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Abstract The basal ganglia are known to be involved in the planning, execution and control of

gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control

signal for force and to decode gripping force based on local field potential (LFP) activities recorded

from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We

found that STN LFP activities in the gamma (55–90 Hz) and beta (13–30m Hz) bands were most

informative about gripping force, and that a first order dynamic linear model with these STN LFP

features as inputs can be used to decode the temporal profile of gripping force. Our results

enhance the understanding of how the basal ganglia control gripping force, and also suggest that

deep brain LFPs could potentially be used to decode movement parameters related to force and

movement vigour for the development of advanced human-machine interfaces.

DOI: 10.7554/eLife.19089.001

Introduction
Accurate control of grip force is essential in the manipulation of objects in everyday life. Knowledge

of how gripping force is encoded in the brain would facilitate the design and control of brain

machine interfaces (BMI) driving neuroprosthetics to help physically impaired patients. However, the

results of studies aimed to decode force based on cortical neural activity are still far from consistent

and satisfactory, and no BMI user has yet achieved manipulation of the force generated by a robotic

hand (Velliste et al., 2008; Collinger et al., 2013), or the control of the simulated grasp force used

for a virtual object (Bensmaia and Miller, 2014).

Motor areas of the basal ganglia have long been associated with the scaling of motor vigour,

measured in terms of the amplitude and speed of a movement or gripping force, although this is

certainly not likely to be their exclusive function (DeLong and Wichmann, 2010). Neuronal record-

ings in monkeys and imaging studies in healthy humans have suggested that the basal ganglia play

an important role in the control of the scaling of motor responses (DeLong et al., 1984; Turner and

Anderson, 1997; Spraker et al., 2007; Vaillancourt et al., 2007). Direct recordings from basal gan-

glia targets in patients suggest that changes in frequency specific activities in the local field potential

(LFP) contribute to the selection of effort or force levels for voluntary movements. For example, the

power over the gamma band (60–80 Hz) in the LFP in the globus pallidus correlates with the move-

ment amplitude and velocity of the contralateral hand of patients with cranial dystonia
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(Brücke et al., 2012). Similar correlations have been noted in patients with Parkinson’s disease

between movement speed and the power in the gamma band in the LFP picked up from the STN

(Joundi et al., 2012). Our previous studies also showed that suppression in the beta band (13–30

Hz) and power increase in the gamma band of the STN LFP may correlate with forces or efforts

made over the lower and higher effort ranges, respectively, in a manner independent from the effec-

tor that was activated (Tan et al., 2013, 2015). These results suggest that the signals from basal

ganglia may serve as a central signal indexing motor effort, which in turn modulates force in manual

grips. However, most previous studies are based on static linear correlations and averaged data; the

dynamic relationship between activities of different frequencies in the basal ganglia LFP and gener-

ated force, and whether this relationship can be used to decode gripping force based on basal gan-

glia LFP signals has not been investigated on a trial by trial basis.

The aim of the current study was to decode gripping force profiles from LFPs recorded in the

STN. We hypothesized that beta and gamma band activities will be the most informative features in

predicting the force profile generated by the contralateral hand, and that a simple first order linear

dynamic model is sufficient to capture the relationship between STN LFP features and generated

force. Our results suggest that reciprocal changes in synchronised oscillatory population activity in

different frequency ranges provide potential control signals for the motor plant, the action of which

can be modelled as a first order linear dynamical system. At the same time our results raise the pos-

sibility of using the LFP signal recorded from deep brain structures to provide stable and high-per-

formance control signals for BMI driven neuroprosthetic grasping in paralysed patients.

Results
In the core study, patients with idiopathic Parkinson’s disease who underwent implantation of DBS

electrodes into the STN were asked to grip a dynamometer with different effort levels. Subjects

were instructed to respond ‘in their own time’. For each patient, both hands were tested in separate

sessions, with 31 ± 2 grips per hand. Local field potentials (LFP) from the DBS electrodes and the

gripping force measured by the dynamometer were simultaneously recorded (see details in Materials

and methods). Figure 1A shows the measured force trajectory from one typical subject.

eLife digest The basal ganglia are a group of structures deep within the brain. Alongside its

many other roles, it is thought to be able to control the vigour of movements, including how quickly

we move and how much force we use to grip objects. Some of the best evidence for this comes

from patients with Parkinson’s disease, who show abnormal activity of the basal ganglia. These

patients move more slowly than healthy individuals and often struggle to grip objects with desired

force, making it difficult to perform everyday tasks.

