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Small-scale molecular systems biology, by which wemean the understanding of a how a few parts work together to control a

particular biological process, is predicated on the assumption that cellular regulation is arranged in a circuit-like structure.

Results from the omics revolution have upset this vision to varying degrees by revealing a high degree of interconnectivity,

making it difficult to develop a simple, circuit-like understanding of regulatory processes. We here outline the limitations of

the small-scale systems biology approach with examples from research into genetic algorithms, genetics, transcriptional net-

work analysis, and genomics. We also discuss the difficulties associated with deriving true understanding from the analysis of

large data sets and propose that the development of new, intelligent, computational tools may point to a way forward.

Throughout, we intentionally oversimplify and talk about things in which we have little expertise, and it is likely that

many of our arguments are wrong on one level or another. We do believe, however, that developing a true understanding

via molecular systems biology will require a fundamental rethinking of our approach, and our goal is to provoke thought

along these lines.

Why systems biology?

Formany years now, it has been de rigueur to begin any discussion
of systems biology with the question, “So, what exactly is systems
biology?” This question surely has many answers, but perhaps a
more useful question might be, “Why do we need systems biol-
ogy?” …or, more generally, “Why do we need anything new?”
After all, the now-standard approaches from molecular biology
have provided us with unprecedented knowledge of the inner
workings of the cell, transforming our understanding of biology
along theway. Armedwith the tools of biochemistry, the scientists
in the vanguard of molecular biology’s golden era worked out the
structure of DNA, the genetic code, how DNA is replicated, how
genes express, how cells move, and countless other fundamental
pieces of the machinery that makes cells work. Importantly, these
discoveries enabled precise manipulations—using the genetic
code, for instance, we can use our understanding of the cell’s ma-
chinery to make our own proteins.

With the development of these tools came the potential to
carry out studies of ever greater scope (Snyder 2013). The paradigm
here is the scientific story that connects, say, a mutation in a par-
ticular gene to an organismal phenotype via a biochemical mech-
anism. A shining example is that of cystic fibrosis, a heritable
disease in which mutations to the CFTR gene, a cAMP-activated
chloride channel, cause mucus to become sticky (among other ef-
fects), thus causing the human disease condition. Through careful
molecular biology and biochemistry, scientists were able to delin-
eate a clear path from mutation to biochemical defect to disease
(Guggino and Stanton 2006). As the field matured, however,
such examples became rarer and more tenuous; and there was a

growing realization that further progress would require an un-
derstanding not just of biological mechanism, but also biological
regulation. For example, although our understanding of the me-
chanics of transcription was fairly solid, we instead needed to
know why one gene was transcribed while another one was not.
In this context, the goal is to understand the regulatory interac-
tions between molecules; and for us, it is here that the conceptual
transition from molecular biology to molecular systems biology
begins.

One approach to understanding biological regulation, which
we call “small-scale” systems biology, came into vogue in the late
1990s. This approach, characterized by a heady blend of experi-
mental observation and mathematical modeling, was predicated
on the notion that a complete understanding of regulation would
require quantitative models. Drawing analogies to electrical engi-
neering, the object of study was the biological regulatory circuit,
and the goal was to understand the principles underlying the orga-
nization of these circuits. This approach has yielded many cele-
brated successes ranging from bacterial chemotaxis to metazoan
development. Some of our favorites include the use of integral
feedback control to regulate tumble frequency in E. coli (Barkai
and Leibler 1997; Alon et al. 1999), precision and scaling in de-
velopment (Gregor et al. 2007a,b; Ben-Zvi et al. 2008; Little
et al. 2013), design principles of cell signaling pathways (Cai et
al. 2008; Mettetal et al. 2008; Muzzey et al. 2009; Sprinzak et al.
2010), cell-cycle regulation (Doncic and Skotheim 2013; Doncic
et al. 2015), and basicmechanisms of cellular growth,metabolism,
and homeostasis (Youk and van Oudenaarden 2009; You et al.
2013; Campos et al. 2014; Soifer et al. 2014; Padovan-Merhar
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et al. 2015). We also have a predilection for single-cell biology (Raj
and van Oudenaarden 2008; Balázsi et al. 2011).

