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Abstract: For the better part of a century researchers across disciplines have sought to explain the
crystallography of the elemental transition metals: hexagonal close packed, body centered cubic,
and face centered cubic in a form similar to that used to rationalize the structure of organic molecules
and inorganic complexes. Pauling himself tried with limited success to address the origins of
transition metal stability. These early investigators were handicapped, however, by incomplete
knowledge regarding the structure of metallic electron density. Here, we exploit modern approaches
to electron density analysis to first comprehensively describe transition metal electron density. Then,
we use topological partitioning and quantum mechanically rigorous treatments of kinetic energy to
account for the structure of the density as arising from the interactions between metallic polyhedra.
We argue that the crystallography of the early transition metals results from charge transfer from
the so called “octahedral” to “tetrahedral cages” while the face centered cubic structure of the
late transition metals is a consequence of anti-bonding interactions that increase octahedral hole
kinetic energy.

Keywords: quantum theory of atoms in molecules; viral theorem; frontier orbital theory; transition
metal structure

1. Introduction
1.1. Historical Motivation

One can not help but be struck by how little metallurgical thought has been impacted
by the century long advances to the conceptual and theoretical framework of molecular
chemistry. Where this framework can be applied, it provides the insights necessary to
design molecules and condensed phase systems. Included in the advances contributing to
this framework are those derived from valence bond theory [1], one electron and frontier
orbital theory [2], conservation of orbital symmetry [3], transition state theory as interpreted
within the intuitive approach afforded by the Hammond postulate [4], and the application
of catastrophe theory through the formalism of the quantum theory of atoms in molecules
(QTAIM) [5]. Though these concepts provide many of the theoretical underpinnings of
modern chemistry, they are rarely applied to metallurgical research. We do not believe
that the reason for this disparity is that molecular chemistry has little to offer metallurgy.
Rather, the two disciplines evolved subject to different selective pressures.

On the one hand, the path that led to the development of modern chemistry arguably
began with the 1916 work of Lewis [6], a path to which chemists were fully committed
by 1939 with the publication of Pauling’s definitive text, “The Nature of the Chemical
Bond” [1]. This text ensconced chemistry as the science of reactivity. The fact that chemical
reactions were driven by electron rearrangement had become part of the chemical zeitgeist
by 1923 (if not sooner) when Lewis recognized bases and acids as electron pair donors
and acceptors [7]. As a result, for chemists of the time, the distribution and response of
electrons became the central element of a science devoted to the study of chemical reactions.
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The actual arrangement of atoms that afforded this response was a byproduct of their
investigations. Between 1940 and roughly the mid 1970s, chemistry made tremendous
advances through deeper insights into the nature of electron redistribution resulting from
a chemical or physical process. (Each of the great advances mentioned in the preceding
paragraph occurred in this time period.) During the subsequent years, first principle
methods became an increasingly important chemical tool, and though these methods
ultimately provided the ability to calculate molecular energies and geometries, their initial
utility was derived from the expanded insights they provided toward understanding:
(1) how the electrons in a molecules are distributed; (2) how this distribution changes by
adding or removing electrons; and (3) the physical basis for these changes.

On the other hand, modern metallurgy is concerned with atomic arrangements and
the energy of these arrangements. In the early part of the twentieth century, metallurgical
phenomena in which charge rearrangement plays an important role were still not under-
stood. For example, in 1934, Taylor, Orowan, and Polanyi [8–10] began individually to
zero in on the dislocation as the mechanism of plasticity. Their arguments were based
largely on continuum elasticity theory, which is applicable sufficiently far from a dislocation
core. However, the energy necessary to displace atoms and create a dislocation (or any
defect) fell outside the scope of elasticity theory. Hence, dislocation core energies became
a needed parameter in the characterization of slip. Though the resulting elasticity based
models were parameter reliant, they provided tremendous metallurgical insight and thus
simultaneously made the characterization of atomic arrangements about defects and their
corresponding energies a necessary metallurgical goal. Against this backdrop, the utility of
maturing first principle methods was judged by their ability to calculate atomic positions
and corresponding energies.

This brings us to the current era where, through density functional theory (DFT) [11], it
is known that the energy of an atomic system, and all properties that depend on the energy,
is determined by the electron density. Chemists take this theory, and the computational
tools that it spawned, as an affirmation of their original impulse to study the density and
its response. Metallurgists see the density as a stepping stone to calculate atomic positions
and their energies.

An interesting question arises as to whether it is possible to combine the many tools
and formalisms evolving over the last century to construct models of metallurgical phe-
nomena that lend themselves to a “chemically” based theory of charge rearrangement in
metals and alloys. Such a theory would perhaps allow us to apply the tools of molecular
chemistry toward a better understanding of phenomena important in the design of metals
and alloys. Such an aspiration is beyond the scope of any single study. However, there is a
natural starting point. Just as the early advances in chemistry were motivated by attempts
to rationalize the arrangement of a molecule’s atoms, in this paper, we investigate the fun-
damental metallurgical structures, body centered cubic (BCC), face centered cubic (FCC),
and hexagonal close packed (HCP). In a very real sense, these structures are the metal-
lurgical equivalent of the sp, sp2, and sp3 structural building blocks of organic chemistry.
In addition, just as the early 20th century chemists did, we will proceed by determining
where electrons in each of these structures resides; how this distribution changes with the
addition or removal of electrons; and finally we will attempt to develop an intuition as to
why these changes occur.

1.2. Background

Today, it is a routine matter to calculate ground state crystal structures of fairly complex
alloys, and it is a trivial matter to determine the elemental transition metal structures.
The results of these calculations are often rationalized in terms of orbital parameters and
distributions, e.g., electronic density of states and one electron band energies; see, for
example, the excellent reviews provided in references [12,13].

However, there is a rich history associated with attempts by metallurgists and chemists
to rationalize the stability of the pure metals as a manifestation of their electron density.
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In particular, as there are only a few exceptions where the elemental transition metals
do not adopt one of three structures BCC, FCC, or HCP, Figure 1, early attempts were
directed toward accounting for features of the electronic structure that stabilized each of
these structures.

Figure 1. Of the transition metals, only Mn and Hg do not possess one of the three crystallographic
structures HCP (blue), BCC (orange) or FCC (red) as ground state structures.

Pauling proposed that interatomic forces in metals could be rationalized from a
resonating-valence-bond perspective [14]. Ten years later, Pauling generalized his ap-
proach and directly addressed the issue of crystal structure [15]. In the decade following
Pauling’s investigations, Altmann et al. [16] employed directed valence bond approaches
in an attempt to explain the preferred crystal structure of the non-magnetic transition
metals. At nearly the same time, Engel and subsequently Brewer [17], based largely on
correlations, suggested that the spherically averaged number of valence s-p–electrons was
the determining factor favoring one metal structure over another. This model, though it
survives to this day, was seen as deficient as it assumed d-electrons were inconsequential
in mediating crystal structure [18]. Along the same lines, other investigators noted a
correlation between preferred crystal structures and electrons to atom ratios, e/a [19].

These early attempts to associate crystalline stability with features of the electron
density were handicapped by a lack of knowledge regarding the actual electron density
associated with a particular crystal structure. With the tools now available, we are no
longer so handicapped. Although our tools are modern, our approach has more in common
with the methods of Pauling than much of modern computational chemistry.