Inserting electrodes into the brain and using them to electrically stimulate the basal ganglia is

one of the most effective treatments for severe Parkinson’s disease. To examine the relationship

between activity in the basal ganglia and grip strength, Tan et al. studied activity in the basal

ganglia of patients as the individuals attempted to grip an object. On each trial specific types of

coordinated activity within the basal ganglia predicted when movements would start and how much

force the person would use.

By constructing a mathematical model of the data, Tan et al. showed that the coordinated

activity of cells within the basal ganglia indirectly controls motor vigour. The model also suggested

how this process might go wrong in Parkinson’s disease. Activity in the basal ganglia predicts grip

strength with such accuracy that it might even be possible to exploit this relationship to help

individuals with paralysis. If imagining a movement triggers the same basal ganglia activity as

performing it, patients could in principle use this activity to control robotic devices rather than limbs.

To test this idea, future work should examine whether the features of basal ganglia activity can

drive a Brain Machine Interface for robotic control in real-time. If so, the next question is whether

signals from the basal ganglia are sufficient to control robotic devices, or if signals from other parts

of the brain are needed too.

DOI: 10.7554/eLife.19089.002
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Figure 1B shows the average power spectrum for the group of recordings (n = 9) with significant

movement-related modulation in both beta and gamma bands during gripping. There is a move-

ment related gamma increase and beta power suppression in line with previous reports

(Cassidy et al., 2002). This pattern is compared to the other group (n = 9) in which no significant

movement-related modulation was observed in either the beta or gamma band in Figure 1C. In the

latter group the mean spectrum demonstrated increased activity (synchronisation) at low frequen-

cies, extending to 25 Hz, especially during the force onset phase. A possible cause for this low fre-

quency power increase at the time of movement onset, which then contaminated the beta band, is

movement related artefact. The latter is overshadowed by beta band desynchronization in the

recordings comprising Figure 1B.

Figure 1D and E show the normalized force trajectories with different self-rated effort (SRE) lev-

els averaged across hands in the two groups. Figure 1G and H show the trajectories of force yank

(the differentiation of force against time) with different SRE for the two groups. In the first group

which showed modulation in the beta and gamma band, the average force during the holding phase

(1.0–2.0 s after cue) and the peak force yank in the force initialisation phase scaled with SRE in all

individual hands. The Spearman correlation coefficient between stable force and SRE ranged

between 0.6454 and 0.9728 (median value = 0.9409, Figure 1F); and the correlation coefficient

between peak force yank and SRE ranged between 0.4514 and 0.9341 (median value = 0.8688,

Figure 1I). In the second group, the stable force did not scale with SRE, with abnormally increased

force and force yank at lower effort levels, compared with the first group, as shown in Figure 1E

and H. The correlation coefficient between the stable force and self-rated effort in the second group

(ranged between 0.0258 and 0.8334, median value = 0.6023) was significantly lower than in the first

group (t(16)=5.386, p<0.0001 with un-paired t-test applied to Fisher transformed r values,

Figure 1F). The correlation coefficient between the peak force yank and SRE in the second group

(ranged between �0.4992 and 0.6944, median value = 0.3791) was also significantly lower (t(16)

=4.977, p=0.0001 with un-paired t-test applied to Fisher transformed r values). This difference in the

scaling ability may account for some variations we observed in LFP reactivity. Thus, patients in the

second group exhibited impairment in the scaling of force with effort. The lack of beta and gamma

reactivity during gripping in this group would be consistent with a role for these activities in the cod-

ing of effort in to force. The deficit in the scaling of force with effort may be due to disease related

differences between the groups, or due to the temporary post-surgical stun effect which may com-

promise STN function in some patients.

The first group of 9 STN sides showing significant movement-related modulations in both bands

were selected for further analysis as (1) this group showed normal scaling of force and force yank

with effort; (2) movement-related modulations were presumed to indicate recordings made in or

near the dorsal STN; (3) significant movement-related modulations were taken as evidence of rela-

tively physiological functioning given that the motor reactivity of the two rhythms is increased by

dopaminergic medication (Anzak et al., 2012), and (4) lack of movement related modulations might

indicate a temporary surgical stun effect and temporary damage to the STN (Chen et al., 2006) or

targeting variance. No other clinical details of the patients (shown in Table 1) explain the difference

between the two groups.

