] presented a criterion based on detrended
fluctuation analysis to select the mode number of VMD, aiming to avoid the impact of overbinning or
underbinning on the VMD denoising. Yao [108] presented a noise source identification algorithm for
diesel engines based on variational mode decomposition and robust independent component analysis.
After the VMD of signals, the RobustICA algorithm was employed on the modes to extract the
independent components. Furthermore, the continuous wavelet transform and the prior knowledge of
diesel engines were applied to further identify the separated results. Table 2 is designed to make this
section more readable.

Table 2. Summary of works for VMD.

Objects References Methodologies

Precise filter
operation

speech signal Upadhyay et al. [84]

VMD
Upadhyay et al. [85]

X-band open-ended
rectangular waveguide Yin et al. [86]

metal burn degrees Gao et al. [87]

ship-radiated noise Li et al. [88] VMD + support vector machine

Rough filter
operation

Bearings

Lv et al. [92] VMD + multikernel support vector machine

Liu et al. [94] VMD + singular value decomposition and
standard fuzzy C means clustering

Tang et al. [95] VMD + HT + ICA

An et al. [98] VMD + nearest neighbor algorithm

An et al. [100] VMD + K nearest neighbor algorithm

Yang et al. [101] VMD + multiclass support vector machine

Power signal Aneesh et al. [90] VMD + support vector machine

Gear Muralidharan et al. [93] VMD + J48 decision tree algorithm

Voltage circuit breaker Huang et al. [102] VMD + one-class support vector machine

Improving VMD Bearings
Yi et al. [103] VMD + particle swarm optimization

Zhu et al. [105] VMD + artificial fish swarm

Rotor system Liu et al. [94] VMD + correlation coefficient criterion

De-noising

Bearings Zhang et al. [96] VMD + majoriation–minization-based
total variation

Hydropower unit An et al. [106] VMD + approximate entropy

Bumps, Blocks,
Heavysine,

Doppler and ECG
Liu et al. [107] VMD + detrended fluctuation analysis

Diesel engine Yao et al. [108] VMD + robust independent
component analysis
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5. Vold–Kalman Filter Order Tracking

VKF_OT can determine the slowly-varying envelope of tracked order components with known
instantaneous frequencies [112–114]. The algorithm was first employed in vibration analysis of rotating
machinery. In this paper, to explore the theoretical details of VKF_OT technique realization and
parameter characteristics, we explicitly state the mathematical background of both the angular-velocity
and angular-displacement VKF_OT techniques, according to Ref. [115]. The purpose of the method is
to obtain the tracked order components by minimizing the energy of errors for both the structural and
data equations by mean of one of the least squares approaches [116].

5.1. Principle of Vold–Kalman Filter Order Tracking

5.1.1. The Angular-Velocity Vold–Kalman Filter Order Tracking

The Structural Equation

For a second-order ordinary differential equation (ODE)

d2 f (t)
dt2 + ω2 f (t) = 0 (41)

The complementary solution is

f (t) = K1ejωt + K2e−jωt (42)

where K1 and K2 are arbitrary constants. The discrete form can be expressed as

f (t) = K1enjω∆t + K2e−njω∆t (43)

where t = n∆T; n = 1, 2, 3, ...; and ∆T denotes the sampling time spacing. Let d1 = ejω∆T and
d2 = e−jω∆T ; respectively, then Equation (43) becomes

f (n) = K1(d1)
n + K2(d2)

n (44)

and the characteristic equation can be expressed as

H(n) = (D− d1)(D− d2) (45)

where the operator notation D denotes a discrete-time delay such as D f (n) = f (n− 1). The analyzed
signal f (n) satisfies the following second-order difference equation,

f (n)− 2cos(ω∆T) f (n− 1) + f (n− 2) = 0 (46)

where f (n) denotes the tracked order component, and ω is the radian frequency. Generally, a non-
homogeneous term, ε(n) is introduced to represent the other not-concerned components. So the amplitude,
frequency and phase change slightly. In addition, Equation (46) can be written as [115]

f (n)− 2cos(ω∆T) f (n− 1) + f (n− 2) = ε(n) (47)

Equation (47) is called the structural equation of the angular-velocity VKF_OT.

The Data Equation

An analyzed signal y(n) possesses a formality like [115]

y(n) = f (n) + η(n) (48)
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where the component η(n) denotes other not-concerned components. Equation (48) represents the
data equation of the angular-velocity VKF_OT.