2. Computational Philosophy and Methods

To better motivate our approach, we draw on a delightful article by Roald Hoff-
man [20] providing a personal assessment concerning the evolution and future of com-
putational chemistry. According to Hoffmann, computational chemistry as a discipline
has grown from a devotion to increasingly accurate predictions. Hoffmann articulates the
difference between understanding and prediction by arguing that a very accurate computa-
tional tool will allow the user to predict a molecule’s properties before it is made. He argues,
however, that chemists truly understand the molecule only if they are able to qualitatively
predict the outcome of the computation before it is performed. Hoffmann asserts that a
computational tool with perfect predictability lacks chemical intuition (understanding);
it merely simulates experiments. True understanding is characterized by the ability to
rationalize trends.

In this volume we celebrate Linus Pauling’s innumerable contributions to chemistry.
As an extremely abbreviated list, consider the concepts that he formulated as a means
of fueling chemical intuition: atomic size [21], on which his theory of ionic structure is
based [22]; and Pauling electronegativity [23], which among other things allows us to
predict substituent effects. Pauling was able to determine an atom’s size by examining
lattice constant trends and electronegativity by studying the trends associated with heats
of formation. Neither of these parameters is well defined; however, these are exactly the
concepts that have proved essential to the qualitative thinking that Hoffmann sees as essen-
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tial. Hoffmann wonders whether investigations intended to promote qualitative thinking
of this kind can survive in an era when exceedingly accurate calculations are possible.

Here, we will take a lesson from Pauling and Hoffmann and analyze the changes to
the electron distribution across one row of the transition metal series. Though modern tools
provide the capability to analyze these changes in great detail, we will be concerned only
with trends. That is, we will be less involved with the absolute magnitude of the changes
and more interested in their direction.

Our analysis has three parts. First, we catalogue the electron density topology, that is,
the locations of the electron density’s maxima, minima, and saddle points—its critical
points (CPs)—for each of the 22 nonmagnetic transition metals in groups 3 through 11 of
the periodic table. Next, we investigate how the charge density geometry evolves across
the 4d transition metal series. In this step, we are interested in determining whether,
for example, a charge density minimum becomes deeper or shallower across the series.
Finally, we rationalize these observed geometric trends in terms of calculated changes to
the kinetic energy distribution, which, in turn, we argue may be understood to arise from
fundamental qualitative chemical concepts.

Toward this end, we use several electronic structure methods including the commercial
codes BAND [24,25] and VASP [26,27], as well as an older in-house research code employing
a linearized augmented Slater-type orbital basis set (LASTO) [28]. Using multiple tools is
our way of confirming that our results are not model dependent.

Over some thirty years investigating metallic electron density topology, our group
has found that transition metal topology is a robust property, insensitive to variations in
lattice constant up to about 10%, code type (e.g., VASP, BAND, or LASTO), k-point mesh,
basis set size beyond some reasonable value, and choice of density functional. Thus, here
we draw all these calculations together into what we believe is the first comprehensive
catalogue of electron density topologies for the nonmagnetic transition metals.

While topology is insensitive to computational parameters, electron density geometry
is not. The magnitude of the density at a CP can vary by 5% or more from method to
method, different basis sets, or altering the density functional. However, trends persist.
Accordingly, we began our calculations of the charge density geometry using LASTO with
the Vosko, Wilk, and Nusair local density approximation [29] and employing the zero order
regular approximation (ZORA) for relativistic effects [30]. We chose the LASTO code for
this step because it was, in part, developed to provide a convenient graphical representation
for the analysis of trends. We then used relaxed densities from BAND, correcting for
relativistic effects with ZORA, but using the generalized gradient approximation (GGA)
Perdew, Burke, and Ernzerhof (PBE) [31] functional to compute the magnitude of the electron
density at CPs. Comparison of these values with those found with LASTO confirms that the
trends in density across the series are largely model independent, Table A1, Appendix A.

For the final set of results, we used kinetic energy densities and electron counts
calculated by BAND for the FCC 4d series. These were partitioned using Gradient Bundle
Analysis (GBA) [32] into meaningful volumes over which the kinetic energy and electron
count is well defined. GBA was performed using the novel and newly developed in-house
Bondalyzer add-ons to the Tecplot [33] modeling suite. Each atomic basin employed
20,000 gradient bundles per atom, and no adaptive mesh subdivision.

3. Results
3.1. Electron Density Topology

A general method of classifying the structure of the electron density—a 3D scalar field—
is in terms of its topology, which is fully determined by it extremal points, i.e., the points
where the density achieves maximal, minimal, or saddle behavior with respect to neighbor-
ing points.

Extremal points are the common critical points (CPs) of Morse Theory [34], and in 3D
fields must be either maxima, minima, or one of two kinds of saddle point. These CPs are
distinguished by an index giving the number of principal positive curvatures minus the
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number of principal negative curvatures of the field variable at this point. For example,
at a minimum, the electron density curves up (positive) in all directions and obviously also
up in the three principal direction; therefore, it is called a +3 CP. A maximum is denoted as
a −3 CP because all three curvatures are negative. The two remaining CPs are designated
+1 and −1.

CPs have a special relationship to molecular structure [5,35]. For instance, the electron
density at an atomic nucleus is always a maximum, −3 CP; and hence it is also called a
nuclear CP. Though the existence of non-nuclear maxima was discussed as early as 1955 [36],
it was much later that the first such points were discovered in silicon crystals [37,38] and of
relevance to this article in the early HCP metals [39]. Such CPs are designated non-nuclear
attractors (NNA) or pseudo-atoms.

The other CPs give information about the way maxima are connected. The simplest
and perhaps most significant of these connections originates at the −1 CP and terminates
at a nuclear CP, which in general lies along a electron density ridge. This path has the
topological properties one would expect of a chemical bond. In addition, hence motivated
studies showing its presence between nuclei that conventional wisdom assumed to be
bound [5,38,40]. Therefore, this ridge is descriptively referred to as a bond path and the
accompanying −1 CP as a bond CP. Other types of CPs emerge as chemically meaningful
as the connections between nuclei take on additional topological characteristics. A +1 CP is
required at the center of ring structures (rings of bond paths), and is designated as a ring
CP. Cage structures must enclose a single +3 CP and are given the name cage CPs [41].

Associated with the nuclear and cage CPs are unique energetically well-defined vol-
umes known as Bader atoms and electronic basins, respectively [5,42–44]. For crystals
having one symmetry unique atom per unit cell, the Bader atom is nothing more than the
familiar Wigner–Seitz cell [38]. The shape of this cell is strictly determined by crystallo-
graphic symmetry; however, its topology and hence structure is mediated by the types of
CPs on its surface.

The electron density topology of crystals having one symmetry unique atom per unit
cell is captured by specifying the boundaries of the Wigner–Seitz cell, the locations and
types of CPs contained in and on the cell, and the bond paths connecting the nuclear CPs of
neighboring cells. Such representations are given in Figure 2 for the four observed ground
state topologies characteristic of the 22 non-magnetic transition metals. In regions of flat
charge density, there were occasional problems determining topologies, which we attribute
to the difficulties involved in interpolating grid data rather than any variation between the
methods used. We make note of where such problems occur in the text.