Force decoding based on features from STNr LFP and a linear dynamic
model
Our main interest was the initialisation, development and the average force during the ‘holding

phase’ of each grip; therefore we focused on the period of time from one second before the cue to

2.8 s after the cue (before force releasing) for decoding. The force trajectory of each individual trial

of each subject was normalized against the average maximal force that subject achieved in their

maximal effort trials. We hypothesised that the relationship between LFP features and generated

grip force (the transfer function) could be captured by a first order linear dynamic model

(Equation 1):

Force¼ LFP �
Kp

Tp � sþ 1
e�Td �s (1)

Where Kp is the steady state proportional gain, Tp is the time constant of the first order system
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Figure 1. Force-effort scaling and spectra of average power changes relative to pre-movement baseline for two groups of electrodes. (A) Trajectory of

measured force from one exemplar subject. (B) From one group of electrodes (n = 9), a significant reduction of power in the beta band (13–30 Hz) and

increase in power in the broad gamma band (55–90 Hz) was observed during gripping. (C) In another group of electrodes (n = 9), significant

simultaneous modulation was absent in the beta and gamma band with movement, and there was instead an increased power across the low frequency

Figure 1 continued on next page
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which is a measure of how fast the force output responds to brain signal changes, and Td is the time

delay between the brain control signal (LFP) and the measured force which describes the latency

between the timing of brain signal changes and force output onset. Different models with different

assumptions about what is the effective force control feature from the STNr (STN region) LFP and

how different features are combined to encode force were tested (see Table 2 and details in Materi-

als and methods).

Cross-validation, within each STN/contralateral hand as well as across different patient groups,

was used to evaluate the generalisability and decoding performance of the proposed models for

predicting gripping force (see details in Materials and methods). Within each STN/contralateral

hand, after the model parameters had been fitted based on training data, several key variables were

quantified to evaluate the performance of the model in predicting force in another set of test data

recorded from the same hand: (1) the correlation coefficient between the predicted force and mea-

sured force (WithinTrialR), which can be used to evaluate the prediction accuracy of the force devel-

opment and force trajectory within each individual trial. (2) The root mean square error, which

quantifies the average distance between the prediction and actual measurements normalized by the

maximal measured value (nRMSE). (3) The correlation coefficient between the average predicted

force at the holding phase (over 1–2 s after cue onset, when the gripping force was relatively stable)

and the measured force at the holding phase across different trials (StableFrcR). This was used to

evaluate the prediction accuracy of the stable target force across different effort levels. (4) The dif-

ference between the timing of the predicted force onset and the timing of the measured force onset

(DifRT).

Decoding the average force over multiple trials
The performances of different models in predicting force averaged across multiple trials using differ-

ent STN features (see Materials and methods for details) were first evaluated. To achieve this, grip-

ping force and LFPs measured from the contralateral STNr were grouped into low effort trials (with

self-reported effort <= 5, trial number = 15±1) and high effort trials (with self-reported effort > 5,

trial number = 14±1). Average STNr LFP features and force trajectories were calculated for each

effort condition. The STNr LFP features and force for one effort condition were used to estimate the

model parameters (model fitting), and the models were then used to predict force for the other

effort condition (model testing). The within-trial correlation coefficients between the predicted force

and measured force (WithinR) and the nRMSE of the predicted force from different models during

model testing are shown in Figure 2A and B. There was no significant difference consistent across

the STNs between the three models using beta and gamma ERS as model inputs (Models 1–3) in

the predictive performance in terms of either WithinR or nRMSE. These three models with both beta

and gamma activity as inputs performed better than models in which extra information about alpha

activity was also included (Models 4,5), or models with activities from a single frequency band as

model input only (Models 6–8). Figure 2C shows the BIC values combining the force prediction for

low effort and high effort for all models. One-way repeated ANOVA identified a significant effect of

models in the BIC (F(7,56)=11.777, p<0.001). Paired t-tests showed that Model 2 was significantly

better, in terms of BIC, than Models 4–8 after FDR multiple comparison correction: (t(8)=�3.63,

p=0.007 compared with Model 4; t(8)=�4.950, p=0.001 compared with Model 5; t(8)=�9.347,

Figure 1 continued

band during gripping. Trajectories of force (D) and force yank (G) for Group one show that the stable force during the holding phase (1–2 s after cue) as

well as the peak force yank in the force initialisation phase scaled well with self-rated effort (SRE). In group 2, the stable force (E) and force yank (H) did

not scale with effort as well as Group 1. Group two had significantly lower correlation coefficients between stable force and SRE (F) and between

the peak force yank and SRE (I) compared with group 1 (p<0.0001), indicating some impairment in the scaling of force with effort. Time 0 indicates the

onset of the cue to start a grip in B–E, G and H. Note that data from three electrodes are excluded. Of these, two had significant modulation in the

beta band but not in the gamma band, and one had significant modulation in the gamma band, but not in the beta band.