Computation of the Tracked Order Component f

Equation (47) expresses the tracked order component, and Equation (48) expresses the measured
signal. It is assumed that the length of the measured signal y(n) is N, and the tracked order component
f (n) is calculated with Equations (47) and (48), i.e.,

1 −c 1 0 0 · · · 0 0 0
0 1 −c 1 0 · · · 0 0 0
0 0 1 −c 1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 −c 1




f (1)
f (2)
f (3)

...
f (N)

 =


ε(1)
ε(2)
ε(3)

...
ε(N)

 (49)

and 
y(1)
y(2)
y(3)

...
y(N)

 =


f (1)
f (2)
f (3)

...
f (N)

+


η(1)
η(2)
η(3)

...
η(N)

 (50)

where c = 2con(ω∆T). Equations (49) and (50) can be symbolized, respectively, as

↔
A f̃ = ε̃ (51)

and
ỹ = f̃ + η̃ (52)

where the matrix
↔
A is a sparse matrix, and the dimension is (N − 2)× N; f̃ denotes the tracked order

component, and ỹ represents the measured data; ε̃ is the vector of the non-homogeneous term, and η̃ is the
vector of the not-concerned component. The norm square of the non-homogeneous vector is as follows

ε̃T ε̃ = f̃ T
↔
A

T↔
A f̃ (53)

where the symbols T denote the transpose operations. Likewise, the norm square of the not-concerned
vector can be expressed as

η̃T η̃ =
(

ỹT − f̃ T
)
(ỹ− f̃ ) (54)

The least squares approach is employed to calculate the tracked order component. The calculation
goal is to minimize the energy of errors for both the structural and data equations. A weighting factor
r is used to tune the tracked order component f̃ with desirable resolutions. A weighted combination
forms by combining both the structural and data equations,

J = r2 ε̃T ε̃ + η̃T η̃ (55)

is employed to evaluate f̃ ; where r2ε̃T ε̃ = f̃ T
↔
A

T↔
A f̃ : To make ∂J/∂ f̃ = 0, the calculation result is as follows,

(r2
↔
A

T↔
A +

↔
I ) f̃ = ỹ (56)

The tracked order component ỹ is calculated by using the LU decomposition method [117].
Every mono-component f̃ depends on the corresponding instantaneous amplitude and instantaneous
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phase, and they are considered as local constants. In addition, enough time points are needed to
compute the amplitude and phase.

Supplement to Amplitude and Phase of Tracked Order

In Equation (47), it is assumed that the radian-frequency (ω) is a constant. The tracked order
component f̃ can be calculated with known IF. In a second-order, ODE is called the angular-velocity
VKF_OT, and the tracking procedure is obtained in another way. The computed order component f̃ is
calculated by

f (n) =

[
cos(

n

∑
m=0

ω(m)∆T) sin(
n

∑
m=0

ω(m)∆T)

][
a(n)
b(n)

]
(57)

where the amplitude is
√

a(n)2 + b(n)2, and the phase tan−1
(

a(n)
b(n)

)
. In the next subsection, another

OT technique will be explained by using a different structural equation arising directly from the order
waveform similar to Equation (57).

5.1.2. The Angular-Displacement Vold–Kalman Filter Order Tracking

The kth-order component arising from the operation of a rotary machine can be expressed as

fk(t) = ak(t)θk(t) + a−k(t)θ−k(t) (58)

where ak(t) represents the complex envelope, and a−k(t) is the complex conjugate of ak(t) to make
fk(t) a real waveform. It is noted that θk(t) is a carrier wave, and defined as

θk(t) = exp
(

ki
∫ t

0
ω(u)du

)
(59)

where du is the speed of the reference axle, and
∫ t

0 ω(u)du is the elapsed angular displacement.
The discrete form of Equation (59) can then be expressed as

θk(n) = exp

(
ki

n

∑
m=0

ω(m)∆T

)
(60)

The Structural Equation

To obtain the tracked order component fk(t), the corresponding envelope ak(t) needs to be
computed. It is assumed that ak(t) can be a relatively smooth polynomial with a low degree,
and fulfills [114]

dSak(t)
dts = ψk(t) (61)

where ψk(t) represents a higher-degree term in ak(t). Likewise, the corresponding discrete forms is
as follows

∇Sak(n) = ψk(n) (62)

where ∇ denotes the difference operator; the index s denotes the differentiation order; ψk(n) denotes
a combination of other spectral components and additional measurement noise.

