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Generation of permanent neonatal diabetes
mellitus dogs with glucokinase point mutations

through base editing
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Quanjun Zhang'*, Jidong Mi** and Liangxue Lai'***

Dear Editor,

Permanent neonatal diabetes mellitus (PNDM) in
humans can be caused by the homozygous nullification of
glucokinase (GCK), which is a key rate-limiting enzyme in
glucose metabolism in pancreatic B cells and hepatocytes
and is considered as the “glucose sensor” for the regulation
of insulin secretion' ™. Various mouse models have been
generated through global, isoform-specific, or tissue-
specific GCK gene knockout to help understand the role
of GCK in glucose homeostasis. Mice with global homo-
zygous GCK knockout or pancreatic B-cell specific GCK
knockout presented severe hyperglycemia and died within
a few days of birth®™, even treated with insulin or glib-
enclamide’. However, patients with GCK-PNDM could
live to adulthood when treated with insulin'®. Suitable
PNDM models with homozygous GCK mutations for
mimicking the symptoms of human patients with GCK-
PNDM authentically are currently unavailable. Dogs,
which are omnivorous animals like humans, are con-
sidered as a highly valuable large animal model for human
metabolic diseases, such as diabetes''. Point mutation is
the most frequent mutation pattern associated with the
deficient expression of a gene. Previously, gene-edited
dogs with random indels at the targeted site had been
generated by using the CRISPR/Cas9 system'*'?, which
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was unsuitable for generating models of genetic disease
caused by single-nucleotide mutations. However, approa-
ches for generating point mutations in dogs have not been
reported. Here, for the first time, by utilizing newly
developing base-editing technology named BE3 system, we
attempted to generate a dog model of PNDM that con-
tained homozygous GCK point mutations.

We first validated the base editing efficiency of the
BE3 system in canine embryonic fibroblasts (CEFs) with 5
different genes (GCK, MSTN, IL2RG, RAGI, and RAG2)
and 4 different sites (GCK-1, GCK-2, GCK-3, and GCK-4)
of the same gene. BE3 system was able to mediate C-to-T
conversion within different genes and sites of CEFs effi-
ciently varying from 22.2%-56.3% (Supplementary Fig.
Sla). Both monoallelic and biallelic mutants of C-to-T
conversion were found in all the targeted sites except for
GCK-1 and GCK-3 (Supplementary Fig. Sla—c). The base
editing efficiency of a combination of 2 genes (RAGI and
RAG2), 3 genes (RAGI, RAG2, and IL2RG), and 2 sites
within the same gene (GCK-2 and GCK-3) was 37.5%,
15.0%, and 45.5% respectively (Supplementary Fig. S2a—c).

A total of 56 zygotes were collected and injected with a
mixture of BE3 mRNA and GCK-4 sgRNA, which was
located in exon 2 of the GCK gene (Fig. la). Seventeen
puppies were obtained, and four (190619, 190627, 190628,
and 190761) of them exhibited C-to-T conversion within
GCK-4 target site (Supplementary Fig. S3a). PCR ampli-
fication and sequencing results showed that the 4 positive
dogs were homozygotes with C-to-T mutation at the
target site (Supplementary Fig. S3b, c). Tissues of heart,
liver, lung, kidney, pancreas, brain, and muscle were col-
lected from 2 (190619 and 190761) dead and 1 (190627)
sacrificed PNDM dogs for further genotyping tests. The
results also showed that the biallelic mutant with C-to-T
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conversion at the target site existed in the all of the tissues
of the 3 dogs (Supplementary Fig. S3d, e). Deep sequen-
cing results showed 3 positive dogs (190619, 190627, and