DOI: 10.7554/eLife.19089.003

The following source data is available for figure 1:

Source data 1. The Matlab data file containing source data related to Figure 1.

DOI: 10.7554/eLife.19089.004
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p<0.001 compared with Model 6; t(8)=�5.757, p<0.001 compared with Model 7; t(8)=�3.675,

p=0.007 compared with Model 8).

Figure 3 shows how Model 2 with beta and gamma having different linear gains can be used to

predict the force generated by the contralateral hand for individual STNs. In Figure 3A, data aver-

aged across low effort trials (with self-reported effort <= 5) were used for the estimation of model

parameters (model fitting). The predictive performance of the model was evaluated on the data

averaged across high effort trials for the same STN (with self-reported effort > 5, Figure 3B).

Figure 3C shows the fitting and predictive performance of the model on data from the other 8 STNr

electrodes in which consistent movement-related power modulations in both the beta and the

gamma band were observed. The correlation coefficient between the predicted force and the mea-

sured force across all STNs was between 0.902 and 0.987 with a median value of 0.952 for high

effort force (data during low effort used for model parameter estimation) and between 0.921 and

0.992 with a median value of 0.969 for low effort force (data during high effort used for model

parameter estimation). The nRMSE of the prediction force was between 5.60% and 28.07% with

median value of 16.5% for high effort levels and between 10.5% and 23.8% with median value of

16.4% for low effort levels. The differences in reaction times (DifRT) between the predicted force

and the measured force were 11 ± 27 ms for high effort levels and �26 ± 31 ms for low effort levels.

These were not significantly different from zero (t = 1.25, p=0.247 for high effort levels and t = 1.03,

p=0.333 for low effort levels, one-sampled t-test compared to zero). The estimated Td ranged

between 0 and 264 ms for low effort trials and ranged from 0 and 277 ms for high effort trials across

STNs. Together, the results demonstrated that a simple first order linear dynamic model with beta
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Figure 2. Force prediction performances of different models evaluated in terms of within-trial correlation (A), RMSE (B) and BIC (C). The filled dots and

shaded bars show the median and range across all STNs; the open circles and stars show the data for each individual STN. The red dots and bars show

performance in predicting high effort forces, while using data from low effort trials for model fitting; the blue dots and bars show performance in

predicting low effort forces, while using data from high effort trials for model fitting. (C) The total BIC values combing the force predictions for low

effort and high effort for all tested models. The filled dots and shaded bars show the median and range across all STNs; the stars show the data for

each individual STN (some overlap). Models 1–3 use beta and gamma ERS as model inputs; Models 4–5 use activities from all three frequency bands

(alpha, beta and gamma) as model inputs; Models 6–8 use activities from a single frequency band (alpha, beta and gamma, respectively) as model

inputs.

DOI: 10.7554/eLife.19089.007

The following source data is available for figure 2:

Source data 1. The excel data file related to Figures 2 and 6.

DOI: 10.7554/eLife.19089.008
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and gamma as inputs with different linear gains can be used to describe the relationship between

STNr activity change and measured force; and that, in addition, the model with parameters derived

from one set of data can be used to predict force exerted at other effort levels in the same subject.

Decoding gripping force of individual trials and the laterality in force
decoding
Figure 4 shows the performance of the model with beta and gamma power change in the STNr LFP

as inputs (Model 2) in predicting contralateral gripping force in individual trials for one exemplar

STN. For half of all the individual trials (n = 21) recorded from this STN and contralateral hand, the

within-trial correlation coefficient between the predicted force and measured force was equal or

larger than 0.78. The actual measured stable force during the holding phase and the predicted sta-

ble force were then quantified for each individual trial (Figure 4D). Figure 4D shows that the stable

force during the holding phase varied from zero to 100% of the maximal voluntary force across all

the trials. Linear correlation was applied to the actual measured stable force during the holding

phase and the predicted stable force of all individual trials. This predicted stable force correlated

with the measured stable force (n = 21, r = 0.815, p<0.001), suggesting that the STNr LFP in con-

junction with the dynamic model can predict both the force trajectory in individual trials and the sta-

ble force achieved across trials with different effort. The line of best fit between the predicted stable

force and measured stable force was y = 0.96x + 2.4. The regression gradient close to unity suggests

that the prediction matches well with the measurement with no systematic overestimation or
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Figure 3. Fitting and predicting performance of the model for predicting force averaged across multiple trials. (A) The fitted model based on data from

low effort trials for one exemplar STN and the contralateral hand. (B) The fitted model was used to predict the average force for high effort trials for the

same STN and contralateral hand. (C) The fitted (dashed lines) and predicted force were compared against the measured force for the other 8 STNs in

which consistent movement-related modulations in both beta and gamma bands were observed. Predicted force traces for high effort trials were

derived from the model fitted to data from low effort trials and vice versa. Time 0 indicates the onset of the cue to start a grip in all plots.