The Data Equation

A measured signal y(n) is taken as a combination of several order/spectral components, fk(t),
and measurement noise [114]

y(n) = ∑
k∈j

ak(n)θk(n) + ξ(n) (63)
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where the integral number j(= ±1,±2,±3, . . . , and/or± K) denotes the order of spectral components
to be tracked, ξ(n) represents unwanted spectral components and measurement errors. It is noted that
each order/spectral component ak(n) of interest modulates with its corresponding carrier wave θk(n).

Computation of the Tracked Order Component f

In Equation (62), let s = 2, and data length be N, then the matrix form can be expressed as
−2 1 0 0 0 · · · 0 0
1 −2 1 0 0 · · · 0 0
0 1 −2 1 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · −2 1




ak(1)
ak(2)
ak(3)

...
ak(N)

 =


ψk(1)
ψk(2)
ψk(3)

...
ψk(N)

 (64)

To simultaneously track multiple orders and spectral components, e.g., resonance, Equation (63)
can also be extended to all tracked order components. Let

↔
M =


−2 1 0 0 0 · · · 0 0
1 −2 1 0 0 · · · 0 0
0 1 −2 1 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · −2 1

,
↔
A =


ak(1)
ak(2)
ak(3)

...
ak(N)

 and
↔
Z =


ψ̃k(1)
ψ̃k(2)
ψ̃k(3)

...
ψ̃k(N)


and then Equation (64) becomes

↔
M 0 0 0 · · · 0 0

0
↔
M 0 0 · · · 0 0

0 0
↔
M 0 · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · 0
↔
M


↔
A =

↔
Z (65)

where elements ãk in the matrix
↔
A are column vectors with a length N, which denote the kth order

component; ψ̃k represent error vectors with a dimension N × 1; and M is a matrix with a dimension N × N.
The terms with negative indexes in Equation (63) assure fk(t) to be a real waveform. ỹ denote the

measured signal with a length of N, ξ an error vector with dimension N × 1; and
↔
Bk consist of carrier

signals, which is a diagonal matrix, as

↔
Bk =


θk(1) 0 0 · · · 0

0 θk(2) 0 · · · 0
0 0 θk(3) · · · 0
...

...
...

...
...

0 0 0 · · · θk(N)


↔
A =

↔
Z (66)

Thus, Equation (63) can be rewritten as

ỹ−
[

B̃1 B̃2 B̃3 . . . B̃k

]


ã1

ã2

ã3
...

ãK

 = ξ̃ (67)
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As the angular-velocity VKF_OT scheme, a weighting factor is introduced, and combine Equations (64)
and (67), and then



0
0
0
...

0
ỹ


−



r
↔
M 0 0 · · · 0 0

0 r
↔
M 0 · · · 0 0

0 0 r
↔
M · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0r
↔
M

B̃1 B̃2 B̃3 . . . B̃k−1 B̃k





ã1

ã2

ã3
...
ãK−1

ãK


=

[
r
↔
Z

ξ

]
(68)

For the convenience of subsequent deviation, Equation (68) can be symbolized as

↔
Y −

↔
P
↔
A =

↔
E (69)

The evaluation of tracked order components is exactly to find a vector
↔
A fulfilling

min
↔
A

(
∥∥∥↔E∥∥∥2

) = min
↔
A

(
↔
E

H↔
E) = min

↔
A

(J) (70)

i.e., ∂J/∂
↔
A = 0. The vector

↔
A can be written as

↔
P

H↔
P
↔
A =

↔
P

H↔
Y (71)

The matrix
↔
P

H↔
P is of the form

↔
P

H↔
P =



↔
S

↔
B1,2

↔
B1,3 · · ·

↔
B1,K

↔
B2,1

↔
S

↔
B2,3 · · ·

↔
B2,K
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
(72)

where
↔
S = r2

↔
M

T↔
M +

↔
I , and

↔
Bu,v = BH

u Bv, Moreover,
↔
P

H
is of the form

↔
P

H
= [
↔
B1
↔
B2
↔
B3 · · ·

↔
BK]

T

(73)

where
↔
BK denotes the complex conjugate of

↔
BK. It should be noted that Equation (72) is positive

definite, its inverse matrix exists and can be evaluated numerically.

