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KEY POINTS 

Question:  In contrast to other “respiratory” viruses, why does SARS-CoV-2 result in such multi-
systemic, life-threatening complications, including the vascular inflammation, endothelial injury and 
pulmonary thrombotic microangiopathy for which evidence is accumulating?

Findings: With ongoing viral infection, the particularly strong interaction between SARS-CoV-2 and 
ACE2, followed by internalisation, operates to profoundly deplete cell surface ACE2, an essential 
protein under feedback regulation to restore protein expression through upregulated gene transcription. 
Data residing unflagged in experimental repositories indicate that the ACE2 gene lies in a co-regulated 
cluster with PIR and VEGFD, sharing “double-elite” enhancers, implying homeostatic host responses 
to restore ACE2 expression would generate damaging reactive oxygen species in the setting of impaired 
host defences, and separately impact on the ability of the pulmonary endothelium to respond 
appropriately.

Meaning: For patients who fail to suppress replication of the SARS-CoV-2 virus within a few days, 
the ACE2 co-regulated gene cluster predicts delayed responses that would contribute to subsequent 
catastrophic deteriorations, and merit further attention.
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All rights reserved. For Permissions, please email: journals.permissions@oup.com 

mailto:c.shovlin@imperial.ac.uk


2

ABSTRACT 

COVID-19 has presented physicians with an unprecedented number of challenges and mortality. The 

basic question is why, in contrast to other “respiratory” viruses, SARS-CoV-2 infection can result in 

such multi-systemic, life-threatening complications and a severe pulmonary vasculopathy.  It is widely 

known that SARS-CoV-2 uses membrane-bound angiotensin-converting enzyme 2 (ACE2) as a 

receptor, resulting in internalisation of the complex by the host cell.   We discuss the evidence that 

failure to suppress coronaviral replication within 5 days results in sustained downregulation of ACE2 

protein expression, and that ACE2 is under negative-feedback regulation.  We then expose openly-

available experimental repository data that demonstrate the gene for ACE2 lies in a novel cluster of 

interegulated genes on the X chromosome including PIR encoding pirin (quercetin 2,3-dioxygenase), 

and VEGFD encoding the predominantly lung-expressed vascular endothelial growth factor D. The five 

double-elite enhancer/promoters that are known to be operational, and shared read-through lncRNA 

transcripts, imply that ongoing SARS-CoV-2 infection will reduce host defences to reactive oxygen 

species, directly generate superoxide O2·- and H2O2 (a “ROS storm”), and impair pulmonary endothelial 

homeostasis. Published cellular responses to oxidative stress complete the loop to pathophysiology 

observed in severe COVID-19.  Thus for patients who fail to rapidly suppress viral replication, the 

newly-appreciated ACE2 co-regulated cluster predicts delayed responses that would account for 

catastrophic deteriorations.  We conclude that ACE2 homeostatic drives provide a unified 

understanding which should help optimise therapeutic approaches during the wait until safe, effective 

vaccines and antiviral therapies for SARS-CoV-2 are delivered. 
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During 2020, the world has faced unexpected health, social and economic damage due to SARS-CoV-

2 infection, with over 16 million cases, more than half a million deaths, and continuing high mortality 

rates.1  The multifaceted severe presentations of COVID-19 have centred on viral pneumonitis/adult 

respiratory distress syndrome (ARDS), the “cytokine storm” of dysregulated inflammation, and multi-

organ failure, with the leading cause of death now recognised as thromboembolism.2,3 There is 

evidence for a hypercoagulable state in excess of that observed in sepsis,4 with vascular inflammation, 

endothelial injury and thrombotic microangiopathy assuming prominence.5-8 

The question is why are these occurring?  Many inflammatory and signalling cascades have been 

proposed, though as yet there are no answers to the basic question of why SARS-CoV-2 infection, as 

for SARS-CoV, can result in such multi-systemic, life-threatening complications, differing in individual 

cases, or why thrombosis plays such a pronounced role in the life-threatening phenotypes.

Here we draw attention to the physiological and homeostatic responses employed by cells in response 

to coronavirus infection that point towards defective endovascular defences to reactive oxygen 

species, a “ROS storm”, and specifically impaired pulmonary vascular homeostasis.