DOI: 10.7554/eLife.19089.009

The following source data is available for figure 3:

Source data 1. The Matlab data file containing source data related to Figure 3.

DOI: 10.7554/eLife.19089.010

Tan et al. eLife 2016;5:e19089. DOI: 10.7554/eLife.19089 7 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.19089.009
http://dx.doi.org/10.7554/eLife.19089.010
http://dx.doi.org/10.7554/eLife.19089


underestimation. During one trial for this patient, there is a force increase predicted from the STNr

LFP, but there is no actual measured force change in the dynamometer (indicated by ** in

Figure 4B). This may be due to changes in the STNr LFP signal following the cue without the actual

force change being registered in the dynamometer, as might arise when movements of the limb did

not involve the dynamometer.

Considering all the STNs in which significant movement-related modulations were observed in

both beta and gamma bands (N = 9), the correlation between the predicted stable force and mea-

sured stable force across trials ranged from 0.448 to 0.913 for the contralateral hand when Model 2

was used, with the regression gradient between the predicted stable force and measured stable

force ranging from 0.91 to 1.12 (not significantly different from unity across STNs based on one-sam-

pled T-test, p=0.431). There was no significant difference between the three models which took into

account both beta and gamma activities (F(2,16)=0.207, p=0.815, Figure 5A). In addition, the distri-

bution of the within-trial correlation coefficients across all trials was not significantly different

between Model 2 and Model 1 (ks-test p=0.2850), Model 1 and Model 3 (ks-test p=0.9584) or
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Figure 4. Predicting force profile of individual grips based on beta and gamma activities from STN LFP (one exemplar subject). (A) Time-evolving

power spectrum of the bipolar STN LFP channel used for decoding force. (B) The predicted force (in red) compared with the measured force (in black).

** indicates the trial where STN LFP predicted increased force but with no measured force from the dynamometer. Grips are concatenated in A and B.

(C) Distribution of the within-trial correlation coefficient (WithinR) between predicted force and measured force, with the dashed blue line the median

value of the WithinR for all trials. (D) Scatter plot between the predicted stable force (average force during the second of holding phase) and measured

stable force for all tested trials. The correlation coefficient between the predicted and measured stable force across trials was 0.815 for this subject. The

regression slope of 0.96, which is close to 1, shows that there is no systematic under-estimation. The black lines show the regression line and 95%

confidence interval.

DOI: 10.7554/eLife.19089.011

The following source data is available for figure 4:

Source data 1. The Matlab data file containing source data related to Figure 4.

DOI: 10.7554/eLife.19089.012
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Model 2 and Model 3 (ks-test p=0.9228). For convenience therefore, Model 2 was taken as repre-

sentative of Models 1–3. Considering all the individual trials from the 9 STNr, the median value for

the within-trial correlation coefficient was 0.732 for Model 2 (Figure 5B and C). There were around

13% of trials during which the correlation between the measured force and the predicted force were

negative, suggesting a failure in predicting force trajectory.

The predictive performance of the STNr LFP for the force generated by the ipsilateral hand was

also evaluated. The cross-trial correlations between the predicted stable force and measured stable

were significantly lower for the ipsilateral hand than for the contralateral hand (F(2,16)=10.629,

p=0.012). The distributions of WithinR for ipsilateral force prediction were significantly different from

that for the contralateral force prediction (ks-test p<0.001 no matter whether Model 1, Model 2 or

Model 3 was used), indicating that the STNr LFP was more informative in predicting force generated
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Figure 5. STN LFP features predict gripping force profile generated by the contralateral hand. (A) The correlation

coefficients between the measured stable force and the predicted stable force were higher for the force

generated by the contralateral hand than that by the ipsilateral hand. There was no significant difference when

different models based on both beta and gamma activities from STN LFP were used. The dots and bars show the

median value and the range of values for different STNs. ** indicate a significant difference in the prediction

performance when the LFPs from the ipsilateral STN was used for decoding. (B) The histogram of the within-trial

correlation coefficients between predicted force and measured force (WithinR) for the contralateral hand

considering all the trials and all the STNs. (C) Cumulative distribution function (CDF) of the WithinR for the force

generated by the contralateral hand (solid lines) and the ipsilateral hand (dashed lines). The CDF indicates the

probability that WinthinR has a value less than or equal to a certain value on the x-axis. Data presented in this

figure are for all the STNs in which significant modulations were observed in both the beta band and gamma

band.