Figure 2. From left to right, the topology of the non-magnetic transition metals of: the early HCP metals of columns 3 and 4;
the BCC metals of columns 5 and 6; the late HCP transition metals of columns 7 and 8; and the FCC metals of columns 9,
10, and 11.The yellow polyhedra are the boundaries of the Wigner–Seitz cell about a central atom. The large gray spheres
mark the locations of the atoms in the first coordination sphere. Throughout this paper, small grey, red, green, and blue
spheres denote pseudo atom, bond, ring, and cage CPs, respectively. Bond paths connecting the first coordination sphere to
the central atom are shown as rods.
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For the nonmagnetic transition metals, the crystallographic HCP structure is charac-
terized by two topologies [39], one for the early HCP metals in columns 3 and 4 of the
periodic table and the other for HCP metals of columns 7 and 8. The early HCP (eHCP)
electron density is absent atom–atom connections; rather, all bond paths pass through
pseudo-atom CPs. This pseudo-atom is bound to five early transition metal atoms, requir-
ing bond critical points at the center of HCP tetrahedral hole and cage CPs in the octahedral
holes. The crystallographic BCC structure is characterized by eight bond paths to nearest
neighbors, a cage CP at the center of the BCC octahedral hole, and a ring CP at the center of
the BCC tetrahedral hole. The late HCP (lHCP) charge density, as well as the FCC electron
density, is as typically conveyed in ball and stick models—each atom is connected to its
twelve nearest neighbors via bond paths that produce tetrahedral and octahedral cage CPs
in the respective crystallographic holes.

A striking characteristic of these topologies is that, while the crystallographic oc-
tahedral hole of all structures hosts a cage CP, the character of the CP at the center of
the crystallographic tetrahedral holes depends on the structure—appearing as a bond
(for eHCP), ring (for BCC), or cage CP (for lHCP and FCC). This observation invites the
question as to whether this topological variation is due to the atoms involved or simply a
response to the crystallographic structure. This question may be enlightened by forcing all
the non-magnetic transition metals into a common crystallographic structure—BCC, FCC,
or HCP—to determine if the resultant topology of these “forced” structures is the same
for all transition metals. Accordingly, the electron density was determined for all of the
nonmagnetic transition metals constrained to each of the BCC, FCC, and HCP crystallo-
graphic structures. The resultant topologies for the forced BCC structures are represented
in Figure 3.

Figure 3. For clarity, all the critical points and bond paths of each topology may not be shown.
From left to right, the topologies of the nonmagnetic early HCP, BCC, and late HCP and FCC metals
forced the BCC crystallographic structure.

Only one forced BCC topology is observed for all the eHCP metals (columns 3 and 4)
though, with electron density nearly flat around several sites (see Figure 4), topological
identification is difficult. Nonetheless, it appears that, for these metals, there is a pseudo-
atom CP at the center of the octahedral hole. Bond paths connecting second and third
neighbors intersect at these pseudo-atoms. The crystallographic tetrahedral holes now host
ring CPs at their center and bond CPs along their edges. The cage CPs of this topology are
internal to the Wigner–Seitz cell and are not shown. The BCC metals (columns 5 and 6)
obviously possess only the BCC electron density topology, with ring CPs at the tetrahedral
holes. When there is forced BCC, both the lHCP and FCC transition metals (columns 7–11)
share the same topology, with a bond CP in the center of the octahedral hole, indicative
of second neighbor bond paths, which, along with the first neighbor bond paths, requires
cage CPs at the center of the tetrahedral holes.
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Figure 4. The electron density in AU using the LASTO software package for the 4d transition metals
around the L–U–X–W–L loop. Only for Mo and Nb (representative of the non-magnetic BCC metals)
is the electron density at the W point other than a minimum around this circuit. The graphs were
divided into two sets to enhance readability. Lattice constants provided in Table A2.

The forced BCC topologies are energetically unstable, confirmed by the fact that the
metals normally possessing either the lHCP or FCC topologies are not observed in the BCC
structure even at elevated temperatures. In the case of the eHCP metals characterized by
a high temperature BCC allotrope (e.g., Zr, Ti), the BCC structure cannot be sustained at
low temperatures and normal pressures even through rapid quenching. We will attempt to
shed light on features that indicate a forced topology’s instability when compared with
a stable ground state. In order to make the question more computationally tractable in
the time allotted for this special issue, we will concentrate on explaining the trends across
one transition metal row. The 3d metals are excluded due to magnetic effects. Of the
remaining rows, the 4d metals are the more computationally simple, requiring smaller
basis sets and being less sensitive to relativistic effects than their 5d counterparts. Thus, we
will concentrate on the 4d series.

3.2. Electron Density Geometry

We begin by providing a representation of the electron density geometry (Electron
(charge) density topology is a well known, and arguably abused term in chemical literature.
The mathematical field of topology refers to the connectivity of a space, while geometry
implies the existence of a metric. In the case of chemical analysis, electron density topol-
ogy rigorously refers to the connection of critical points by critical paths and surfaces,
while electron density geometry implies the ability to compare charge densities with the
same topology by evaluating the distances between points, paths, surfaces, or other geo-
metric properties such as curvature, etc.) that will allow us to discern how the electrons
added to an atom while moving across a row are distributed through the Wigner–Seitz
cell. A convenient approach to facilitate this assessment is to borrow from band theory
and construct “electron density bands” by plotting the real space electron density along
high symmetry directions. Such plots are shown in Figure 4 for the 4d series. The point
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midway between first neighbor atoms is designated as the L point. The center of the BCC
octahedral and tetrahedral holes are the X and W points, respectively, and the electron
density is shown around the circuit connecting the L, X, W, and L points.

As is clear from topological considerations alone, the X point is a minimum around
the loop only for those metals for which the ground state structure is BCC. However,
the electron density geometry reveals that, as one proceeds across the transition metal
series, additional density from added electrons is preferentially accumulated at the X point.
In fact, the electron density difference between the X and W points serves as a measure
of the “proximity” to a BCC transition. Only for the stable BCC metals is this difference
negative. For those metals for which there is a stable high pressure or temperature BCC
phase (e.g., Ti and Zr), this difference is positive but small. The difference increases across
the series with a smaller positive value for lHCP than FCC transition metals.

The pattern of increasingly deeper cage CPs at tetrahedrally coordinated sites while
moving from left to right across the transition metal series is repeated for forced FCC
structures. Again using the 4d series to illustrate, Figure 5 depicts the electron density
around a loop on the surface of the FCC Wigner–Seitz cell for the 4d metals.

Figure 5. (left) The electron density in AU as generated using the LASTO software package for the 4d metals around the
N–H–P–N loop. The required ring CP between the octahedral and tetrahedral cage CPs is located at the electron density
maximum along the H–P loop segment and is designated with a cross. The 4d metals show identical trends. For the stable
FCC metals, this ring CP is located very close to the dashed line designating its ideal position for an FCC transition metal
crystal. (The position of the ring CP (green disks) may also be discerned from the contour graphs of the electron density in
the appropriate face of the Wigner–Seitz cell for forced FCC : (from top to bottom) V, Cu, and Ir. The graphs were divided
into two sets to enhance readability. Lattice constants provided in Table A2.