The SARS-CoV-2 “receptor” angiotensin-converting enzyme 2 (ACE2)

SARS-CoV-2, SARS-CoV and related SARS viruses are so named due to their ability to generate a severe 

acute respiratory syndrome (SARS) in a proportion of infected individuals. They are unusual compared 

to more familiar viral pathogens as they use membrane-bound angiotensin-converting enzyme 2 

(ACE2) as a receptor.9,10 ACE2 is an essential component of the renin-angiotensin-aldosterone system 

(RAAS), normally catalysing angiotensin II degradation, with multiple cardiovascular-protective 

consequences.11  There is some evidence from other species that expression of the ACE2 receptor 

varies with age12 and sex.13 
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On binding to ACE2, the SARS-CoV-2 Spike (S) envelope protein is cleaved to subunits S1 and S2 by 

host proteases.9 Specific amino acids in the S1 C-terminal domain (CTD) and host ACE2 form a network 

of hydrogen-bond and salt bridge interactions resulting in internalization of the complex by the host 

cell.9,10  The SARS-CoV-2-ACE2 interactions are 4-fold stronger than between  SARS-CoV and ACE2.10  

The kinetics of recycling ACE2 following viral-ACE2 complex internalisation are not yet reported for 

SARS-CoV-2, but those of a related human coronavirus, HCoV-NL63, were examined by Dijkman and 

colleagues in Rhesus monkey epithelial cells.14 They demonstrated that cell surface expression of ACE2 

starts to reduce 3 days post infection, becoming almost undetectable in infected cells from day 5 to 

the end of their study period, and therefore of unknown duration.14

This is for an essential protein where strong evolutionary constraints have served to maintain 

physiological activity: The evidence is multifactorial,11 and most compelling ACE2  is a “loss-of-function 

intolerant” gene with a very low frequency of null alleles,15,16  particularly in males who only have a 

single copy due to its X-chromosome location.  Transcription upregulation is observed within hours for 

many proteins sequestered in pathophysiological settings.17-19 Specifically for ACE2, mRNA 

transcription is regulated by an unknown negative-feedback signal attributed to ACE2 activity.20 Thus 

when ACE2 activity is reduced, homeostatic responses operate to restore the protein, apparently via 

upregulation of gene transcription.20

The ACE 2 gene enhancers 

Upregulation of gene transcription is enhanced by regulatory DNA sequences that modulate distant 

target gene expression, often by long-range physical chromosomal interactions. Several enhancers 

regulate ACE2 transcription in man, and two (GH0XJ015596 and GH0XJ01557) meet what are 

considered to be quite stringent GeneHancer definitions for ‘double-elite’ enhancer-promoter 

interactions.21,22   These restrict ‘elite’ enhancer assignment to a candidate regulatory element derived 
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from more than one experimental data source, and ‘double elite’ promoter-enhancer interactions to 

those meeting likelihood-based score thresholds using expression quantitative trait loci, again derived 

from multiple sources.21,22 Fewer than 10% of identified enhancer-promoter interactions fulfil the 

GeneHancer ‘double elite’ status.21  The validity of the stringent ‘double elite’ enhancer–gene network 

is supported by the method’s capture of 38 gene pairings where each of the pair represented a 

different causal gene for the same disease (hypergeometric probability P<6.0x10-35).21

GH0XJ015596 and GH0XJ015579 flank ACE2 exons 1 and 9 respectively (Supplementary Figure 1). Both 

were among ~22,000 enhancers identified by high-resolution, high throughput chromosome 

conformation capture (Hi-C) libraries from human blood cells- hematopoietic progenitors and 

lymphoblastoid cell lines, with the libraries enriched for long-range promoter contacts,23 and also 

identified by the ENCODE laboratories24 and Ensembl.25   While the anatomical nature of GeneHancer 

enhancer interactions are defined and visible to all through tracks on the human genome browser 

from the University of Santa Cruz (UCSC),21,22, 26,27 mechanisms are not well studied.  For instance it is 

not known whether a long non-coding (lnc)RNA that overlaps GH0XJ015596 (lnc-ACE2-1, 

Supplementary Figure 2)22,29  plays a functional role in any cell type

Why stimuli to upregulate ACE2 gene transcription will have wider consequences: 

The ACE2 co-regulated cluster of genes 

The region on the human X-chromosome that contains the ACE2 gene is illustrated in Figure 1A, and 

annotated by position on both human genome reference sequence “build 37” (GRCh37/hg19), and 

“build 38” (38/hg38). ACE2 is encoded by the reverse (-) strand, and is sited between CLTRN and PIR, 

which is adjacent to VEGF-D.