190761) were homozygotes with more than 99.9% of the
sequencing reads edited at the target site in the livers and
pancreases (Fig. 1b and Supplementary Fig. S4a, b).
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Fig. 1 Generation of GCK-PNDM dogs with base editing. a The target sequences at the GCK locus. Target sequences (black), protospacer adjacent
motif (PAM) region (blue), target sites (green). b Sequence motif of livers from the GCK-PNDM dogs (190619, 190627, and 190761) and the ear punch
tissue from the chimeric dog (190628). ¢, d Blood glucose levels of WT (n = 2) and the GCK-PNDM dogs (n =4, 190619, 190627, 190628, and 190761)
from the 1st day to the 11th day after birth (c) and from the 1st week to the 27th week (d). e-g Body weights of WT (n = 2) and the GCK-PNDM dogs
(n=4, 190619, 190627, 190628, and 190761) from the 1st day of birth to the 11th day after birth (e) and from the 1st week to the 27th week (g).
Photographs of WT dog (left) and the insulin untreated GCK-PNDM dog (right: 190619) at the 5th day after birth (f). h, i Histological analysis of WT (10
d and 190 d), GCK”" + insulin (190 d), and GCK”" - insulin (7 and 11 d) dogs. H&E staining of kidney sections (top) showed the amount of mesangial
matrix and the thickness of the glomerular basement membrane (white arrow). PAS staining of liver sections for analysis of glycogen (purple color)
synthesis (h). Oil red O staining of liver sections (top) for analysis of lipid droplets (red color) accumulation. Masson’s trichrome staining (blue color) of
heart sections for analysis of myocardial fibrosis in myocardium (i). Scale bar: 80 um. j Hierarchical clustering analysis of liver cells from WT and insulin
treated GCK-PNDM dogs. Red and blue represent higher and lower gene expression levels, respectively. Data represented three biological replicates.
k Gene ontology enrichment analysis of the genes differentially expressed in biological processes between the insulin-treated GCK-PNDM and WT
dogs. P<0.05. I Bar plots of representative genes involved in the glycolytic pathway. ***P < 0.001; ns, not significant.

While the other positive dog (190628) was a chimera with
90.5% of sequencing reads modified in the genome from
ear punch tissue (Fig. 1b and Supplementary Fig. S4b). For
detection of sgRNA-dependent off-target, we selected 15
potential off-target sites (OTS1-15), which were 2 or 3
nucleotide mismatches at the target site (Supplementary
Table S1) of the 4 GCK-PNDM dogs. We performed next-
generation sequencing (NGS) to further detect the off-
target in these OTSs. The results showed that 2 potential
OTSs (OTS2 and OTS7) were found with C>T/G> A
mutations in the 4 (50%, 2/4 and 75%, 3/4, respectively)
base-edited dogs (Supplementary Fig. S4c, d), but no
other off-target mutations were detectably induced at
OTSs in GCK mutant dogs compared with the 3 WT
samples. In addition to the sgRNA-dependent DNA off-
target, sgRNA-independent DNA off-target as well as
RNA off-target of BE3 has also been reported'*'°. Next,
we sought to detect sgRNA-independent off-target by
using whole-genome sequencing (WGS) analysis. The
results showed that no sgRNA-independent off-target was
found in the PNDM dogs (Supplementary Fig. 5a—d). For
detection of RNA off-target of the PNDM dog, we ana-
lyzed the data from RNA-seq of the PNDM (190627) and
WT dogs. The results showed that there was no sig-
nificant difference in the number of de novo SNVs, indels,
and proportion of C>U/G > A at the RNA level between
the livers from 190627 and WT dogs (Supplementary Fig.
5e—g). It meant that no RNA off-target was found in dogs
at 27 weeks.

