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Abstract
Osteoarthritis (OA) is a common degenerative joint disease, the pathological
mechanism of which is currently unknown. Genetic alteration is one of the key
contributing factors for OA pathology. Recent evidence suggests that
epigenetic and microRNA regulation of critical genes may contribute to OA
development. In this article, we review the epigenetic and microRNA
regulations of genes related to OA development. Potential therapeutic
strategies may be developed on the basis of novel findings.
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Introduction
Osteoarthritis (OA) is the most common form of arthritis and is the 
leading cause of impaired mobility in the elderly1. It has been pro-
jected that more than 67 million people will be affected by OA in the 
US by 2030, resulting in an extremely high socioeconomic burden2,3. 
In recent years, the surgically induced destabilization of the medial 
meniscus (DMM) model4 and genetic mouse models5–12 have been 
developed to delineate the potential roles of affected genes in OA 
pathogenesis. However, a full understanding of the factors affect-
ing the initiation and progression of the disease has not yet been 
revealed. Thus, there is no clinical diagnosis for early OA and no 
effective disease-modifying treatment for late-stage OA, except 
pain-relieving medication and surgical replacement of the damaged 
joints13–15. Compelling evidence has revealed that epigenetic and 
microRNA (miRNA) alterations occur in OA chondrocytes and in 
patients with OA, including several well-documented OA-related 
genes, indicating, to a certain extent, that epigenetic and miRNA 
regulation contributes to OA pathogenesis16–18. In this short review, 
we will summarize the current understanding of OA, speculate on 
the potential mechanism(s) of epigenetic and miRNA regulation 
underlying OA development and progression, and in this context 
propose potential therapeutic targets for the treatment of OA.

Pathogenesis of osteoarthritis
OA is a degenerative joint disease with major clinical symptoms, 
including chronic pain, joint instability, stiffness, and radiographic 
joint space narrowing. During OA progression, articular chondro-
cytes undergo hypertrophy, leading to extracellular matrix (ECM) 
degradation and articular cartilage breakdown, followed by vascu-
lar invasion, subchondral bone sclerosis, and osteophyte formation 
eventually developing at the margins of the joint19–21. OA is a com-
plex multi-factorial disease, and the effects of aging and obesity, 
mechanical influences, and environmental and genetic factors have 
been identified as major factors contributing to the initiation or pro-
gression (or both) of OA22,23. Because articular cartilage damage is 
the primary pathologic feature leading to the joint dysfunction, it 
has received much of the attention in OA studies. Normal articular 
cartilage emerges during the postnatal stage as a permanent tissue 
distinct from the growth plate. The articular cartilage tissue lining 
the surface of all diarthrodial joints is a smooth, hard, white tissue, 
which cushions and absorbs the shock between joints. Collagens 
and proteoglycans are the principal ECM molecules of articular 
cartilage24–27. Mutations of ECM-related factors, including, types II, 
IX and XI collagen, have been reported in human OA patients28–30. 
It has been established that articular chondrocytes are the cells 
responsible for maintaining joint cartilage homeostasis. Thus, 
dysregulation of articular chondrocytes is directly connected to the 
process of cartilage degradation in OA. An understanding of the 
phenotypic behavior of articular chondrocytes in homeostasis and 
disease has revealed several key environmental and genetic factors 
that impact OA development and progression.

Genetic contributions to osteoarthritis
A genetic predisposition to OA has been established for many years 
through several twin studies, segregation analyses, linkage analyses,  
and candidate gene association studies31–33. Although the genet-
ics of OA are complex, the genetic contribution to OA is highly  
significant. It has been demonstrated that the heritability of OA may 