Beautiful as these stories may be, how do they differ from
what researchers have been doing for years? Do they really repre-
sent the first steps toward a new hybrid field, or are they just stan-
dard molecular biology with some equations and error bars for
decoration? The latter is a fair charge in many instances, but to
us, the conceptual difference is that by building a quantitative un-
derstanding of biological regulation, we can build a rational, quan-
titativemodel of the cell, i.e., we can build thewhole from the sum
of the parts.

So how close are we to this grand ideal? Here, we will argue
that the advent of “large-scale” systems biology—namely, various
forms of omics-level analyses—has helped cast doubt upon the
very idea that we can assemble these simple models into a global
picture of biological regulation, particularly in metazoans. Yet at
the same time, we believe that large-scale systems biology has
not yielded any viable alternatives, but has instead just cataloged
increasing complexity rather than reduced it. In this perspective,
we will expand on these arguments with selected examples from
genetic algorithms, genetics, transcriptional network analysis,
and genomics.Wewill conclude with proposals for new directions
for molecular systems biology that eclipse our natural mental ca-
pacities, perhaps guided by artificial intelligence–aided interpreta-
tion of data that may contain structure.

An inconvenient truth illustrated in silicon

A central tenet of systems biology is the idea that regulation inmo-
lecular biology is modular, meaning that individual components
may operate independently of one another and can be strung to-
gether in a rational way to produce higher-level functions. In
this context, it is easy to see why the integrated electronic circuit
—a triumph of intelligentmodular design—has served as a natural
conceptual framework for small-scale systems biology. They are ex-
ceedingly complex regulatory devices; yet this complexity arises
from the composition of smaller, comprehensible modular com-
ponents integrated according to a set of design principles. The
hope is that we can gain the same detailed level of understanding
of biological regulatory circuits as we have with electrical circuits
by isolating and understanding regulatory modules and their
interconnections.

Yet a quick look at the world around
us reveals the enormous differences
between human-designed objects and
those designed by evolution in the natu-
ral world. Given these differences, is
there any reason we might expect to see
similarly modular regulatory behavior
in the muddled molecular soup of the
cell, shaped by the random forces of evo-
lution rather than a rational agent?

This is in general a difficult question
to answer, because we typically look at
evolution in the biological context and
human design in the context of man-
made objects like electrical circuits. But
what would happen if you designed elec-
trical circuits by evolution? Would they
resemble human design?

Indeed, would we even expect an
evolutionary process to yield modular

circuits in silicon? In a very interesting set of experiments from
the latter half of the 1990s, Adrian Thompson examined exactly
that by attempting to evolve an electronic circuit (Thompson
1997). Specifically, the goal was to evolve a circuit capable of dis-
criminating electronic “tones” (essentially, a low frequency and
high frequency signal), and the evolutionary substrate for his ex-
periments was the field programmable gate array (FPGA), a chip
that is itself reprogrammable through software. The idea was to
start with a randomly “programmed” chip and then evolve the fea-
tures on the chip using a genetic algorithm to see if it would even-
tually be able to perform the tone-discrimination task (Fig. 1A).
Amazingly enough, in about 4100 generations, the chip had
evolved to the point at which it could perform the task with very
high fidelity, which was particularly impressive given the small
number of potential circuit elements it was given to work with
(i.e., 100). (In fact, Thompson noted that many thought it would
be impossible for such a small circuit to perform this task.) Howdid
the circuit achieve this task? It was unfortunately rather hard to say
exactly how, but one quick conclusion is that the solution was
neither modular nor readily comprehensible through standard
digital circuit design principles, with strange waveforms appearing
throughout the evolutionary process. Thus, it was the first strike
against modularity.