Unlike the forced BCC structures, the character of the CPs at the high symmetry points
is the same for all metals, with the possible exception of the eHCP metals where the electron
density is too flat for conclusive identification. The N–H–P–N loop passes through a bond
CP, a cage CP at the octahedral hole, another cage CP at the tetrahedral hole, and returns
to the bond CP. The character of the CPs around this loop requires a ring CP somewhere
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along the P-H connection, which occurs where the electron density along this line achieves
it maximum value.

Inspection of Figure 5 reveals that, for the early transition metals, this point lies close
to (or on) the tetrahedral hole (P) and moves toward the octahedral hole (H) for transition
metals in progressively higher columns of the periodic table. For non-magnetic transition
metals with a stable FCC structure, the ring CP is very close to the center point of the flat
triangular face shared by a regular octahedron centered on H and a regular tetrahedron
centered on P. This particular FCC geometry we designate as “ideal”, Figure 6. For all
transition metals for which the FCC structure is not the stable ground state, the ring CP
is located at the center of a bowed triangular face shared by a concave tetrahedron and
convex octahedron. This shared face is the ring separating the octahedral and tetrahedral
regions of the FCC structure. Though not shown, the same is true for BCC metals forced
HCP—the HCP octahedra are convex polyhedra while the tetrahedra are not.

Figure 6. The ideal FCC geometry will be characterized by regular octahedra (turquoise) and
tetrahedra (yellow) sharing necessarily flat faces. It is the position of the ring CP that mediates the
deviation of an FCC structure from ideality. Transition metals that do not form the FCC structure,
when forced, show large deviations from ideally.

It appears that each of the transition metal crystallographic structures arise in response
to preferred electron density topologies and geometries. For example, the presence of a
bond CP at the center of the BCC octahedral hole is indicative of an instability, as is a
concave tetrahedral cage in an FCC structure. Obviously, these empirically determined
relationships between the structure of the electron density and crystallographic structure
must have an underlying energetic origin.

4. Discussion

We begin our search for these energetic origins by noting that the electron density of
an atomic system can be written as a sum over a possibly infinite set Kohn–Sham orbitals,
φi, employing any functional for exchange and correlation, a set that will be referred to
here as molecular orbitals, MOs. Then,

ρ(x) = ∑
i

niφi(x)φi(x) = ∑
i

ρi(x) (1)

where ni is the occupation of orbital i and ρi(x) is obviously the contribution to the electron
density from MO i. As has been shown elsewhere [45], the kinetic energy (T) of the system
at a point x can then be expressed as

T(x) = L(x) + G(x) (2)

where
L(x) = − 1

4∇
2ρ(x) (3)
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and

G(x) = 1
8 ∑

i

∇ρi(x) · ∇ρi(x)
ρi(x)

=
1
2 ∑

i
ni∇φi(x) · ∇φi(x) (4)

The first term of Equation (2) indicates that there is a contribution to the kinetic energy
at a point from the Laplacian of the electron density (its total curvature) at this point.
The second term arises through the gradient of the MOs from which the electron density
is comprised. Orbitals that are more rapidly varying will contribute more to the kinetic
energy, which indicates that anti-bonding orbitals will increase T(x) and contribute the
greatest increase near interatomic nodes where φi varies most rapidly.

Equation (2) is independent of the virial theorem, which, for an atomic system where
no forces are acting, requires twice the average kinetic energy (T) to equal minus the
average potential energy (V), i.e.,

2T = −V. (5)

from which it follows:
E = T + V = −T, (6)

leading to the seemingly contradictory conclusion that a system with the larger average
kinetic energy will be more stable.

Of note, the virial theorem is not necessarily valid for arbitrarily partitioned subsys-
tems. That is, over individual regions of an arbitrarily partitioned atomic system, the virial
theorem need not hold. However, over a class of objects called gradient bundles [46,47]
of which nuclear CP centered Wigner–Seitz cells, and cage CP centered electronic basins
belong, the virial theorem is strictly obeyed [5]. In addition, the integral of L(x) vanishes
over these volumes [5], indicating that the average kinetic energy of a gradient bundle is
entirely determined by G(x).

Accordingly, we exploit this fact using our new and unique software [32,48] that
allows us to compute and partition the energy of, among other things, chemical bonds
and electronic basins. For these calculations, we omitted contributions to kinetic energy
due to correlation, Tc [49]. In metals, Tc was found to be between 0.02 and 0.002% of
the total kinetic energy, far smaller than the error introduced from numerical integration,
and having no effect on presented trends.

Thus, we can determine how the energy of the FCC structures shown in Figure 5
is distributed between tetrahedral and octahedral electronic basins, where the energy
of the Wigner–Seitz cell is given by summing two tetrahedral hole energies with one
octahedral hole energy. This distribution is depicted in Figure 7 for the second row
transition metals Mo through Ag. Calculating this distribution for the metals Y, Zr, and Nb
was complicated by the flatness of the charged density around high symmetry points P,
leading to difficulties determining the topological boundaries of the tetrahedral hole from
grid-based data. Nonetheless, these cages are quite small, with significant deviation from
the ideal. Their energies must then be small compared to the much larger and expanded
octahedral cages.

Regardless, the figure reveals how the kinetic energy and hence total energy is parti-
tioned within the FCC Wigner–Seitz cell for both transition metals that are unstable and
stable in this structure. As we move from Mo to Ru, unstable as FCC, the tetrahedral
hole preferentially gathers kinetic energy (lowering total energy), while the difference
between energy of the octahedral and tetrahedral cages decreases, reaching a minimum at
Ru. For the stable FCC structures beyond Ru—Rh, Pd and Ag—it is the octahedral hole
that preferentially gathers kinetic energy achieving its maximum value at Ag, while the
kinetic energy of the tetrahedral hole achieves its global maximum value at Rh.
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Figure 7. Integrated kinetic energy density (Hartree) in the Tetrahedral (Blue) and Octahedral
(Orange) hole, and their difference (Shaded and Red). Lattice constants provided in Table A2.

We recognize a neutral metallic crystal as being comprised of a number of electron–
proton pairs, Ne−p. For example, we can designate Rh as having an Ne−p of 45. Thus,
we may define a quantity, M = ∆E

∆Ne−p
, which is loosely related to the chemical potential

of an electronic basin through the addition of an electron–proton pair i.e., the change in
energy of a basin as one steps across a row of the periodic table and approximated by the
slope of the connecting segments in Figure 7. We see that, for the stable FCC structures
Mo > Mt, where the subscripts o and t denote the octahedral and tetrahedral electronic
basins, receptively, while for those structures that are unstable as FCC, the situation is
reversed and Mo < Mt. We note at Rh, where the value of the tetrahedral kinetic energy
achieves its maximum value, our simple definition of Mt breaks down, as one should
properly consider the slopes of the connecting segments both adding and removing an
electron. Ideally, one would like to write M as a continuous function.