be as high as 40–65%, depending on the joint site and population 
studied34. In the past decade, the potential roles of genes and sig-
naling pathways in OA pathogenesis have been demonstrated by 
ex vivo studies with tissue derived from OA patients and in vivo 
studies with surgically induced OA animal models as well as 
mouse genetic models. Transforming growth factor-beta (TGF-β),  
Wnt/β-catenin, Indian Hedgehog (Ihh), Notch, fibroblast growth 
factor (FGF), and hypoxia-inducible factor (HIF) pathways, by 
stimulating chondrocytes toward hypertrophy, have demonstrated 
the critical and unique roles of chondrocytes during OA develop-
ment and progression in genetic mouse models5–7,9,10,35. These recent 
genetic findings further suggest that Runt-related transcription factor 
2 (Runx2), Mmp13, and Adamts5 are common target genes involved 
in the above-mentioned signaling networks, disrupting the anabolic 
and catabolic balance in chondrocytes and eventually degrading 
the cartilage matrix by upregulation of matrix metalloproteinase 
(MMP) and a disintegrin and metalloprotease with thrombospon-
din motif (ADAMTS) activity, which leads to degradation of type 
II collagen and aggrecan8,11,36–38. Although these studies have been 
important in determining the genetic components of OA, only a few 
OA-related genes have been identified by using human genetic and 
epidemiological approaches. More recent newer technologies, such 
as genome-wide association studies (GWASs), have been used to 
analyze large numbers of OA and control populations throughout 
the world in hopes of uncovering more genes associated with OA. 
To date, even these larger exploratory human genetic studies have 
produced very few genes important to the development and patho-
genesis of human OA. Whereas some of the genes identified are 
important structural and ECM-related factors (Col2a1, Col9a1, and 
Col11a1) as well as critical signaling molecules in the Wnt (Sfrp3), 
bone morphogenetic protein (BMP) (Gdf5), and TGF-β (Smad3) 
signaling pathways, most have been previously implicated in OA or 
articular cartilage and joint maintenance by using mouse models of 
induced genetic alteration or surgically induced OA28–30,39–42. New 
single-nucleotide polymorphisms were identified in several genes, 
including GNL3, ASTN2, and CHST11, in recent genome-wide 
screen studies43, and these findings need to be further confirmed.

Epigenetic alterations in osteoarthritis pathogenesis
In addition to GWAS analyses, growing evidence suggests that 
the gene expression profile can be largely regulated by epigenetic 
machinery that modulates local transcriptional activity and mRNA 
expression in chondrocytes44. In normal adult chondrocytes, like 
other somatic cells, the genomic arrangement and packaging are 
regulated by genetic and epigenetic mechanisms that provide 
instruction on how, where, and when genetic information should 
be used. In mammals, the major epigenetic regulatory mechanisms 
include DNA methylation and histone modification. miRNAs could 
be loosely defined as epigenetic factors and play important roles 
in OA45.

DNA methylation
DNA methylation is mediated by DNA methyltransferase (DNMT), 
which transfers the methyl group from the donor, methylated  
S-adenosyl-methionine (methyl-SAM), to DNA bases, particularly 
cytosine (CpG island). DNA methylation occurs in both the gene pro-
moter region and gene bodies and regulates gene transcription46–48. 
Recent studies found that DNA methylation is dynamically regulated 
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through a cyclic enzymatic cascade composed of cytosine meth-
ylation by DNMTs and demethylation by ten-eleven translocation  
methylcytosine-(TET) dioxygenases (TET1, 2, and 3)49. In mammals, 
there are three enzymatically active DNMTs, DNMT1, DNMT3a, 
and DNMT3b, and one related regulatory protein, DNMT3L48. 
DNMT1 is primarily a “maintenance” methyltransferase that recog-
nizes the hemi-methylated DNA strand and preserves the methylation 
pattern throughout cell replication and division. The global knock-
out of the Dnmt1 gene is embryonically lethal at E10.5 because of 
a significant loss of global DNA methylation, suggesting that DNA 
methylation is essential for normal mammalian development50.  
In contrast, two de novo DNMTs, 3a and 3b, have tissue-specific 
expression patterns and create unique methylation signatures. 
Knockout mice with Dnmt3b deletion showed embryonic lethality 
between E11.5 and E15.5 as well as several skeletal defects, includ-
ing growth impairment. However, loss of the Dnmt3b gene does not 
affect the entire genome methylation pattern51.