The beautiful thing about evolving a circuit in silicon is that it
enabled Thompson (1997) to dissect the evolutionary process in
ways that would be very difficult to do in the messy world of mo-
lecular biology. For instance, he could perform the equivalent of
looking for “phenotypes” of “knock outs”with rapidity and preci-
sion, and here things got even more interesting. One of the first
things Thompson didwas prune the network by clamping the out-
put of all circuit elements that did not affect the performance of
the circuit. Surprisingly, this minimal network included five ele-
ments that were not physically connected to the circuit at all, at
least not in the conventional sense (Fig. 1B). Most of these ele-
ments had relatively small but quantifiable effects on circuit per-
formance; one of them had a very large effect, even though its
output had no connection to the circuit whatsoever. The interpre-
tation is that evolution took advantage of the underlying phy-
sics (which we typically ignore in modular design) to arrive at
solutions that appear incomprehensible and foreign, even to cir-
cuit engineers. Indeed,moving the exact same circuit to a different

Figure 1. Complex structure of a circuit evolved in silicon. (A) The final evolved circuit for tone discrim-
ination, a 10 × 10 array of cells. All connections that link an input and an output are marked. (Arrow from
a cell) connection driven by origin cell’s function; (square at arrowhead) connection selected as input for
recipient cell function. (B) Minimal necessary components of final evolved circuit for tone discrimination.
Missing cells can be fixed at constant value without affecting performance; gray cells cannot be fixed at
constant value without affecting performance, although the cell has no path connecting to markedmin-
imal necessary functional cells (Thompson 1997).
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part of the chip resulted in poorer performance that could be im-
proved by a bit of further evolution, a feature strikingly reminis-
cent of approaches in synthetic biology (Dougherty and Arnold
2009). Still, although Thompson (1997) should of course not be
taken as a literal model for evolution per se, it is worth noting
that it produced a strikingly organic result, and one that appears
to also hold on to its secrets in much the same way.

Limitations of the small-scale systems biology

approach

What are the implications of Thompson’s findings for small-scale
systems biology (Thompson 1997)? We believe the primary les-
son is that the notion that evolution favors easily discernible
and well-isolated regulatory modules may be fundamentally
wrong. Although we might be able to make some sense of a small
subset of the regulatory network, we believe that in most cases in
metazoans, small-scale systems biology has not led to an under-
standing sufficiently detailed to allow one to clearly define regula-
tory modules or how they might interact, much like Thompson’s
evolved circuits.

Take, for example, the standard formula for a small-scale sys-
tems biology paper: Start with an interesting phenomenon and
make some quantitative measurements. Develop a mechanistic
model, often mathematical, to explain the data. Mine this model
for a prediction. Make a perturbation to test this prediction and
verify it experimentally. Although these stories are often very ap-
pealing, when examined in detail, one often finds that perturba-
tions seldom yield complete and definitive results, hence leaving
us with several holes in the story. These holes typically remain un-
filled, and so it is difficult to know to what extent the regulatory
“module” identified in the story is truly isolated from other puta-
tive modules. Indeed, these holes call into question the very no-
tion that modules exist at all.

Take an example from our own work (Raj et al. 2010), which
we focus on for the purposes of self-deprecation rather than self-
promotion.We tried to explain variability in the gut development
pathway in C. elegans in organisms harboring a mutated version
of a particular transcription factor. This phenotypic variability,
known as incomplete penetrance, is a common fact of life in genet-
ics, with many, if not most, regulatory mutants showing such par-
tial effects. We made quantitative measurements of transcription
factor expression in a series of mutants, showing that variability
in expression of a downstream regulator, subjected to a threshold,
led to the decision of whether or not to form gut cells in the mu-
tant embryo through the expression of the “gut master regulator”
elt-2. A prediction of this model was that reducing the variability
would result in more embryos surpassing the threshold. Sure
enough, by further removing an inhibitor of the downstream reg-
ulator, wewere able to reduce the variability, pushingmore embry-
os above the threshold and leading to more gut cell formation. All
in all, it was a fairly standard exercise inmolecular systems biology.
Yet, arewe any closer to understanding variability in gut cell devel-
opment?We would argue not. We know a few factors that seem to
both incur this variability and then potentially manipulate the
variability, but none of these perturbations give us anywhere close
to a complete understanding of what governs this variability—
nothing we did could restore wild-type precision fully, nor were
the effects limited in scope.