DOI: 10.7554/eLife.19089.013

The following source data is available for figure 5:

Source data 1. The Matlab data file containing source data related to Figure 5.

DOI: 10.7554/eLife.19089.014
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by the contralateral than the ipsilateral hand. However, the degree of lateralisation could have been

underestimated due to the potential presence of mirror movements, even though we asked patients

to avoid these and in half those recordings used for decoding we also had bilateral upper limb EMG

recordings.

Factors affecting the decoding performance of the STNr LFP
Figure 6 shows how the performance of force prediction based on the STNr LFP changes with

movement related reactivity in the gamma band and beta band. Here we considered all the STNr

with significant movement-related modulations, whether either in one or other, or both frequency

bands of interest (N = 12). The median values of the within-trial correlation coefficients and stable

force correlation coefficients increased with the average movement related synchronisation in the

gamma band, with an exponential model y ¼ a � e�bx þ k explaining 75.7% (p<0.001) of the variance

in WithinR and 88.1% (p<0.001) of the variance in StableR across STNs. There was also a trend for

better prediction of force with increasing movement related beta desynchronization, but linear

regression fitting was not significant for either WithinR or StableR. If we assume that movement-

related synchronisation in gamma activity upon gripping is a good proxy for proximity to the motor

region of the STN (and perhaps the upper limb representation within it) then these findings suggest

that the electrode has to be very near to this region if recorded activity is to have a decent prospect

of force prediction. This assumption was borne out by the fact that the movement-related synchroni-

sation in gamma activity dropped by 71 ± 7.7% from the bipolar channel showing the most move-

ment-related modulation to the average modulation in the remaining two bipolar channels. This

drop was not so acute, 59 ± 7.9%, for movement related modulation in the beta band, which also

only showed a trend for better prediction of force as movement related modulation in this band

increased. Finally, there was a lack of significant correlation between the accuracy of the prediction

of force and baseline beta (Spearman r = 0.468, p=0.13 for WithinR; Spearman r = 0.363, p=0.25 for

StableR) or gamma activity (Spearman r = 0.281, p=0.37 for WithinR; Spearman r = 0.273, p=0.39

for StableR) measured during rest across subjects, suggesting that it is the reactivity of the power

changes during gripping that is important for prediction, perhaps because it is more specific for the

corresponding motor representation.

Cross validation of the force prediction models in another independent
patient group
Finally, the first order dynamic model with beta and gamma power changes as inputs (Model 2) was

used to predict the gripping force from individual trials in an independent patient group that per-

formed a different, but related, paradigm. Ten patients were recorded in this study and were asked

to grip as fast and as strongly as they could in each trial in response to an external cue. Twenty trials

were collected for each hand when the patients were on their normal dopaminergic medication.

Details of patient information and experimental paradigm were previously reported (Anzak et al.,

2012). The average movement related power change in the STN LFP activities and results of force

prediction in this patient group are shown in Figure 7. The median correlation coefficient between

predicted force and measured force for individual trials (median WithinR) ranged between 0.3848

and 0.9421 for the 20 STNs and contralateral hand (Figure 7B). Considering all the 397 individual tri-

als across all STNs, more than 50% of the trials had WithinR more than 0.7859 (Figure 7C and E).

We also found that incorporating alpha activity (Model 4) improved the force prediction accuracy

for maximal effort gripping in this patient group. When Model 4 was used, the median WithinR

ranged between 0.6731 and 0.9625 across all STNs, and more than 50% of all individual trials had

WithinR more than 0.8699. BIC analysis showed that Model 4 (BIC = 2116.2±135.7) was significantly

better than Model 2 (BIC = 1873.0±110.3) for this patient group performing maximal effort gripping

(DBIC = 243.3±95.9, t(19)=2.5369, p=0.020 comparing the BIC values, Figure 7D).

Discussion
Here we demonstrate that the LFP signals recorded from the STNr, which is a target of deep brain

stimulation (DBS) for movement disorders such as the Parkinson’s disease, can be used to decode

the gripping force made by the contralateral hand. This is consistent with an earlier study which

recorded neuronal ensemble activities from the STN in patients with Parkinson’s disease, and which
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showed that a large population of STN neurons were modulated by gripping force (Patil et al.,

2004). Moreover, here we show that a simple first order linear dynamic model with the frequency-

specific power change from the STN LFP as inputs is sufficient to capture the relationship between

LFP signals and generated force, and can be used to decode the temporal profile of gripping force.