In recent decades, researchers have studied changes in the DNA 
methylation status of individual genes during OA development and 
progression and found that the promoter of Col10a1 appeared to be 
hypomethylated during chondrocyte hypertrophy and maturation 
followed by its upregulation52. Similarly, the CpG sites within the 
promoter area of a number of metalloproteinases, including MMP2, 
MMP9, MMP13, and ADAMTS4, showed decreased methylation 
profiles in OA compared to normal cartilage, correlating with 
elevated gene expression and resulting in ECM degradation53,54. 
Reduced CpG methylation was reported in the MMP13, IL-1β, and 
inducible nitric oxide synthase (iNOS) promoter in OA tissue which 
correlates with the increased MMP13, IL-1β, and iNOS expression 
in OA chondrocytes55,56. During the chondrocyte maturation process, 
changes in DNA methylation patterns were observed in several 
transcription factors, such as Sox9 and Runx257. Hypomethylation in 
promoter regions of those genes promoted gene transcription, which 
further activated downstream signaling molecules, including MMPs, 
and eventually stimulated chondrocytes toward hypertrophy and 
terminal maturation. Either hypomethylation or hypermethylation 
occurred in promoter regions within a subset of OA-specific genes, 
including ligands (e.g., BMP7 and IL-1β)58,59, receptors, transcrip-
tion factors (e.g., Sox9 and Runx2)57, enzymes (e.g., MMPs and 
ADAMTS4/5)53,54, and ECM proteins (e.g., aggrecan, Col2a1, and 
Col10a1)52,60.

Recent methylome screening data further confirmed that altera-
tions in DNA methylation occurred in OA chondrocytes and that 
chondrocyte transcriptomes may be changed in OA patients, indi-
cating that DNMTs influence OA susceptibility and severity by 
modulating pathways or signals leading to OA16–18,61,62. However, 
which DNMT factor or factors mediate these changes genome-wide 
remains largely unknown. In one of our ongoing experiments, we 
have found that DNMT3b, but not DNMT 1 or 3a, was highly 
expressed in articular chondrocytes, but its expression was signifi-
cantly decreased in chondrocytes derived from patients with OA or 
from several OA mouse models, including the aging animal model, 
meniscal ligamentous injury (MLI) model, and obesity model (Shen 
et al., unpublished data). Recent reports demonstrated that TET1, 2, 
and 3 are present in human chondrocytes and that TET1 expression 
was significantly reduced by inflammatory factors, such as IL-1β 

or TNFα63. Recent studies have also revealed a significant increase 
in 5-hydroxymethylcytosine levels in OA chondrocytes because of 
TET1 downregulation64,65. Because DNA methylation is a revers-
ible process, the role of the TET family members in OA develop-
ment needs further investigation to better understand the regulation 
of DNA demethylation during OA development and progression.

The regulation of transcription factors on chondrocyte-specific 
genes through alterations of DNA methylation and histone modi-
fication has been reported in recent years. For example, it has been 
reported that methylation of the -110 bp CpG site in the Mmp13 
promoter strongly correlates with the high Mmp13 expression in 
chondrocytes. This CpG site resides within a HIF consensus motif.  
The methylation of this site will decrease HIF-2α binding to the 
Mmp13 promoter55. AT-rich interactive domain 5b (Arid5b) is 
a newly identified transcriptional co-regulator of Sox9. Arid5b 
recruits Phf2, a histone lysine demethylase, to the promoter region of 
Sox9 target genes and stimulates H3K9me2 demethylation of these 
genes. In the promoters of chondrocyte marker genes, H3K9me2 
levels are increased in Arid5b knockout chondrocytes66.