5.2. Advantage of Vold–Kalman Filter Order Tracking

As mentioned above, the different mono-components can be separated by using VKF_OT with
known IF, even when the IFs cross in time-frequency panel, which cannot be done by methods deriving
from EMD, EWT and VMD. We construct a sample fsig8 (as shown in Figure 39)

fsig8 = s1(t) + s2(t)

s1(t) = t · sin[(100 + 100t)× 2πt], 0 ≤ t ≤ 1

s2(t) = t · sin[(300t)× 2πt], 0 ≤ t ≤ 1

(74)
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to illustrate it, and the sampling frequency is 2 kHz. As can be seen in Figure 40, two components
cross in time-frequency panel. Figure 41a presents the decomposition result. To check the calculation
accuracy of the VKF_OT, we calculate the error ek(t) by

ek(t) = fk(t)− fk0(t) (75)

where fk(t) denote the kth component of decomposition result (k = 1, 2, . . ., k is the number of
components obtained by using VKF_OT), and f0k(t) denote the kth component of original signal.
As shown in Figure 41b, the errors are small. Therefore, for the slowly-varying envelope of tracked
order components with known instantaneous frequencies, a promising calculation result can be
obtained by using VKF_OT.

Figure 39. The waveform of the sample signal fsig8.

Figure 40. The STFT of the sample signal fsig8: (a) 2D figure and (b) 3D figure.

Figure 41. The waveforms of decomposition result of fsig8 by using VKF_OT and the corresponding
calculation errors: (a) waveforms and (b) calculation errors.



Sensors 2018, 18, 0 38 of 51

5.3. Disadvantage of Vold–Kalman Filter Order Tracking

We construct a sample signal fsig9 (as shown in Figure 42)

fsig8 = s1(t) + s2(t) + s3(t)

s1 =


0 , 0 ≤ t < 0.1
2(t− 0.1) sin{800 · 2π · t} , 0.1 ≤ t < 0.6
−2(t− 1.1) sin{800 · 2π · t} , 0.6 ≤ t < 1.1
0 , 1.1 ≤ t < 1.2

s2(t) = t · sin[(600t)× 2πt], 0 ≤ t ≤ 1.2

s3 = sin[300 · 2π · t + 100 sin(2πt/1.2)], 0 ≤ t ≤ 1.2

(76)

to demonstrate the disadvantage of VKF_OT, and the sampling frequency is 2 kHz. In this paper,
we employ STFT to obtain the IF of each component. On this basis, VKF_OT is adapted to compute
components of the signal. The STFT of the sample signal fsig9 is shown in Figure 43. The IF errors of the
sample signal fsig9 is obtained from the corresponding STFTs, and is presented in Figure 44. In addition,
the calculation result of VKF_OT is presented in Figure 45. As shown in Figure 45, the computation
error of components 1 and 2 are small, except for the signal ends marked by red rectangles in Figure 45.
However, the errors of component 3 are relatively greater, about 0.1, which may result from the error of
IF. As shown in Figure 44, the IF errors of component 3 are relatively greater, too. The IF of component
3 varies relatively quickly, so it is difficult to obtain IF with a high accuracy by using STFT. It can be
deduced that a high computation accuracy of the component 3 can be obtained, if the IF difference
between the calculation result and the true value is small. Moreover, as can be seen in Figure 44, the IF
errors of component 1 in [0 0.1] s and [1.1 1.2] s are great, as marked by red rectangles in Figure 44,
but the calculation errors in these time sections are also small. Therefore, this phenomenon reveals
that the error of IF cannot result in calculation error when the values of the component are zero in the
corresponding time sections.

The analysis above indicates that precisely calculating IF is crucial for the calculation accuracy of
VKF_OT. In this paper, STFT is adapted. Maybe, other time-frequency representation techniques can
be tried to obtain the IF of component with a high accuracy. The selection of parameters such as the
weighting factor and the correlation matrix of process noise, which influences tracking performance,
are issues open to further research.

Figure 42. The waveform of the sample signal fsig9.
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Figure 43. The STFT of the sample signal fsig9: (a) 2D figure and (b) 3D figure.

Figure 44. The IF errors of the sample signal fsig9 obtained from the corresponding STFTs.