Scientists often attribute these untidy results to the relative
imprecision of our experimental tools (Lazebnik 2002). Perhaps

that is true in some cases, but we feel the evidence points to mess-
iness being a fundamental feature of biological regulation. In
the case of gut development, decades of painstaking genetics
(Maduro and Rothman 2002;Maduro 2006) provided uswith a rel-
atively simple regulatory pathway that served as the framework for
our results. Yet even these genetic foundations still contain “mys-
tery factors” that we know must exist (and probably several more
that we do not know exist), but have not yet identified after almost
20 years (Maduro and Rothman 2002).

Indeed, upon closer inspection, these simple pathways often
reveal layers of deep complexity and interconnectedness that are at
odds with the notion of modularity. One concept that is most as-
sociated with modularity is that of the “master regulator,” in this
case, a transcription factor whose expression is necessary and suf-
ficient for a particular phenotype of interest. In the case of the gut,
early experiments revealed elt-2 to be a candidate for the master
regulator of gut formation (Fukushige et al. 1998). Surprisingly,
it then turned out that the elt-2 knockout worm still expressed
some downstream factors and had a reasonable approximation
of a nascent gut (Fukushige et al. 1998; Sommermann et al.
2010). Attention then turned to the role of a the seemingly redun-
dant transcription factor elt-7, with the double knockout of elt-2
and elt-7 showing a far more profound lack of gut phenotype, ex-
cept for the well-differentiated gut cells interspersed between the
cells displaying the mutant phenotype (Sommermann et al.
2010). Perhaps then there is also a role for elt-4 (Maduro and
Rothman 2002)? One can get into semantic discussions over ne-
cessity and sufficiency and the definition of master regulators
(Chan et al. 2013), but we think this example nicely illustrates
the fact that redundancy and partial effects are more the rule
than the exception with respect to so-called master regulators.
Indeed, in many cases, close inspection of the details reveals that
many other examples of master regulators are somewhat less clean
and simple than previously believed.

Somemay counter our arguments by pointing out that we are
at the very beginning of this field, developing the initial knowl-
edge of the dominant parts and players that we will then refine
and add to over time toward a more complete understanding
(Brenner 2010). Rob Phillips is a strong proponent of this line of
thought, pointing out that many fields of study lookmessy initial-
ly until decades of hard, careful work brings a systematic order to
them. Impressively, his group has shown that careful analysis of
transcriptional factor concentration could explain transcriptional
regulation in E. coli through a single governing principle (Brewster
et al. 2012, 2014). It is also possible that currently mysterious reg-
ulatory behavior may have explanations involving other forms of
biochemical and physical interactions than typically considered
(Frechin et al. 2015).

Are these the first steps along the path to a complete explana-
tion of transcriptional regulation? Is “complexity” just a word we
trot out whenever we refuse to think harder about the problem?Or
are these successes one-offs or limited in scope to simpler prokary-
otic systems and utterly useless in the face of metazoan complex-
ity? We think it is hard to say at this point. An oft-repeated
truism from George E.P. Box is that all models are wrong, but
some are useful. We think the difficulty lies in the definition of
useful (Box and Draper 1987). As a means to roughly explain
some effects in a particular regulatory system, our current models
are useful. As a building block for a larger model to truly explain,
for instance, how a developmental gene network attains such
high levels of precision, our current models are still largely useless.
We wonder whether such higher-order models will ever emerge
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from the paradigm of combiningmodular building blocks because
biological regulation may be intrinsically nonmodular and thus
perhaps not understandable by the framework used by small-scale
systems biology.