Histone modification
Working closely with DNA methylation, histone modification—includ-
ing acetylation, phosphorylation, methylation, and ubiquitination— 
regulates gene expression by controlling the accessibility of the 
transcriptional machinery67,68. Recent studies demonstrated that his-
tone acetylation and deacetylation are involved in OA pathogenesis 
by affecting chondrocyte anabolic and catabolic processes. His-
tone acetylation is mediated by histone acetyltransferases (HATs)  
and is a critical step in loosening the DNA structure, which allows 
regulatory factors to access the transcriptional machinery and the 
subsequent initiation of gene expression, whereas deacetylation 
is considered the termination or repression of gene expression69.  
Histone deacetylation is mediated by histone deacetylases (HDACs), 
including the classic HDAC and NAD+-dependent silent informa-
tion regulator 2 (SIR2) families70,71. The use of large-scale analysis 
(ChIP-seq) of chondrocyte histone acetylation did not find global 
alterations in OA chondrocytes but did find changes in specific gene 
loci, encoding MMPs, ECM molecules, and inflammatory factors.

In patients with OA, elevated HDAC7 expression has been reported 
to contribute to cartilage degradation by inducing Mmp13 expres-
sion in OA cartilage. The inhibition of HDAC7 in vitro leads to 
suppression of inflammatory factor-induced Mmp13 expression72. 
The expressions of HDAC1 and HDAC2 are upregulated in OA 
synovial tissue as well, and this may lead to repression of Col2a1 
expression in chondrocytes by interfering with the recruitment of 
Snail73,74. Therefore, HDAC inhibitors have been extensively stud-
ied in various OA models. Specific HDAC inhibitors can inhibit 
cytokine-induced MMP expression in chondrocytes to protect 
against proteoglycan loss and cartilage degradation75–77. HDAC 
inhibitors can also stimulate the expression of ECM components—
such as Col2a1, cartilage oligomeric matrix protein (COMP), and 
aggrecan—in chondrocytes74,78. In the rabbit anterior cruciate liga-
ment transection (ACLT) model, an HDAC inhibitor significantly 
decelerated injury-induced cartilage erosion, mainly due to reduced 
expression of MMPs and inflammatory cytokines, indicating that 
HDAC inhibitors may provide a potential treatment for OA79.
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In the SIR2 family, SIRT1 has been extensively studied. SIRT1 is 
highly expressed in chondrocytes and its expression was found to 
be decreased in OA cartilage80,81. SIRT1 can promote expression of 
ECM genes, such as Col2a1, Col9a1, and COMP, possibly through 
deacetylation of Sox9, while inhibiting Col10a1 and Adamts582. 
SIRT1 also prevents apoptosis in chondrocytes by enhancing insulin- 
like growth factor (IGF) signaling to inactivate p53. The reduction 
of SIRT1 expression leads to an increase in chondrocyte apoptosis 
in OA cartilage83. Interestingly, the function of SIRT1 is closely 
linked to the inflammatory response and the hypoxic response as 
well, although SIRT1 has not been approved for use to treat OA. 
In a variety of tissues, SIRT1 initiates a gene-specific transcrip-
tional repression program to terminate inflammatory response by 
deacetylating the p65 subunit of nuclear factor-kappa-B (NF-κB) and 
blocking NF-κB binding to the DNA elements84,85. SIRT1 can also 
directly deacetylate and activate HIF-2α, which is upregulated in 
OA cartilage, to promote MMP expression and eventually degrade 
the articular cartilage86,87.