Figure 45. The waveforms of decomposition result of fsig9 by using VKF_OT and the corresponding
calculation errors: (a) waveforms and (b) calculation errors.

5.4. Application and Improvement Works of Vold–Kalman Filter Order Tracking

As illustrated above, VKF_OT can single out mono-component-related signatures, so it is an effective
tool for the analysis of measured dynamic signals. Scholars have done numerous investigations of
application and improvement research for VKF_OT [113–135].
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First, we summarize some theoretical researches of VKF_OT. Vold [114] proposed VKF_OT for the
estimation of a single-order component. Afterwards, an improved version simultaneously estimating multiple
orders was proposed [113,114]. Pan [115,116] further explored the theoretical details of the angular-velocity
and angular-displacement VKF_OTs. However, these VKF_OT schemes must be computed off-line and
implemented as post-processing techniques, resulting from determination of structural equations and data
equations [113,114], which makes the unknown complex envelopes smooth and relates the tracked orders
to the measured signal. These two equations should be evaluated within a huge inverse matrix with all
observed time sequence data. The solution of Kalman filtering converges to the optimum Wiener solution in
some statistical sense. It can be seen that embodying the structural and data equations of a linear, discrete-time
dynamical system in the process and measurement equations translates the order-tracking problem into
a state estimation task. Haykin [118] introduced a one-step prediction into Kalman filtering, overcoming this
drawback of the original VKF_OT scheme, and made real-time processing feasible. In addition, Wu [119]
employed the algorithm to undertake fault diagnosis of a gear set and damaged engine turbocharger wheel
blades. In Ref. [119], sound emission signals served as an alternative reference signal to the fault diagnosis
system. Pan [120,121] took this and improved the original angular-velocity and angular-displacement
VKF_OTs [115,116], which enabled addressing of computation complexity, and allowed it to be considered
in on-line and real-time applications. Pan [122] adopted the procedure of accumulative vectors and the
concept that a measured signal could be represented as the superposition of order components to the
original angular-velocity Vold–Kalman order tracking [115,116], and presented an extended angular-velocity
VKF_OT. It is worth mentioning that Pan [128] built a remote online machine condition monitoring system
in the architecture of both the Borland C++ Builder (BCB) software-developing environment and Internet
transmission communication. Various signal-processing computation schemes such as time–frequency
analysis and VKF_OT were implemented-based upon the Borland C++ Builder graphical user interface.

To improve performance of the method for the dynamics analysis, other signal processing
algorithms were employed to analyze testing signals together with VKF_OT. Wang [123] used EMD
to preprocess raw signals, and then further decompose IMFs to separate speed synchronous and
non-synchronous vibrations by using VKF_OT. Besides, to select a suitable bandwidth of VKF_OT in
implementation of Vibration Monitoring of Electrical Machines, Wang [124] established a simplified
simulation model of electrical rotating machinery, and a parameter was chosen based on two different
damping ratios of the simulation model. Similar to Ref. [123], Guo [125] applied ICA to decouple the
disturbance orders. Furthermore, the independent components were decomposed using VKF_OT.
Feng [126] employed higher-order energy separation on mono-components obtained by VKF_OT to
accurately estimate the IF because of its high adaptability to local signal changes.

6. Summary and Prospects

Adaptive methods to analyze a signal are of great interest regarding finding sparse representation
in the contest of compressive sensing. Employing a proper adaptive decomposition algorithm tends to
successfully separate a multicomponent signal into different mono-components. Practical engineering
problems can be roughly divided into two categories, precise filtering operations and rough filtering
operations. The former requires that a single targeted mono-component should be accurately extracted
form a raw signal, and it is ideal that there should be no loss of the targeted mono-component and
no residual noise. The parameter identification of mechanical systems [136,137] and isolation of
deferent wave packages in ultrasonic non-destructive testing [67] belong to this category. For the
latter, highlighting specific characteristics of valuable components is the filter target, and the loss of the
valuable component and the residual noise (invaluable components can be taken as noise in this paper)
are tolerable, for example in fault diagnosis of rolling bearings [138–140]. The algorithms mentioned
above can be taken as different filters, and have their respective applicable scopes, inapplicable scopes
and further research issues, as summarized in Tables 3 and 4. In real applications, one should select
an appropriate method according to the specific characteristics of the signal.
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Table 3. Comparison of various time–frequency analysis methods for the precise operation. It should be noticed that algorithms deriving from EMD that are referred
in this paper include EEMD, CEEMD, CEEMDAN, and improved CEEMDAN, and the number of sifting iterations is set as 2000, and the stopping criterion threshold
is set as 0.05. The conclusion about algorithms deriving from EMD is obtained under these conditions of parameter setting.