This extends the earlier observation that frequency-specific LFP activities in the STN correlate with

force-related variables in manual grips (Anzak et al., 2012; Tan et al., 2013); and that beta and

gamma activities can be considered complementary non-linear correlates of force in gripping, and

when combined, afford a measure that linearly correlates with force across all effort levels. Com-

pared to other more data-driven methods based on Wiener filter for decoding force (Flint et al.,

2014), the first order linear dynamic model proposed here simulates how the musculoskeletal plant

responds to the control signal from the brain. This offers more insight in to how the basal ganglia

encodes gripping force, and provides a framework to further investigate and explain the pathophysi-

ology of motor impairment in Parkinson’s disease. One further difference between the model pro-

posed here and the Wiener filter based decoding algorithm is that the present model describes how

the output from the musculoskeletal plant, i.e. the generated force, responds to the instantaneous

change in the control input from the brain. This may lead to more noisy prediction in the plant out-

put, but allows for fast behavioural reactivity in the face of movement perturbations, and therefore

may represent a biologically more relevant control strategy.
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Figure 6. Factors affecting the gripping force prediction performance. The median values of the WithinR (A) and stable force correlation coefficients (B)

increased with the average movement- related modulation in the gamma band. Each dot is the data for one STN and the blue line shows the

exponential fit of the data (y ¼ a � e�bx þ k, p<0.001 for the fitting). The median values of the WithinR (C) and stable force correlation coefficients (D)

show a trend of increasing with average movement related desynchronization in the beta band. The blue lines show a linear fitting, but the fits were not

significant. In this Figure, we consider all the STNr with significant movement-related modulations, whether either in one or other, or both frequency

bands of interest (N = 12).

DOI: 10.7554/eLife.19089.015

Tan et al. eLife 2016;5:e19089. DOI: 10.7554/eLife.19089 11 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.19089.015
http://dx.doi.org/10.7554/eLife.19089


Physiological implications: gripping force representation in STN LFPs
When gripping was performed over a range of efforts we found that most information about the

gripping force profile was contained in the beta and gamma bands in the STN LFP. The rich informa-

tion in the gamma band was consistent with prior studies of grasp decoding using ECoG from

human motor cortex (Flint et al., 2012, 2014; Pistohl et al., 2012). Changes in beta activity also

contributed to the prediction of the force profile and inclusion of beta activity improved the encod-

ing accuracy. This is consistent with our previous finding that beta desynchronization can encode

gripping force, especially at the low effort levels (Tan et al., 2013, 2015). It is unlikely that

the predictive power of activities in the beta and gamma band was related to contamination by

movement artefacts as we used bipolar LFPs for the decoding in which any common artefact is

removed through common mode rejection. In addition, we observed increased activity in the low

frequency (delta and alpha bands), but features extracted from these frequency bands deteriorated

the decoding of force during our core paradigm, even though separate parameters in a first order

linear model were estimated for the low frequency activities. This contrasts with previous research

which showed that the local motor potential and delta activity (0–4 Hz) in the LFP from the hand

area of the primary motor cortex contains information about muscle activity (Flint et al., 2012) and

pinching force (Flint et al., 2014).
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Figure 7. Validation of the models for force prediction on an independent patient group during maximal effort gripping. (A) Average power change in

the STN LFP activity associated with the gripping movement. The power change is relative to the average over a 1 s period pre-cue. Time 0 is the

timing of cue onset. (B) Median WithinR for individual STN and contralateral hands, * indicates data for each individual STN and contralateral hand. (C)

Histogram and (E) cumulative distribution function (CDF) of the WithinR for all the 397 individual trials across all the 20 STNs. (D) BIC analysis showed

that Model 4 considering alpha, beta and gamma power changes significantly improved force prediction compared to Model 2 during maximal effort

gripping. * indicates p<0.05 using a paired t-test.

DOI: 10.7554/eLife.19089.016

The following source data is available for figure 7:

Source data 1. The Matlab data file containing source data related to Figure 7 (data from an independent patient group on a maximal effort gripping

paradigm).

DOI: 10.7554/eLife.19089.017
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Our first order linear dynamic model was cross validated in an independent patient cohort in a

paradigm in which patients were asked to grip as fast and hard as they could. In this case, though,

the additional incorporation of theta/alpha activity further improved the accuracy and reliability of

the force prediction. This may relate to the focus on maximal voluntary contractions and their execu-

tion as fast as possible, placing additional attentional demands on the participants. Oscillatory activ-

ity in the theta/alpha range may be involved in attentional mechanisms (for review see Palva and

Palva, 2007). In particular, alpha activity (7–13 Hz) in the subthalamic nucleus of patients with Parkin-

son’s disease is coherent with parieto-temporal cortical activity in a circuit that has been proposed

to subserve attentional functions (Hirschmann et al., 2011; Litvak et al., 2011). Another consider-

ation is the potential for the predictive power of low frequency activities to be related to contamina-

tion by movement artefacts secondary to movement overflow during maximal contractions.