In addition to histone acetylation, histone H3K4 methylation medi-
ated by histone-lysine N-methyltransferase (HMT) was recently 
investigated. HMT expression level was found elevated in OA car-
tilage, which resulted in H3K4 methylation at the iNOS and COX-2 
promoter areas and induction of gene expression88. Similarly, an 
age-dependent increase in H3K4me2 occurs in the nuclear factor 
of activated T cells 1 (Nfat1) promoter, which led to suppression 
of Nfat1 expression in adult articular chondrocytes and eventually 
developed OA-like phenotype in mice89,90. Increased demethyla-
tion mediated by histone demethylase LSD1 was also found in OA 
chondrocytes. Elevated LSD1 contributed to H3K9 demethylation 
in the microsomal prostaglandin E synthase 1 (mPGES-1) promoter 
and induction of gene expression in human OA chondrocyte91. 
Moreover, the architecture of histone acetylation and methylation 
in local genome can further guide the long-range chromatin interac-
tion to regulate specific gene regulatory DNA elements92.

MicroRNA regulation
The role of miR-140 in osteoarthritis pathogenesis
miRNAs are endogenous non-coding RNAs and play impor-
tant roles in negative regulation of RNA stability and protein  
expression93,94. Several miRNAs have been found to be more abun-
dant in articular chondrocytes than in undifferentiated mesenchy-
mal stem cells. The best example of this is miR-14095. miR-140 
is found in an intron of the Wwp2 gene coding for WWP2 E3 
ubiquitin ligase96. Deletion of miR-140 did not alter the expression 
level of Wwp2 in chondrocytes97. Analysis of the intronic sequence 
found two miR-140s: miR-140-5p and miR-140-3p98. The expres-
sion levels of miR-140-5p and -3p were both significantly reduced 
in OA chondrocytes98. During chondrocyte differentiation, miR-140 
expression increased in parallel with Sox9 and Col2a1. However, in 
OA tissues, miR-140 expression is reduced and Adamts5 expression 
was upregulated95. In vitro treatment of chondrocytes with IL-1β 
suppresses miR-140 expression95. miR-140 is the only miRNA with 
a cartilage-specific expression pattern95,99. miR-140 deficiency accel-
erates chondrocyte differentiation into hypertrophic chondrocytes 
and inhibits differentiation of resting chondrocytes into columnar 
proliferating chondrocytes100. The reduction in miR-140 expression 
in OA cartilage may contribute to abnormal gene expression during 

OA development95. For example, miR-140 regulates the expression 
of histone deacetylase 4 (HDAC4), a co-repressor of Runx2 and 
myocyte-specific enhancer factor 2 (Mef2)101. miR-140 also targets 
Cxcl1299 and Smad3102, both of which are implicated in chondro-
cyte differentiation. In miR-140 null mice, OA-like changes were 
observed and characterized by proteoglycan loss and fibrillation of 
articular cartilage, probably due to increased Adamts5 expression103. 
This increased Adamts5 expression was reversed by transfection of 
ds-miR-140 into miR-140-deficient chondrocytes103. In addition, 
cartilage-specific miR-140-overexpressing transgenic mice had  
no abnormal skeletal phenotype during embryonic development but 
did show a protective effect in an antigen-induced arthritis model103. 
However, the upregulation of Adamts5 and Hdac4 expression 
in chondrocytes was not found in the other miR-140 knockout 
mouse model generated by Nakamura et al.97. Instead of upregu-
lation of Hdac4 expression, miR-140 enhances HDAC4 function 
in chondrocytes100. miR-140 could interact with PTHrP-HDAC4 
pathway to control chondrocyte differentiation. miR-140 deficiency 
and PTHrP or Hdac4 heterozygosity synergistically impair skeletal 
growth. Loss of miR-140 upregulates MEF2C expression. miR-140 
negatively regulates p38 mitogen-activated protein kinase (MAPK) 
signaling, and inhibition of p38 MAPK signaling reduces MEF2C 
expression104. The functional role of miR-140 in cartilage homeos-
tasis is also involved in the regulation of MMP13105. MMP13 is a 
well-known key player in cartilage biology and OA pathology. It 
has been reported that miR-140 is a negative feedback regulator 
of MMP13106. In addition, transfection with pre-miR-140 signifi-
cantly decreased IGFBP-5 expression. In contrast, transfection with  
anti-miR-140 significantly increased IGFBP-5 expression107.