Genomics and the revelation of dense

interconnectedness

The arrival of the genomic era has in many ways laid these facts
bare. Take the example of differential gene expression analysis.
Now that we have the ability to accurately measure differences
in gene expression across the genome, it is clear that the conse-
quences of virtually any perturbation are seldom relegated to
one or a few genes, but rather spread across large numbers of genes,
often numbering in the thousands. Moreover, these sets of genes
almost never fall into clear mechanistic subgroups, but rather
only show “enrichment” for various cellular functions that typi-
cally overlap significantly with other perturbations.

It is certainly possible that the majority of these differences
are completely inconsequential, as nicely argued by Atay and
Skotheim (2014). In this view, there is a core set of circuits under-
lying cellular regulation surrounded by a bunchof irrelevant noise.
We arenot so sure, however, that this view is completely supported
by the evidence.

We offer another recent example, CellNet, a computational
framework developed for using genome-wide expression profiles
analysis to help understand and manipulate cell types (Cahan
et al. 2014; Morris et al. 2014). CellNet takes as input a large num-
ber of gene expression profiles spanning several different cell
types and several different experimental conditions. Using these
data, it attempts to construct a gene regulatory network associated
with each cell type using expression variation to infer regulatory
links. The authors applied CellNet in two ways, both of which
we believe argue against simple models of gene regulation. First,
using CellNet, they show that interconverting cells from one
type to another by expressing particular master transcription fac-
tors (in this case, fibroblasts to neurons via ectopic expression
of Ascl1, Nr4a2, and Lmx1a) led to cells that still had traces of
the fibroblast gene expression program. Direct differentiation
from embryonic stem cells showed no such defects. This shows
that activation of the network by these transcription factors was
incomplete, and thus that differentiation depends on more than
just the expression of a few major players. Second, in the case
of B cell to macrophage conversion, they showed that CellNet
could generate a list of candidate interventions to enhance conver-
sion. Experiments showed that performing those interventions
worked as predicted; it seems reasonable to assume that the more
interventions one could perform simultaneously, the better the re-
sults. Again, these results suggest that properties such as cell fate
depend on the values of many cellular parameters, and further,
that precise manipulation of those properties may require control
over all of those parameters.

We think that the bias toward isolating single dominant fac-
tors stems from an inherent desire to develop scientific stories,
which are invariably more satisfying when they have a single or
few protagonists. Experimental geneticists typically model vari-
ants leading to big phenotypes with high penetrance, ignoring
or perhaps not even detecting variants of lesser or partial effect.
Molecular biologists apply many of the same experimental ap-
proaches that were well suited to working out the basic machinery
of the cell but may be less well suited to understanding regulation.

A particularly stark example of the limitations of this approach is
in the mechanistic study of cancer, which has led to an incredible
accumulation of knowledge about the molecular basis for regulat-
ing cellular processes such as proliferation, death, and disease
(Hanahan and Weinberg 2000). Yet, with all this knowledge, we
are still unable to cure most actual clinical human cancers, and
there is a growing appreciation that detailed mechanistic models
have largely failed to capture the full complexity of the disease
(Weinberg 2014). Because of these biases, both scientific and
methodological, it is still unclear how many forms of biological
regulation are built from the sum of many smaller effects.

Unbiased—and often indecipherable

Genomics has also allowed us to remove some of these biases, per-
haps most notably through the use of genome-wide association
studies of quantitative traits, such as height or blood cholesterol
levels. Here, the goal is to start with the quantitative trait, then
look for the genetic variants underpinning its variation, many of
which are in regulatory noncoding DNA. The results of genome-
wide association studies have left us with the impression that the
major players we seek in molecular biology exist but are rare,
with most studies failing to find large-effect-size variants for
most common quantitative traits. This has left us with just a few
mechanistic crumbs and the general feeling thatmost traits are in-
deed composed of large numbers of R.A. Fisher’s variants of small
effect, as though phenotypes are composed largely from the little
gray squares of Thompson’s evolved circuits (Fig. 1B; Fisher
1930; Thompson 1997).