These genes, which encode proteins with better-known names and functions, share enhancers and 

other regulatory elements with ACE2 (Figure 1B).    Homeostatic responses attempting to restore 
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expression of cell surface ACE in the setting of ongoing SARS-CoV-2 viral replication predict 

upregulation and/or perturbation of these critical proteins, as discussed in the next section.

a) ACE2, PIR and quercetin:

The ACE2 enhancers GH0XJ015596 and GH0XJ015579 have double-elite interactions (confirmed by Hi-

C23 and expression quantitative trait loci from GTEx version v6p30), with the promoter of PIR which 

encodes quercetin 2,3-dioxygenase (“pirin”), and is near-ubiquitously expressed.30 The substrate of 

pirin is quercetin (3,3’,4’5,7-penthydroxyflavone),  a flavonoid considered to be one of the most 

potent antioxidants of plant origin.31,32 Quercetin was identified as a potential COVID-19 therapy by 

supercomputer modelling of the viral S-human ACE2 receptor interface,33 and by genomics-guided 

tracing of SARS-CoV-2 targets.34 Quercetin has electron-donating properties due to a phenolic 

hydroxyl group essential for scavenging free radicals such as superoxide anion O2·- and these 

antioxidant activities are the reasons cited for two randomised controlled trials in COVID-19 that are 

currently recruiting on www.clintrials.gov.

Quercetin 2,3-dioxygenase, the protein product of PIR, converts the ‘antioxidant’ quercetin to o-

quinone, with an o-semiquinone radical intermediate which reacts with oxygen to generate the 

reactive oxygen species (ROS) superoxide O2·- and H2O2.
32   Hence oxidation of quercetin by up-

regulated quercetin 2,3-dioxygenase is predicted to both remove an important antioxidant and 

directly generate ROS.32 Consequences will reflect the residual capacity of host anti-oxidant defences. 

b) ACE2 , VEGFD, and vascular endothelial growth factor D

The next “downstream” (3’) gene is VEGFD (Figure 1A). There are double-elite interactions between 

three PIR locus-encoded enhancers (GH0XJ015492, GH0XJ015473, and GH0XJ015471) and the 

promoter of VEGFD.21,22 Additionally, there is a long PIR and VEGD read-through RNA transcript that 

will not produce full length protein (lnc-VEGFD-1, Figure 2):22,26-29 Any change in lnc-VEGFD-1 
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transcription, including that mediated by the ACE2 locus-encoded enhancers interacting with the PIR 

promoter, would alter the balance between the read-through and VEGD protein-coding transcripts.    

This is also relevant to COVID-19 since VEGFD encodes vascular endothelial growth factor D which is 

predominantly expressed in the lungs,30 modifies differentiation, proliferation and permeability of 

vascular and lymphatic endothelial cells,44 is a therapeutic target for lymphangioleiomyomatosis,45 and 

independently predicts all-cause mortality in patients with suspected or known coronary artery 

disease.46  

c) Additional cluster genes.

There are additional regulatory interactions between the ACE2-encoded enhancers and the preceding 

genes, CLTRN (also known as TMEMM27) and CA5B (Figure 2B). CLTRN encodes collectrin which has 

roles in renal proximal tubule amino acid transporter trafficking, insulin exocytosis, and 

neuropsychiatric stability.47  CA5B which is on the (+) strand (Figure 2A), encodes the mitochondrial-

expressed carbonic anhydrase 5B, a metalloproteinase that generates bicarbonate for metabolic liver 

enzymes: defective hepatic bicarbonate production leads to biochemical findings48 that could be 

relevant to the alkalosis observed in some COVID-19 patients.

Notably, none of the major proteins or other species encoded by the contiguous genes have been 

linked based on curated pathways, protein–interactions, or text mining databases from over 20 million 

PubMed publications (Supplementary Figure 3).  

Relevance of ACE2 gene cluster to host responses following SARS-CoV-2 infection
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The section above outlines how cellular homeostatic feedback loops, in the setting of a continued 

stimulus to upregulate ACE2 transcription in infected cells with severely depleted cell surface ACE2,15 

will lead to the COVID-19 reminiscent scenario outlined in Figure 2.   

This linking of experimentally validated data provides a compelling prediction of the delayed, life-

threatening features observed following SARS-CoV-2 infection.  It depends on only one assumption- 

that relatively normal host transcription will be in operation in some SARS-CoV-2 infected cells, some 

of the time.  This seems a reasonable assumption based on evidence from other viruses: Many 

interfere with host transcription, for instance, H1N1 influenza (A/WSN/33) viral infection results in a 

transient host transcriptional shutdown, with host RNA polymerase II gene occupancy depleted 

genome-wide.49   There has been no evidence to date for a similar pattern in coronaviruses, but they 

do have RNA-dependent RNA polymerases, and therefore might interfere with RNA transcription.  