Setting aside the complications at Rh (As shown in Table A3, at Rh, we also see
an anomalous expansion of the atomic 4d and 5s valence shell). for the moment, we
would expect that, for a chemical-potential-like quantity, electrons would preferentially
accumulate in the basin with the larger magnitude of M. Inspection of Figure 8 indeed
shows that, for elements to the left of Rh, where Mo < Mt, density is gathered by the
tetrahedral hole, while to the right of Rh, where Mo > Mt, density accumulates in the
octahedral hole.
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Figure 8. Integrated electron count in the Tetrahedral (Blue) and Octahedral (Orange) hole across the
FCC 4d series. Lattice constants are provided in Table A2.
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In this context, recall that crystallographic tetrahedral holes are locations where
electron density is either accumulated or depleted. As has been demonstrated from the
topologies, proceeding from left to right across the transition metal series, the electron
density in regions of tetrahedral coordination varies dramatically, from regions of electron
density accumulation (pseudo-atoms) to ones of electron density depletion (cage CPs).
Simply, the electron density of the tetrahedral coordinations appears to be indicative of
preferred structure.

Let us appeal once more to our chemical intuition, and attempt to motivate this
discussion with a one-electron model. We can imagine constructing one-electron trial
variational functions by considering the BCC, FCC, and HCP crystallographic structures as
constructed from (not necessarily regular) four-atom tetrahedral units. The self-consistent
wave functions will then be formed from a linear combination (Block states) of tetrahedral
fragment orbitals (FOs) that are in turn derived from atomic-like orbitals centered on
tetrahedral vertices. Since, in the solid state, there is approximately one s-electron per
transition metal (In actuality, the number of s-electrons is basis set and method dependent,
but could vary by as much as 10%. The exact value could also effect kinetic energy by the
same magnitude, and should be considered as a possible source of error for data presented
in Figure 7), the electron density variations across the TM series result primarily from
varying occupation of twenty tetrahedral FOs built from d-atomic orbitals, each of which
can be written as the product of an angular and a radial part.

These twenty FOs can be placed into four classes distinguished by their net number of
bonding interactions (Figure 9), which will correlate with their gradient contributions to the
electron density. In the first class are those orbitals characterized by bonding interactions
along each of the six tetrahedral edges, possessing a net bond order of six. We note that
these orbitals contribute density to the center of the tetrahedron (Figure 9, far left). In the
second class are orbitals that are anti-bonding along two opposite tetrahedral edges and
bonding along the remaining four, with a net bond order of two. The third class is bonding
along two edges and anti-bonding along four edges (bond order -2). These two classes
contribute density along some edges and some faces of the tetrahedron (Figure 9, center).
Finally, the fourth class is distinguished by orbitals that are anti-bonding along all edges
(bond order -6), which has nodes along all edges and passing through all faces (Figure 9,
far right).

Figure 9. Examples from each class of d-derived tetrahedral FOs. From left to right, tetrahedral
orbitals that are: a class I FO that is a mixture of σ and π bonding along each tetrahedral edge giving
a FO bond order of 6; a class II FO that is σ bonding along four edges and weakly δ anti-bonding
along two edges with a bond order of 2; a class III FO that is δ bonding along two edges and π

anti-bonding along four edges with a bond order of -2; and a class IV FO that is δ anti-bonding along
two edges and π anti-bonding along four edges with a bond order of -6.

For all molecules and materials, the first electronic states filled are those that are most
bonding while the last filled are the most anti-bonding [50]. Hence, for the transition metals,
the first states to be occupied—those at the bottom of the d-band—will be formed from a
linear combination of FOs drawn from class I; and the last occupied—those at the top of the
d-band—will be formed from a linear combination of FOs drawn from class IV. Midband
states will be formed from a linear combination of class II and III FOs, with a greater
contribution from class III FOs as one move up the d-band. Quite generally—and entirely
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consistent with the calculated values of kinetic energy shown in Figure 7—the gradient
contributions to the kinetic energy, particularly from the tetrahedrally coordinated regions
of the early transition metals, will increase across the series through group 6, smaller for
the early transition metals where class I FOs dominate, but substantial for transition metals
later in the series where class III and IV FOs begin to fill.

The electron distribution resulting from the filling of these we see played out by
inspection of Figure 5, as the tetrahedral hole does not appreciably form until Mo. This is
a result of filling class I and II FOs, which, from Figure 9, contributes density to the
tetrahedral region. Now, we may turn our attention to the octahedral hole.

To extend our one-electron model to the octahedral hole, consider that an octahedral
coordination may be formed from two tetrahedra “decorating” opposite triangular faces
of an octahedron (Figure 10). The octahedral electron density may now be thought of as
arising from forty FOs, resulting from the bonding (in phase) and antibonding (out of
phase) combination of our twenty tetrahedral FOs. The antibonding FOs must possess an
interatomic node and hence a steep gradient normal to the nodal plane passing through the
octahedral center. As these antibonding orbitals are filled, the contributions to the kinetic
energy from the octahedral cage will increase. Simple bonding/antibonding arguments
dictate that this filling begins at approximately the middle of the band. In addition,
inspection of Figure 7 confirms this process indeed begins with group 9 elements (e.g., Ru)
and culminates with the complete filling of the d-band.

Figure 10. The octahedral coordination may be built from tetrahedra decorating the opposite faces of
an octahedron.

Returning to Figure 5 shows the octahedral cage deepening faster relative to the
tetrahedral cage early in the transition metal series, again consistent with Figure 8 and
the fact that Mo < Mt. That is, relative to the superimposed atomic states, electron
density is being shifted from the octahedral to tetrahedral hole. As we have seen, early in
the transition metal series, so much density is shifted from octahedral to tetrahedral
coordinations, the tetrahedral hole does not host a CCP.

By the time we encounter the lHCP metals, we have formed both a tetrahedral and
octahedral cage, as we fill states that are both predominantly antibonding across the
octahedron and tetrahedron. At this point (see Figures 5 and 8), we begin to see a slight
decrease in the transfer from the tetrahedral to octahedral cage. However, we also see
further effects, which we interpret as a contraction of electron density towards the nucleus.
Early transition metals accumulate density near the surface of the Wigner–Seitz cell—the
charge density band of Tc is everywhere above that of Mo, which is everywhere above that
of Nb, etc. This is what one would expect, as one generally interprets bonding interactions
as leading to expansion/polarization of density into the inter-atomic region.
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In contrast, though Ag has one more electron than Pd, we see that its electron den-
sity band is everywhere below that of Pd, which is everywhere below that of Rh. We
note that, across the series, these metals share the same topology, the average electron
density is increasing, and the response of system is well modeled by a small number of
basis functions (in this case, three Slater-Type orbitals). Based on these facts, we invoke
Occam’s Razor, and speculate the observed decrease in density on the Wigner–Seitz cell
may be most simply explained as a consequence of radial contraction towards the nucleus.
In support of this conjecture, in the absence of a change to the radial distribution due to
a bonding/antibonding transition in the middle of the series, we would expect to see a
uniform contraction across the series as a result of the increasing effective nuclear charge
(see Table A3 for values to this effect in atomic densities). However, contraction of the
crystalline electron density across the 4d series only becomes apparent with the filling of
predominantly antibonding states. This informed speculation regarding the contraction of
density implies the average potential energy of the electrons must be decreasing [45,51].
The viral theorem demands there be an offsetting increase in kinetic energy, which in part,
comes from filling antibonding orbitals across both the tetrahedral and octahedral cages.