Perhaps the most classic example is that of human height.
Height has a strongly genetic basis, with a “narrow-sense” herita-
bility of around 0.80 (Silventoinen et al. 2003; Visscher et al.
2006). The approach of the molecular biologist would be to then
look for mutants that are abnormally large or small, which would
identify pathways associated with gigantism or dwarfism. Yet
these results would yield little understanding of the heritability
of more common variation in height, which genome-wide asso-
ciation studies have the potential to reveal. However, recent ge-
nome-wide association studies show (e.g., Lango Allen et al.
2010) that even the combined effects of 180 identified variants
only explain ∼12.5% of the genetic differences in human height.
This is not to say that the genetic basis of height is magical: If
one includes all possible variants, one can explain a large fraction
of the heritability (Yang et al. 2010). Rather, this points to height
being a composition of a very large number of very small effects,
and the same story has come up in analyses of many other traits.
And what of the molecular basis of normal variation in human
height? Several experiments done both before the advent of ge-
nome-wide association studies and afterward as follow-ups on
identified loci have suggested that several of the SNPs identified
in these studies have functional effects in pathways that can plau-
sibly be linked to height, such as mitosis, mesoderm and skeletal
development, and a plethora of signaling pathways, including
those controlled by various growth factors, among others (Wood
et al. 2014). Still, there is no single pathway to point to that pro-
vides a simple story explainingheight, and as such, no simple ther-
apeutic intervention to enable us to manipulate height.

This is not to say that genome-wide association studies have
not revealed variants of immediate biomedical interest. There are
many examples to choose from, including Musunuru and col-
leagues’ work taking a hit from a genome-wide association study,
showing that the SNP changed expression of a particular gene,
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which then altered lipid levels in the blood (Musunuru et al. 2010).
This example and others like it provides a beautiful arc from dis-
covery to mechanism and is in many ways an ideal that the field
aspires to. Yet, this is much more the exception than the rule,
with perhaps most genetic variants having a spectrum of effect
strengths.

There are of coursemany debates as to exactly why the field of
quantitative genetics is filled withmore of a murky haze than a set
of smoking guns, and we leave it to those more qualified than us
to continue those debates. (We do wonder if these very complex
mappings fromgenotype to phenotypemayactually reflect the ad-
vantages of a distributedmanner of encoding.) However, from our
relative outsiders’ perspective, we believe these findings fit well
with our general thesis that biological regulation is far less story-
like than we would like it to be, and there is a distinct possibility
that many if not most regulatory systems have almost no domi-
nant, easily rationalizable stories to be found at all.

Now that we know the unknown unknowns,

what do we really know?

Should we then dispense with the very notion of small-scale
systems biology and plunge headlong into a data-first future?
Ultimately, we think this depends on the nature of the question
at hand and the type of understanding we hope to derive. At one
end of the spectrum is a purely operational level of understanding,
one in which we learn just enough to be able to manipulate cells
in ways we find useful or amusing—something that may require
less in the way of deep understanding. On the other end of the
spectrum is the search for universal laws and design principles
along the lines of Newton’s laws of motion. How close are we to
the latter?

We think many of us got into basic science to pursue funda-
mental truths, and it was not uncommon for a time to hear the
claim that we are on the cusp of a Newtonian revolution in biol-
ogy. Perhaps. Certainly, as a purely theoretical matter, if we were
able to measure absolutely everything about a cell, the laws of
chemistry would likely enable us to produce a completely predic-
tive model of cellular function, and there are promising attempts
at simulating relatively simple organisms such as bacteria (Karr
et al. 2012). Yet, the development of a complete model incor-
porating all the complexities of a metazoan cell seems very distant
at this point, and so our search for fundamental truths must
be for some simplified effective representation. It is, of course, an
open question as to whether universal truths such as Newton’s
laws even exist for cellular regulation—and if they do exist, wheth-
er we will be able to understand them. We believe our earlier
arguments further support the premise that systems engineered
through evolution need not be modular nor follow well-defined
design principles. It is true that computational studies have shown
that evolution can potentially favor modular solutions (Variano
and Lipson 2004; Kashtan and Alon 2005; Clune et al. 2013),
butwewonderwhether the constraints imposed bymodels cannot
reflect the ability of natural systems (or even Thompson’s circuits)
to take advantage of complex underlying chemistry and physics.
Eitherway,whether onewishes to find a few greater truths or a pas-
sel of smaller ones, we find we are in a state where we suffer not
fromapaucity of data, but fromapaucity of frameworks—theories,
really—by which to understand those data.