The role of Runx2 in osteoarthritis development
Significant progress has been made in recent years in OA research, 
and several OA mouse models, including genetic models and sur-
gically induced OA models, have been developed and reported. 
One common feature of these animal models is upregulation of 
Runx25,9,36, leading to further increases in genes coding for matrix 
degradation enzymes, such as Mmp9, Mmp13, and Adamts5, 
because Runx2 is a key transcription factor regulating the transcrip-
tion of these genes108–110. Key questions are how Runx2 is regulated 
and whether a therapeutic strategy can be developed by downregu-
lation of Runx2 in OA cartilage.

During skeletal development, Runx2 mRNA expression was 
detected in skeletal elements as early as E10.5 and E11.5; however, 
hypertrophic chondrocytes and primary ossification centers do not 
form until E14.5, although Runx2 is a key transcription factor driv-
ing chondrocyte hypertrophy111. These findings suggest that Runx2 
protein expression is suppressed because of post-transcriptional 
regulation during early skeletal development since chondrocyte 
proliferation and expansion are needed at this stage. These findings 
also suggest that there is an endogenous negative regulatory mecha-
nism for Runx2 protein expression.

MicroRNA regulation of Runx2 expression
In recent studies, we have examined potential miRNAs that may 
bind the 3′-non-coding region of the Runx2 gene and found that 
miR-204 and miR-211, two homologous miRNAs, bind Runx2 and 
regulate Runx2 expression in mesenchymal progenitor cells112. To 
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further investigate the functions of these miRNAs in the regula-
tion of Runx2 protein expression in articular chondrocytes and in 
cartilage homeostasis, chondrocyte-specific miR-204 and miR-211 
transgenic mice and conditional knockout mice need to be gener-
ated and tested. In addition to miR-204 and miR-211, several other 
miRNAs have been reported to regulate Runx2 expression113. Their 
functions in OA development also need further investigation.

The role of miRNA regulation in OA development involves 
upstream regulation and downstream gene targeting. For example, 
it has been reported that IL-1β, an inflammatory cytokine, sup-
presses the expression of miR-140, which in turn causes upregula-
tion of Adamts5, a target gene of miR-140, in chondrocytes95,103, so 
miR-140 could serve as a mediator during OA development. In 
addition, it has been reported that TGF-β/Smad3 regulates miR-140 
expression in OA chondrocytes114. TGF-β signaling is one of the key 
signaling pathways in OA development and responds to mechanical 
loading. Monocyte chemoattractant protein-induced protein 1 
(MCPIP-1) is a novel post-transcriptional regulator of IL-6 expres-
sion and is targeted by miR-9. MCPIP-1 mRNA expression was 
low, but expression of miR-9 and IL-6 was high, in damaged OA 
cartilage. MCPIP-1 protein directly binds with IL-6 mRNA, and 
overexpression of wild-type MCPIP-1 destabilized the IL-6 mRNA. 
MCPIP-1 expression was altered by overexpression or inhibition 
of miR-9. These findings implicate miR-9-mediated suppression of 
MCPIP-1 in the pathogenesis of OA via upregulation of IL-6 expres-
sion in IL-1β-stimulated human OA chondrocytes115. These studies 
also suggest that miRNAs may serve as important mediators in OA, 
although they may not be able to trigger the OA occurrence.

Summary
Although OA is a multi-factorial disease, genetic factors may play 
a significant role in OA development and progression. Recent evi-
dence suggests that epigenetic and miRNA regulation of genes 

related to OA development may contribute to OA pathology. To 
fully understand how mechanical instability and inflammation cause 
epigenetic and miRNA alteration, further leading to OA develop-
ment and progression, more in-depth studies need to be conducted. 
These studies may lead to uncovering novel molecular targets for 
drug development to prevent and treat OA.
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