To summarize, we conjecture: early in the 4d series, the dominant contributions to
lowering of potential (increasing of kinetic energy) comes from charge transfer from the
octahedral to the tetrahedral coordinations—yielding structures consistent with that charge
transfer—eHCP and BCC. Late in the series, stability comes from contraction toward the
nucleus to decrease potential and the formation of structures with high kinetic energy
tetrahedral and octahedral cages—lHCP and FCC. This conjecture is fully testable and is
the subject of our current research.

Up to now, our discussion has been restricted to observations which demonstrate
clear differences in behavior of the transition metals early and late in the series. However,
let us push the envelope, and in the spirit of Pauling conjecture on the origins of stability
for eHCP, BCC, lHCP, and FCC structures.

Consider then an FCC to BCC transformation where one state is metastable and
the other is stable. Hence, we can take the total energy as E = −T

V at the endpoints of
the transformation. In addition, we ask, “What lowers the kinetic energy through this
transition?” Such a transition will manifest through a lengthening of two opposite edges of a
tetrahedron and simultaneously shortening of the remaining four edges. The contributions
to G(x) from MOs that include contributions from class II FOs that are anti-bonding along
the two lengthening edges and bonding along the shortening edges (Figure 9) will diminish
through this distortion, lessening the depth of the tetrahedral cage point. If the cage is
not too deep, the tetrahedral coordination will be transformed from a source to a sink for
electron redistribution. Much as in the case of the eHCP structure, charge is redistributed
from the octahedral cage to the tetrahedral coordination—in this case to its ring and bond
CPs. Diminished charge at the octahedral cage CP and elevated charge in the bond and
ring CPs produces a more rapidly varying electron density across the BCC octahedral
electron basin and hence increases its kinetic energy.

Contrast this behavior to that of an FCC metal forced BCC. Where the stable BCC
topology hosts a cage CP at the octahedral center, the FCC forced BCC topology hosts a
shallow bond-CP. Simple analysis will convince the reader that the charge density in this
case is more rapidly varying for the stable FCC than forced BCC topology, which would be
consistent with an increase in G(x).

The factors stabilizing lHCP over FCC are more subtle than those driving the BCC
structure. Still the mechanism is consistent with the overall pattern of charge transfer from
octahedral to tetrahedral coordinations. Unlike the BCC structure, the magnitude of the
charge redistribution is insufficient to transform the tetrahedral cage CP.

The magnitude of the charge redistribution can be inferred from Figure 11, which show
the isosurface density through the Wigner–Seitz cell. To briefly explain, the Wigner–Seitz
cell was broken down into more than 20,000 voxels. The number of voxels of a given
density were then plotted as a histogram, and smoothed to produce Figure 11. These plots
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depict the change to the density distribution for Pd, Rh, Ru, and Tc when transformed
from FCC to HCP. For consistency, we assumed an ideal c

a . Of particular note, the electron
density distribution changes little when the normally FCC metals (Rh and Pd) are forced
HCP. On the other hand, there is a substantive change in the isosurface density of the
HCP metals (Tc and Ru) when there is forced FCC. Electron density that was deep in
the octahedral cage is shifted to the tetrahedral cage and particularly into the rings and
bond paths forming their edges and faces. The density becomes steeper in the octahedral
cage particularly in the direction of the c lattice vector. Apparently, the lower symmetry
about the tetrahedral and octahedral cages of HCP compared to FCC allows the charge
redistribution. In the absence of charge redistribution, the FCC structure is preferred simply
because the strong electron electron repulsion is minimized by vertex sharing and hence
maximizing the distance between the electron rich faces and bonds of the tetrahedral cages.

Figure 11. In normalized units the relative fraction of the Wigner–Seitz cell occupied by a given density, i.e., the cell
isosurface density, accompanying an FCC to HCP transformation. The top row shows the electron density distribution
of the FCC structure and the second row is the distribution of the HCP structure. The normally FCC metals Rh and Pd
experience very little charge redistribution through the transformation. For the normally HCP metals, however, charge is
observed to be transferred to the bonds and rings of the shared tetrahedral–octahedral faces, making the electron density in
the octahedral cage steeper and hence increasing its kinetic energy. Isosurface density may be regarded analogous to a real
space DOS partitioning, created by counting the voxels within the Wigner–Seitz cell with a given value of density. The small
tails which lie at densities below the cage CPs are fitting artifacts.

The charge rearrangement attendant with the transformations of FCC to BCC and
lHCP are consistent with those of Jahn–Teller transformations. While the exact details of
these transformations can be more easily extracted from an orbital perspective (see [52])
at the moment, other than a “not too deep tetrahedral cage”, it is not possible to pinpoint
where in the electron density the incipient orbital instability lies.

5. Conclusions

We have employed the conceptual and theoretical framework of molecular chemistry
in an attempt to rationalize the HCP, BCC, and FCC crystallographic structures of the
nonmagnetic elemental transition metals. Specifically, we have drawn on concepts from
the quantum theory of atoms in molecules, the molecular virial theorem, and frontier
orbital theory to develop a chemically based conceptual understanding of the evolution of
electron density topology and geometry as one proceeds from left to right across the 4d
transition metal series. As a marked departure from conventional metallurgical approaches,
where structure is described as the packing of local tetrahedral and octahedral atomic
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coordinations, we take a broader look at structure by describing it as arising from the
packing of topological units characterized by electron density minima at their center.

While the electron density and metallurgical approach lead superficially to the same
structural representation for the late transition metals, the electron density approach
allows us to go beyond mere energies, and talk about structural changes in terms of
charge redistribution between regions. In particular, the structure of the electron density
of the early transition metals may be seen to be a consequence of bonding interactions
between tetrahedral coordinations. On the other hand, the structure of the late transition
metals results from antibonding interactions between the same units. The crystallographic
structures between the early and late transition metals can then be rationalized as resulting
from mixed bonding/antibonding character, where the preferred structures are those for
which the interatomic distance in antibonding directions is lengthened.

Though here we investigated only the nonmagnetic transition metals, the approach is
sufficiently general and is applicable to more complex alloys. The challenge is identifying
the relevant topological units and then cataloging the possible interactions between these
units. As an example, we previously brought this methodology to bear in a study of
the structure of metallic glasses [53]. Though complex and confronted with difficulties,
the approach allows for a more direct application of chemical formalism. Perhaps the
chemical insights that are forthcoming will prove useful in the ongoing effort to design
metals and alloys.
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Appendix A

Appendix A.1. Density Values at Critical Points

Table A1. Electron density values (a.u.) at critical points for selected FCC structures from LASTO
and BAND results, as referenced in Figure 5. For comparison purposes, BAND results shown here
were performed at the LASTO lattice constants, Table A2.