Method Applicable Scope Inapplicable Scope Further Work

Algorithms deriving
from EMD

The IFs of different component are in
an enough distinction degree.

The ratio is greater than 0.75. In addition, the ratio
(low IF/high IF) is less than 0.5, which can obtain
a promising decomposition.

1. Decrease computation intensity;
2. Improve decomposition stability.

EWT Different components can be separated
in Fourier spectrum. Different components overlap in Fourier spectrum.

1. Develop detection strategy of boundary;
2. Suppress influence of the white noise.

VMD Different components can be separated
in Fourier spectrum. Different components overlap in Fourier spectrum.

1. Develop the specific sparsity property;
2. Suppress influence of the white noise;
3. Select parameters such as number of

decomposition modes and
data-fidelity constraint.

VKF_OT The component IF is available.
The component IF is unknown. In addition,
the calculation accuracy of mono-component
depends on the precision of corresponding IF.

1. Obtain the IF in a high precision;
2. Select parameters such as the weighting factor

and the correlation matrix of process noise.
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Table 4. Comparison of various time–frequency analysis methods for the rough operation. It should be
noticed that algorithms deriving from EMD that are referred in this paper include EEMD, CEEMD,
CEEMDAN, and improved CEEMDAN, and the number of sifting iterations is set as 2000, and the
stopping criterion threshold is set as 0.05. The conclusion about algorithms deriving from EMD is
obtained under these conditions of parameter setting. Because algorithms deriving from EMD, EWT
and VMD can work for most cases for the rough operation, we just list the further works for them.

Method Further Work

Algorithms
deriving

from EMD

1. Decrease computation intensity;
2. Improve decomposition stability;
3. Further remove color noise in conjunction with other decomposition methods;
4. Highlight the specific characteristics of the valuable component;
5. Identify interesting components.

EWT

1. Develop detection strategy of boundary;
2. Further remove color noise in conjunction with other decomposition methods;
3. Highlight the specific characteristics of the valuable component;
4. Identify interesting components.

VMD

1. Develop the specific sparsity property;
2. Select parameters such as number of decomposition modes and

data-fidelity constraint;
3. Further remove color noise in conjunction with other decomposition methods;
4. Highlight the specific characteristics of the valuable component;
5. Identify interesting components.

6.1. Algorithms Deriving from Empirical Mode Decomposition

EMD decomposes multicomponent signals in sifting and iteration process. EEMD solves mode-mixing
caused by intermittence signals. CEEMD can suppress the residue coming from adding white noise in the
decomposition process. CEEMDAN and improved CEEMDAN can reduce computation amount.

EEMD, CEEMD, CEEMDAN and improved CEEMDAN can work when the IFs of different
mono-components are distinct enough at each time point. It is necessary for the ratio between
a relatively low IF and a relatively high IF to be smaller than 0.75, and an ideal decomposition result
can be obtained when the ratio is smaller than 0.5, for reasonable numbers of sifting iterations. For the
precise filtering operation mentioned above, this necessary condition of the frequency resolution
should be met; otherwise, a relatively large calculation error may be introduced. Further work can be
done on decreasing computation intensity and improving decomposition stability.

For the rough filtering operation mentioned above, algorithms deriving from EMD can work
in most cases. If the conduction of frequency resolution is not met, although the loss of valuable
components and residual noise may occur, noise can be removed to a certain degree by using algorithms
deriving from EMD. Therefore they may work in this case. Moreover, algorithms deriving from EMD
can be employed in conjunction with other decomposition methods such as wavelet transforms,
principal component analysis and adaptive multiscale morphological analysis to further remove color
noise and highlight the specific characteristics of the valuable component. In addition, identifying
interesting components is also a research issue. Finally, further work can be done on decreasing
computation intensity and improving decomposition stability.
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6.2. Empirical Wavelet Transform

EWT is a combination of WT and EMD. For precise filtering operations, the necessary premise
is that valuable mono-components can be separated in the Fourier spectrum. However, considering
the characteristics of the Fourier spectrum in different practical problems as shown in Section 3.3.2,
the filtering goal can be met under the condition that the boundaries of valuable mono-components
can be obtained; therefore suitable strategies for boundary detection is crucial. Further research can
be conducted with respect to this problem. White noise distributes in the entire Fourier spectrum.
For a broadband mono-component, the negative effect from white noise cannot be neglected in some
situations. In that case, a de-noising operation before or after EWT may be necessary. Further work
may be done by finding effective de-noising methods for this problem.