However, for H1N1 influenza (A/WSN/33), escape occurs after several hours, when the virus switches 

to replication mode.50 Given the prolonged time-course for COVID-19 infection, it would seem 

reasonable to assume that relatively normal host transcription will be in operation in some to most 

infected cells.  

SUMMARY

In these unprecedented times, there are substantial existing resources of experimental biological data, 

currently residing unflagged in major repositories, and available for interrogation, informed by first-

hand knowledge of human physiology and pathology in the setting of COVID-19.

These indicate that for patients who fail to suppress replication of the SARS-CoV-2 virus within a few 

days, delayed consequence of essential, post-infective homeostatic responses by SARS-CoV-2-infected 

cells could account for subsequent catastrophic deteriorations, mediated by defective host responses 
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to reactive oxygen species, augmented generation of reactive oxygen species, and ROS-induced 

cellular injury.   Further examination is warranted.  
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FIGURE LEGENDS

Figure 1: The ACE2 Gene Cluster

A) Cartoon representation of the X chromosome region flanking ACE2, drawn to scale, with 

coordinates for the two human genome builds in current use, GRCh37/hg19 and Build 38/hg38. 

Discrete genes and other loci are encoded by either the plus (+) or the minus (-) strand, and are 

indicated by boxes. The four ACE2 cluster genes are denoted in darker blue, with ACE2-related 

enhancer elements indicated in orange, with major read-through RNA transcripts indicated in pink 

below: PIR-FIGF22, known also as lncVEGFD-1.229 reads from PIR exon 2 to the 3’ untranslated region 

of VEGFD, skipping the final exon of PIR and first exon of VEGFD. There is also a read-through transcript 

between CLTRN and ACE2 (AC097625.226) that skips the final exon of CLTRN and first exon of ACE2.  

B) The interacting cluster of contiguous X chromosome genes (not to scale).  Circle symbols are blue 

for protein coding genes, orange for double-elite enhancers, and purple for non-coding RNAs. Grey 

background indicates overlapping loci on current resolutions.  Further, generally weaker interactions 

have been described and are illustrated for completeness below the core cluster box. Notably 

however, CA5B is regulated differently to ACE2 (data not shown).   

Figure 2:   Conceptual Model of ACE2 homeostatic responses

Black text indicates consequences of SARS-CoV-2 binding leading to ACE2 sequestration/ 

internalisation, in addition to subsequent consequences of viral infection, and therapies.  Green text 

indicates homeostatic responses to increase synthesis of the full length ACE2 mRNA, and thus protein.  

Off target consequences are predicted to increase PIR transcription, and thus impair reactive oxygen 

species (ROS) scavenging and increase ROS as described in the text.   VEGFD consequences are 

expected to be pulmonary endothelial-specific, and additional cluster genes are not illustrated for 

clarity. 
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Figure 1: The ACE2 Gene Cluster.A) Cartoon representation of the X chromosome region  flanking ACE2, 
drawn to scale, with coordinates for the two human genome builds in current use, GRCh37/hg19 and Build 
38/hg38. Discrete genes and other loci are encoded by either the plus (+) or the minus (-) strand, and are 
indicated by boxes. The four ACE2 cluster genes are denoted in darker blue, with ACE2-related enhancer 

elements indicated in orange, with major read-through RNA transcripts indicated in pink below: PIR-FIGF,22 
known also as lncVEGFD-1.229 reads from PIR exon 2 to the 3’ untranslated region of VEGFD, skipping the 

final exon of PIR and first exon of VEGFD. There is also a read-through transcript between CLTRN and 
ACE2(AC097625.226) that skips the final exon of CLTRN and first exon of ACE2.   B) The interacting cluster 
of contiguous X chromosome genes (not to scale).  Circle symbols are blue for protein coding genes, orange 
for double-elite enhancers, and purple for non-coding RNAs. Grey background indicates overlapping loci on 

current resolutions.  Further, generally weaker interactions have been described and are illustrated for 
completeness below the core cluster box. Notably however, CA5B is regulated differently to ACE2 (data not 

shown).   
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Figure 2:   Conceptual Model of ACE2 homeostatic responses. Black text indicates consequences of 
SARS-CoV-2 binding leading to ACE2 sequestration/ internalisation, in addition to subsequent consequences 
of viral infection, and therapies.  Green text indicates homeostatic responses to increase synthesis of the full 
length ACE2 mRNA, and thus protein.  Off target consequences are predicted to increase PIR  transcription, 

and thus impair reactive oxygen species (ROS) scavenging and increase ROS as described in the text.   
 VEGFD  consequences are expected to be pulmonary endothelial-specific.  Additional cluster genes are not 

illustrated for clarity. 
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