CCPtet CCPoct RCP BCP

YLASTO 0.014013 0.013987 0.013895 0.011637
YBAND 0.013767 0.013404 0.0130396 0.010890

ZrLASTO 0.025162 0.024378 0.023987 0.018978
ZrBAND 0.026599 0.023539 0.023494 0.021422

NbLASTO 0.042969 0.038950 0.038749 0.029567
NbBAND 0.042866 0.041412 0.041045 0.029485

MoLASTO 0.057502 0.048310 0.047882 0.031852
MoBAND 0.056173 0.049881 0.049109 0.032564

TcLASTO 0.057922 0.045897 0.043671 0.028146
TcBAND 0.055938 0.046348 0.045155 0.029412
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Table A1. Cont.

CCPtet CCPoct RCP BCP

RuLASTO 0.059638 0.044017 0.041563 0.025472
RuBAND 0.060011 0.042811 0.039057 0.026759

RhLASTO 0.055926 0.041358 0.038629 0.022905
RhBAND 0.053723 0.0399061 0.037307 0.023937

PdLASTO 0.046595 0.032797 0.029381 0.018641
PdBAND 0.043839 0.031556 0.029328 0.018039

AgLASTO 0.020804 0.014512 0.021231 0.033002
AgBAND 0.021419 0.013695 0.022971 0.031606

Appendix A.2. Calculation Lattice Constants

Slater-type orbital basis used in LASTO results (Figures 4 and 5) were optimized to
provide the best match with experimental lattice constants when possible. BAND results
(Figures 7 and 8) employed geometry optimized lattices.

Table A2. Lattice constants in Angstrom.

Y Zr Nb Mo Tc Ru Rh Pd Ag

LASTOBCC 4.20 3.73 3.28 3.13 3.16 3.11 3.10 3.18 3.33
LASTOFCC 5.14 4.57 4.02 3.83 3.87 3.80 3.89 3.89 4.08
BANDFCC 5.05 4.53 4.22 4.00 3.89 3.82 3.84 3.95 4.15

Appendix A.3. Average Radial Distance of 4d Electrons

With the exception of Rh, we see a contraction of 4d electrons across the series due to
increasing effective nuclear charge.

Table A3. Average radial distance of 4d and 5s Electrons (a.u.).

Y Zr Nb Mo Tc Ru Rh Pd Ag

〈R〉4d 2.354 2.297 2.215 2.000 1.723 1.464 1.574 1.356 1.213
〈R〉5s 3.811 3.729 3.730 3.596 3.301 3.251 3.401 3.519 3.034

References
1. Pauling, L. The Nature of the Chemical Bond. J. Am. Chem. Soc. 1931, 53, 1367–1400. [CrossRef]
2. Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20,

722–725. [CrossRef]
3. Hoffmann, R.; Woodward, R.B. Conservation of Orbital Symmetry. Acc. Chem. Res. 1968, 1, 17–22. [CrossRef]
4. Hammond, G.S. A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 240, 145–159. [CrossRef]
5. Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Claredon Press: Oxford, UK, 1990.
6. Lewis, G.N. The Atom and the Molecule. J. Am. Chem. Soc. 1916, 38, 762–785. [CrossRef]
7. Lewis, G.N. Valence and the Structure of Atoms and Molecules; The Chemical Catalogue Company: New York, NY, USA, 1923.
8. Taylor, G.I. The Mechanism of Plastic Deformation in Crystals. Part I. Theoretical. R. Soc. 1934, 145, 362–387.
9. Orowan, E. Zur Kristallplastizität. I. Z. Phys. 1934, 89, 605–613. [CrossRef]
10. Polanyi, M. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z. Phys. 1934, 89, 660–664. [CrossRef]
11. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [CrossRef]
12. Pettifor, D.G. Electron Theory in Materials Modeling. Acta Mater. 2003, 51, 5649–5673. [CrossRef]
13. Raju, S.; Mohandas, E.; Raghunathan, V.S. Engel-Brewer Electron Correlation Model: A Critical Discussion and Revision of

Concepts. Mater. Trans. JIM 1996, 37, 195–202. [CrossRef]
14. Pauling, L. The Nature of the Interatomic Forces in Metals. Phys. Rev. 1938, 54, 899–904. [CrossRef]
15. Pauling, L. A Resonating-Valence-Bond Theory of Metals and Intermetallic Compounds. R. Soc. 1949, 196, 343–362.

http://doi.org/10.1021/ja01355a027
http://dx.doi.org/10.1063/1.1700523
http://dx.doi.org/10.1021/ar50001a003
http://dx.doi.org/10.1021/ja01607a027
http://dx.doi.org/10.1021/ja02261a002
http://dx.doi.org/10.1007/BF01341478
http://dx.doi.org/10.1007/BF01341481
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1016/S1359-6454(03)00466-X
http://dx.doi.org/10.2320/matertrans1989.37.195
http://dx.doi.org/10.1103/PhysRev.54.899


Molecules 2021, 26, 5396 18 of 19

16. Altmann, S.L.; Coulson, C.A.; Hume-Rothery, W. On the Relation between Bond Hybrids and the Metallic Structures. R. Soc.
1957, 240, 145–159.

17. Hume-Rothery, W. The Engel-Brewer Theories of Metals and Alloys. Prog. Mater. Sci. 1968, 13, 229–265. [CrossRef]
18. Hume-Rothery, W. A Note on the Engel-Brewer Theory of Metallic Structures. Acta Metall. 1965, 13, 1039–1042. [CrossRef]
19. Tiwari, G.P.; Ramanujan, R.V. Review: The Relation between the Electron to Atom Ratio and Some Properties of Metallic Systems.

J. Mat. Sci. 2001, 36, 271–283. [CrossRef]
20. Hoffmann, R. Qualitative thinking in the age of modern computational chemistry-or what Lionel Salem knows. J. Mol. Struct.

1998, 424, 1–6. [CrossRef]
21. Pauling, L. The Sizes of Ions and the Structure of Ionic Crystals. J. Am. Chem. Soc. 1927, 49, 765–790. [CrossRef]
22. Pauling, L. The Principles Determining the Structure of Complex Ionic Solids. J. Am. Chem. Soc. 1929, 51, 1010–1026 [CrossRef]
23. Pauling, L. The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms. J. Am.

Chem. Soc. 1932, 54, 3570–3582. [CrossRef]
24. te Velde, G.; Baerends, E.J. Precise Density-Functional Method for Periodic Structures. Phys. Rev. B 1991, 44, 7888. [CrossRef]
25. BAND 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available online: http://www.scm.

com (accessed on 5 September 2021).
26. Kresse, G.; Furthmuller, J. Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave

Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [CrossRef]
27. Kresse, G.; Furthmuller, J. Efficient Interactive Schemes for Ab-initio Total-Energy Calculations Using a Plane-Wave Basis Set.

Phys. Rev. B 1996, 54, 11169–11186. [CrossRef]
28. Davenport, J.W. Linear Augmented-Slater-Type-Orbital Method for Electronic-Structure Calculations. Phys. Rev. B 1984, 29,

2896–2904. [CrossRef]
29. Vosko, S.H.; Wilk, L.; Nusair, M. Accurate Spin-Dependant Electron Liquid Correlation Energies for Local Spin-Density

Calculations—A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. [CrossRef]
30. van Lenthe, E.; Ehlers, A.; Baerends, E. Geometry Optimizations in the Zero Order Regular Approximation for Relativistic Effects.