For the rough filter operation, EWT can work in most cases. Similar to the precise filter operation,
correctly establishing the boundary of valuable components is decisive. Therefore, finding out the
spectrum band corresponding to the valuable component in different practical problems is an open
research issue. A specific effective boundary detection strategy can be taken as a significant contribution
for a scientific problem. Finally, further removing color noise in conjunction with other decomposition
methods, highlighting the specific characteristics of the valuable component, and identifying interesting
components also are research issues for EWT.

6.3. Variational Mode Decomposition

VMD decomposes a multicomponent signal into a series of sub-signals (mono-component) that
have specific sparsity properties by assessing the bandwidth of a mono-component in an iteration
process using an ADMM. For the precise filter operation, as shown in Section 4.2, it is necessary
that the different mono-components are well isolated in the frequency spectrum of the raw signal.
Otherwise, decomposition cannot be successful. Further, the sparsity property employed in VMD
is that the mono-component should be mostly compact around a center pulsation in the frequency
spectrum. The widespread application of original VMD seems to suggest that this goal has fine
applicability. However, in practical problems, this goal may not be universal in all cases. A suitable
sparsity property should be defined for a specific problem. In addition, the frequency spectrum can
be extended into time-frequency spectrums. Similar to EWT, the effluence of white noise should also
be taken into consideration, as it is inevitable that each bandwidth of the frequency spectrum keeps
part of the energy of white noise. Therefore, a de-noising operation before or after VMD may be
necessary, if the white noise has a strength of energy that cannot be ignored. In addition, the selection
of parameters such as number of decomposition modes and data-fidelity constraint, which influences
tracking performance, is an issue open to future research.

For rough filter operation, VMD can work in most cases. The goal of extracting the interesting
component from the raw signal can also be obtained, when different mono-components overlap in
the corresponding frequency spectrum useless components are inevitable. Similar to the precise filter
operation, finding a suitable sparsity property in a specific practical problem and the selection of
parameters are open issues. In addition, the selection of parameters is also an issue open to future
research. Finally, further removing color noise in conjunction with other decomposition methods,
highlighting the specific characteristics of the valuable components and identifying interesting
components also are research issues for VMD.

6.4. Vold–Kalman Filter Order Tracking

VKF_OT can decompose multicomponent signals into different mono-components with known
corresponding IFs. Therefore, VKF_OT is more suitable for precise filter operation, compared
with rough filter operation. Because the calculation accuracy depends on the accuracy of the IF,
calculating the IF at a high accuracy is key for VKF_OT. We can employ time-frequency analysis
techniques. However, when the IF changes quickly, it is difficult to obtain the IF precisely. Recently,
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some novel time-frequency representation techniques such as polynomial chirplet transform [141,142]
and synchrosqueezing transform [143] have become available. These methods may be ideal choices to
obtain the IF. Obtaining the IF to a high accuracy and the selection of parameters such as the weighting
factor and the correlation matrix of process noise are issues open to future research.
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Abbreviations

EMD empirical mode decomposition
EWT empirical wavelet transform
VMD variational mode decomposition
VKF_OT Vold-Kalman filter order tracking
EEMD ensemble empirical mode decomposition
CEEMD complementary ensemble empirical mode decomposition
CEEMDAN complementary ensemble empirical mode decomposition with adaptive noises
Improved
CEEMDAN

improved complementary ensemble empirical mode decomposition with
adaptive noises

AM amplitude modulated
FM frequency modulated
IF instantaneous frequency
IA instantaneous amplitude
HT Hilbert transform
STFT short time Fourier transform
IMF intrinsic mode functions
SNR signal-noise ratio
HHT Hilbert-Huang Transform
ICA independent component analysis
GEMD generalized empirical mode decomposition
EED empirical envelope demodulation
PEEMD partly ensemble EMD
FT Fourier transform
ADMM alternate direction method of multipliers
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