The blood glucose levels of the 3 positive dogs (190619,
190761, and 190627) were above 20 mmol/L, which were
almost 2 times higher than that of the wild type (WT)
dogs at an early age (Fig. 1c). Two of the dogs (190627 and
190628) injected with insulin daily after birth were able to
survive for a long time (Supplementary Fig. S6a). While
the other 2 cared dogs (190619 and 190761) died at 7 and
11 days after birth without insulin treatment, respectively
(Supplementary Fig. S6a). The blood glucose level in the
treated homozygous dog (190627) also constantly main-
tained high with some extend of fluctuations until the dog

was sacrificed at 27 weeks after birth (Fig. 1d). The blood
glucose level of the treated chimeric dog (190628) was
lower than that of the homozygous dogs but still exceeded
that of the WT dogs before 11 weeks after birth,
decreased gradually, and eventually decreased to normal
levels at 23 weeks after birth (Fig. 1d). The birth weights
of all the base-edited dogs did not differ from those of the
WT dogs. Two untreated homozygous dogs (190619 and
190761) suffered from daily weight loss until death (Fig.
le, ). The treated homozygous dog (190627) experienced
weight gain at a rate that was slower than the weight gain
rate of WT dogs (Fig. le, g). Similar to that of the WT
dogs, the weight of the treated chimeric dog (190628)
increased normally from the 1st to 27th week (Fig. 1g).
These results demonstrated that the GCK-PNDM dogs
had growth retardation.

Hematoxylin and eosin staining results showed that
the amount of mesangial matrix and the thickness of
the glomerular basement membrane increased in the
kidneys of untreated GCK-PNDM dogs (190619 and
190761), and no difference was observed between the
treated GCK-PNDM dog (190627) and 2 W'T dogs (Fig.
1h). No abnormal histological changes were found in
the livers and hearts (Supplementary Figs. S6b—c) of all
the 3 GCK-PNDM dogs. Periodic acid-Schiff (PAS)
staining results showed that the glycogen in the liver
and kidney of the untreated GCK-PNDM dogs (190619
and 190761) had decreased compared with those of the
WT dogs. Moreover, the treated dog (190627) had a
normal glycogen level (Fig. 1h and Supplementary Fig.
S6d). Liver sections stained with Oil red O of GCK-
PNDM dogs (190619 and 190761) showed the presence
of numerous lipid droplets within livers, whereas only a
few lipid droplets were found in the livers of the
insulin-treated GCK-PNDM dog (190627) and WT
dogs (Fig. 1i). Fibrosis was observed in the myocardium
of treated and untreated GCK-PNDM dogs by Masson’s
trichrome staining, and the abnormal phenotype of the
untreated dogs was more severe than that of the treated
one (Fig. 1i).
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Bulk RNA-seq analysis was performed to analyze the
status of glucose and lipid metabolism in the liver of a
GCK-PNDM dog (190627). Differential expression ana-
lysis revealed that 2362 and 2606 genes were upregulated
and downregulated, respectively (Supplementary Fig. S7a)
in the GCK-PNDM dog relative to that in the WT dog.
The hierarchical clustering of the upregulated and
downregulated genes was shown (Fig. 1j). Gene Ontology
analysis revealed that the differentially expressed genes
were enriched in biological processes such as lipid
metabolism, lipid transport, fatty acid metabolism, and
acyl-CoA metabolism (Fig. 1k). Genes related to a fatty
acid or lipid metabolism were upregulated and genes
related to fatty acids or lipids synthesis were down-
regulated (Supplementary Fig. S7b, c). Genes (PFKM and
PKM) involved in the glycolytic pathway downregulated,
but, the expression of the GCK was upregulated in the
GCK-PNDM dog (Fig. 11). However, genes involved in the
glycogen metabolic process (Supplementary Fig. S7d) and
TCA cycle (Supplementary Fig. S7e) in the GCK-PNDM
dog were similar to those in the WT dogs. These results
demonstrated that glucose metabolism could be main-
tained at a normal level in the GCK-PNDM dog after
long-term insulin injection.

In summary, we first used the BE3 system to generate
GCK-PNDM dogs with homozygous point mutations,
which exhibited similar features to those of the GCK-PNDM
patients. These dogs will provide an ideal animal model for
the study of biological mechanisms and the development of
novel therapeutic methods for GCK-PNDM.
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