Currently, most of our approaches to dealing with large
amounts of data essentially boil down to statistical methods for

extracting associations, often using increasingly sophisticated
techniques frommachine learning to try and generate hypotheses
and insights. Yet, as Gautham Nair, a former postdoc in our labo-
ratory, once quipped, “Would Newton have discovered the theory
of gravity through machine learning?” As a related question,
does the theory of gravity have a P-value? It is perhaps instructive
to look at another example from physics: the Large Hadron
Collider’s search for the Higgs boson. The Large Hadron Collider
produces data at an almost unfathomable rate, and yet the vast ma-
jority of it is discarded and deemed irrelevant. This is because the the-
oretical foundations of the experiment are so strong that we are
able to parse this data down to the specific events that aremost rel-
evant to proving, for instance, that the Higgs boson exists. Of
course, processing this data requires extremely sophisticated statis-
tical treatment of the data, but that is more a matter of analysis
than the derivation of scientific truth. We think it very unlikely
that onewould be able to derive all of particle physics just by drink-
ing directly from the fire hose of particle collider data. Closer to
home, one of our favorite examples of small-scale systems biology
is Cai and colleagues’ lovely result showing that frequency modu-
lation of bursts of nuclear localization can coordinate expression
across a very large number of genes (Cai et al. 2008). It seems sim-
ilarly unlikely that one could arrive at this result simply by comb-
ing through reams of high-throughput expression data.

Our analogies have flaws, but we findmost data-first counter-
arguments are unsatisfying. One might argue with our point
about, for example, Newton’s theory of gravitation, saying that it
would have been impossible to even conceive of the theory with-
out the huge collection of data on themovement of heavenly bod-
ies. It is true that the data were there first, but it is unclear that all
those data were required for the conception of the theory, or rather
served as post hoc confirmation. In this case, all the data required
would be those showing a discrepancy with the current model for
planetary motion; similarly, the discovery of alternative splicing
did not require deep RNA-sequencing. Another argument often
cited as a benefit of data-first approaches is that they are not biased
in favor of any particular outcome. Although we agree that the
genomics tools applied in data-first approaches are extremely pow-
erful tools for discovery (much as are genetic screens and biochem-
ical purifications), we believe that an approach not directed toward
any particular scientific question is unlikely to provide any conclu-
sive answers (Brenner 2010; Weinberg 2010; Graur et al. 2013).
(Although genomics-style research is perhapsmost often criticized
for data-first approaches, many other areas of biomedical research
suffer the same issues, but are perhaps less well known or glamor-
ous, thus attracting less controversy.) We think this underscores
our belief that no matter what the technical approach, strong ex-
perimental design with a question in mind is still a requirement.

Rise of the machines?