J. Chem. Phys. 1999, 110, 8943–8953. [CrossRef]
31. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.

[CrossRef] [PubMed]
32. Wilson, T.R.; Rajivmoorthy, M.; Goss, J.; Riddle, S.K.; Eberhart, M.E. Observing the 3D Chemical Bond and its Energy Distribution

in a Projected Space. Chem. Phys. Chem. 2019, 20, 3289–3305. Available online: https://github.com/moltheorygroup/
BondalyzerTecplotAddon/releases (accessed on 5 September 2021).. [CrossRef] [PubMed]

33. Tecplot 360 2013R1. Tecplot Inc. 2013. Available online: https://www.tecplot.com (accessed on 5 September 2021)..
34. Milnor, J. Morse Theory; Princeton University Press: Princeton, NJ, USA, 1963
35. Matta, C.F.; Boyd, R.J. The Quantum Theory of Atoms and Molecules: From Solid State to DNA and Drug Design; Wiley-VCH & Co.

KGaA: Weinheim, Germany, 2007.
36. Besnainou, S.; Roux, M.; Daudel, R. Retour Sur Leffet de la Liaison Chimique sur la Densite Electronique. C. R. Acad Sci. 1955,

241, 311–313.
37. Bersuker, G.I.; Peng, C.; Boggs, J.E. The Nature of the Covalent Bond—The Existence and Origin of Nonnuclear Attractors.

J. Phys. Chem. 1993, 97, 9323–9329. [CrossRef]
38. Zou, P.F.; Bader, R.F.W. A Topological Definition of a Wigner–Seitz Cell and the Atomic Scattering Factor. Acta Crystallogr. A 1994,

50, 714–725. [CrossRef]
39. Jones, T.E.; Eberhart, M.E. The Topologies of the Charge Densities in Zr and Ru. Acta. Crystallogr. A 2009, A65, 229–265. [CrossRef]

[PubMed]
40. Bader, R.F.W. Bond Paths are not Chemical Bonds. J. Phys. Chem. A. 2009, 113, 10391–10396. [CrossRef]
41. Castillo, N.; Matta, C.; Boyd, R.J. The First Example of a Cage Critical Point in a Single Ring: A Novel Twisted α Helical Ring

Topology. Chem. Phys. Lett. 2005, 409, 265–269. [CrossRef]
42. Pendás, A.M.; Aurora, C.; Víctor, L. Ions in Crystals: The Topology of the Electron Density in Ionic Materials I. Fundamentals.

Phys. Rev. B 1997, 50, 4275–4284. [CrossRef]
43. Eberhart, M.E. A Quantum Description of the Chemical Bond. Philos. Mag. B. 2001, 81, 721. [CrossRef]
44. Jones, T.E.; Eberhart, M.E. The Bond Bundle in Open Systems. Int. J. Quantum Chem. 2010, 110, 1500–1505. [CrossRef]
45. Bader, R.F.W.; Preston, H.T.J. The Kinetic Energy of Molecular Charge Distributions and Molecular Stability. Int. J. Quantum Chem.

1969, 3, 327–347. [CrossRef]
46. Morgenstern, A.; Wilson, T.R.; Miorelli, J.; Jones, T.E.; Eberhart, M.E. In Search of an Intrinsic Chemical Bond. Comput. Theor. Chem.

2015, 1053, 31–37. [CrossRef]
47. Eberhart, M.E.; Jones, T.E. The Two Faces of Chemistry; Can they be reconciled? Found. Chem. 2012, 15, 277–285. [CrossRef]
48. Wilson, T.R.; Eberhart, M.E. Quantum Theory of Atoms in Molecules in Condensed Charge Density Space. Can. J. Chem. 2019, 97,

757–762. [CrossRef]
49. Rodríguez, J.I.; Ayers, P.W.; G otz, A.W.; Castillo-Alvarado, F.L. Virial theorem in the Kohn–Sham density-functional theory

formalism: Accurate calculation of the atomic quantum theory of atoms in molecules energies. J. Chem. Phys. 2009, 131, 021101.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/0079-6425(68)90022-4
http://dx.doi.org/10.1016/0001-6160(65)90170-7
http://dx.doi.org/10.1023/A:1004853304704
http://dx.doi.org/10.1016/S0166-1280(97)00219-4
http://dx.doi.org/10.1021/ja01402a019
http://dx.doi.org/10.1021/ja01379a006
http://dx.doi.org/10.1021/ja01348a011
http://dx.doi.org/10.1103/PhysRevB.44.7888
http://www.scm.com
http://www.scm.com
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.29.2896
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1063/1.478813
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://www.ncbi.nlm.nih.gov/pubmed/10062328
https://github.com/moltheorygroup/BondalyzerTecplotAddon/releases
https://github.com/moltheorygroup/BondalyzerTecplotAddon/releases
http://dx.doi.org/10.1002/cphc.201900962
http://www.ncbi.nlm.nih.gov/pubmed/31591821
https://www.tecplot.com
http://dx.doi.org/10.1021/j100139a012
http://dx.doi.org/10.1107/S0108767394003740
http://dx.doi.org/10.1107/S0108767309000531
http://www.ncbi.nlm.nih.gov/pubmed/19225195
http://dx.doi.org/10.1021/jp906341r
http://dx.doi.org/10.1016/j.cplett.2005.04.088
http://dx.doi.org/10.1103/PhysRevB.55.4275
http://dx.doi.org/10.1080/13642810108216538
http://dx.doi.org/10.1002/qua.22270
http://dx.doi.org/10.1002/qua.560030308
http://dx.doi.org/10.1016/j.comptc.2014.10.009
http://dx.doi.org/10.1007/s10698-012-9172-y
http://dx.doi.org/10.1139/cjc-2019-0086
http://dx.doi.org/10.1063/1.3160670
http://www.ncbi.nlm.nih.gov/pubmed/19603962


Molecules 2021, 26, 5396 19 of 19

50. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; John Wiley & Sons: New York, NY, USA, 1988.
51. Ruedenberg, K.; Schmidt, M.W. Physical Understanding through Variational Reasoning: Electron Sharing and Covalent Bonding.

J. Phys. Chem 2009, 113, 1954–1968. [CrossRef] [PubMed]
52. Lee, S.; Hoffmann, R. BCC and FCC Transition Metals and Alloys: A Central Role for the Jahn-Teller Effect in Explaining their

Ideal and Distorted Structures. J. Am. Chem. Soc. 2002, 124, 4811–4823. [CrossRef]
53. Jones, T.E.; Miorelli, J.; Eberhart, M.E. Reactive Cluster Model of Metallic Glasses. J. Chem. Phys. 2014, 140, 084501. [CrossRef]

http://dx.doi.org/10.1021/jp807973x
http://www.ncbi.nlm.nih.gov/pubmed/19228050
http://dx.doi.org/10.1021/ja0114557
http://dx.doi.org/10.1063/1.4865336

	Introduction
	Historical Motivation
	Background

	Computational Philosophy and Methods
	Results
	 Electron Density Topology
	Electron Density Geometry

	Discussion
	Conclusions
	
	Density Values at Critical Points
	Calculation Lattice Constants
	Average Radial Distance of 4d Electrons

	References