With all of that said, largely statistical modes of analysis that dom-
inate the analysis of large data sets these days are an easy target for
scorn until we are faced with the challenge of actually analyzing
said data ourselves. Why has deriving insight from data proven
so challenging? Is it perhaps the limitations inherent to our own
human brains? For instance, most human brains have limited ca-
pacity to reason beyond two (or sometimes three) dimensions.
Indeed, it is for this reason that researchers have investedmuch ef-
fort into developing two-dimensional visualization techniques of
high dimensional data like t-SNE (Van der Maaten and Hinton
2008) with applications in biology (Amir et al. 2013) in the hopes
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that our brains’ capacity for deriving insights from 2D presenta-
tionsmay somehow reveal something. However, just as taxonomy
is not biology, so too classification is not understanding; and it is
important to separate the visualization of data with our quest to
understand it. Therein lies the challenge: There is no reason to be-
lieve that the biology of, say, gene regulation is inherently under-
standable in some 2D manifestation. Perhaps, however, there is
hope that computation may develop to the point at which com-
puters can actually help us develop insights directly from data.
Lest this sound like a Pollyannaish vision of the future, it is worth
mentioning that Hod Lipson’s group has demonstrated the ability
to algorithmically derive mathematical descriptions of physical
laws—including, Newton’s 2nd law (!)—directly from motion
tracking of pendulums and other such devices (Schmidt and
Lipson 2009). (It is a delightful irony that the group used genetic
algorithms to make these discoveries.) Applications to biology
may yield new biological laws we may never have envisioned oth-
erwise (Schmidt et al. 2011). Or perhaps we may draw inspiration
from advances in computer vision, in which very large data sets
coupled with large neural networks have led to stunning advances
in the ability of computers to parse natural images (Deng et al.
2009; Russakovsky et al. 2014), with these programs now able to
identify objects in imageswith startling accuracy. Recent iterations
are in fact also able to parse semantics from those images. Of
course, such “narrow” artificial intelligence often still pales in
comparison to the power of the adult human brain in general (al-
though in some instances can outperform even the best human).
However, computational architectures are also free from the con-
straints that our physiology imposes and may be able to “see” pat-
terns in higher dimensions that we simply cannot intuit without
help. CellNet (Cahan et al. 2014; Morris et al. 2014) and other net-
work frameworks (Carter et al. 2013; Carvunis and Ideker 2014)
may portend the arrival of such aids to intuition. Such methods
are still in their infancy, but we believe they may ultimately pro-
vide the tools required to help us derive meaning from the highly
multidimensional data that is increasingly ubiquitous in molecu-
lar biology. Whatever the approach may ultimately be, we believe
that the complete reverse engineering of regulation in molecular
biology will require fundamentally new computational aids that
enable us to extract some order from the seemingly endless com-
plexity we are now faced with.

We also think that synthetic biology has the potential to
inform our understanding. Currently, some synthetic recon-
structions of biology are able to capture aspects of real biology to
some degree, allowing us to test biological hypotheses in a rigor-
ous fashion. It alsomay be that the incorporation of new, comput-
er-based insights can harness complexity to yield a far greater
degree of control over biological systems than is currently possi-
ble. This may reveal, however, the requirement of new forms of
manipulations that enable us to produce complex, multifactorial
perturbations.

Is there any hope left for small-scale systems biology?

What, then, tomake of small-scale systems biology? Is it worth our
continued pursuit? The answer for us is yes. We do think, though,
that small-scale systems biology will look a bit different in the fu-
ture. Currently, the most visible differences between small-scale
systems biology and large-scale systems biology have been meth-
odological, with a clear dividing line between fluorescent protein
reporters, single molecule readouts, and tinkering with the genet-
ics of model organisms on the one hand and large-scale consor-

tium-driven omics approaches on the other. Yet these are just
differences in technology, and the differences in style are perhaps
driven more by the “design by committee” approach required for
what used to be very expensive large-scale experiments. As omics
technologies become cheaper, this gap is shrinking, and large-scale
data is becoming more accessible to the do-it-yourself style more
typically associated with small-scale systems biology. At the
same time, developing new quantitative frameworks to under-
stand what these data are telling us will still be critical, and we
think it is important to keep an openmind as to what those frame-
works may look like. We still believe in the goal of making quanti-
tativemodels to reveal principles of cellular behavior; and perhaps
through the incorporation of omics technology andnewcomputa-
tional techniques to augment our intuition, wewill be able to syn-
thesize our small-scale models into a more complete picture. Of
course, it is also possible that wemay never be able to scale and in-
tegrate our models. Perhaps this is okay. Science is also about ap-
preciating the beauty of solving puzzles, be they large or small.
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