Taken as a whole our results suggest that reciprocal changes in synchronised oscillatory activity in

the STN can potentially provide control signals for the motor plant. In line with this is the impaired

effort scaling in subjects lacking beta and gamma related motor reactivity in the STN LFP. We specu-

late that the motor plant may behave as a first order linear dynamical system translating a basal gan-

glia effort signal to force for a given effector. The present analyses allow quantitative assessment of

the importance of such a simple transfer function model of basal ganglia-motor function in terms of

its remarkable ability to predict both the pattern with which force is developed and the static force

achieved on a single trial basis. Note that although the prediction is being used here in terms of its

statistical meaning of accounting for the variance in a second signal, it also satisfies the physiological

implications of this term in that changes in the STN LFP preceded changes in the measured force by

about 200–300 ms. Our quantitative approach also allowed us to demonstrate that effort encoding

is relatively lateralised in the basal ganglia.

Implications for motor impairment in Parkinson’s disease
Patients with Parkinson’s disease have been shown to have attenuated power modulation in both

the beta band (Doyle et al., 2005; Devos and Defebvre, 2006; Androulidakis et al., 2007;

Anzak et al., 2012) and the gamma band (Androulidakis et al., 2007) during movement initializa-

tion and when a constant force is meant to be sustained (Tan et al., 2013) when off dopaminergic

medication. Such a diminished range of power modulation in the beta and gamma bands during

movement may restrict the dynamic range of the coding of force in gripping in Parkinson’s disease.

This may impair the force generation, and thereby cause bradykinesia, hypokinesia and weak move-

ments when off compared to when on medication, presuming that the relationship between the STN

force-encoding signal and generated force remains fixed across drug states (Figure 8). This is consis-

tent with previous observations that untreated PD patients produce normal muscle activation pat-

terns, but that muscle activity is not adequately scaled to produce the required force

(Berardelli et al., 1986; Turner and Desmurget, 2010), PD patients are weaker off dopaminergic

medication or DBS (Corcos et al., 1996; Alberts et al., 2004) and that PD patients show an

increased probability of selecting slow movement speeds (Mazzoni et al., 2007). On the other

hand, if the range of the maximal force to be achieved is to be kept similar to normal when off medi-

cation, the scale between the STN force-encoding signal and gripping force will be steeper when

untreated (as indicated by Figure 8B). This will lead to abnormally high grip forces in Parkinsonian

patients, as observed when they are asked to lift and hold an object (Fellows et al., 1998).

Increased force scaling can also lead to the more coarse control of force and difficulty in finely tuning

generated force. This is consistent with abnormally increased gripping force observed in precision

grasping movements in Parkinson’s disease (Wenzelburger et al., 2002).

Subcortical LFP signals for BMI
Our findings suggest that the STN LFP could provide a high-performance control signal for BMI

driven neuroprosthetic grasping in paralysed patients, leveraging advances in surgery for deep brain

stimulation which has now become a relatively safe procedure (Larson, 2014). Surgical subcortical

targets, such as the STN and globus pallidus (GPi), are involved in motor planning and execution.

Activities from STN and GPi have been shown to correlate with movement parameters such as move-

ment amplitude and speed (Brücke et al., 2012; Joundi et al., 2012), and are also modulated by

movement intention (Kühn et al., 2006). Basal ganglia output has been theorized to regulate
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movement gain in healthy motor control, and can contain important information about the motor

vigour (Shadmehr and Krakauer, 2008; Turner and Desmurget, 2010). Recordings of STN LFP sig-

nals have been shown to be stable over months using an implanted amplifier (Quinn et al., 2015;

Neumann et al., 2016), and the signals are similar at re-operation several years later

(Giannicola et al., 2012). It is also possible that the predictive potential of the STN LFP might be fur-

ther improved in patients without Parkinson’s disease, as dopamine increases the reactivity of beta

and gamma activities around the time of movement (Doyle et al., 2005; Androulidakis et al.,

2007). Moreover the reliability of predictions was dependent on the relative scale of movement-

related power changes in the gamma band which could be improved by refinements in electrode

design and targeting, perhaps using this reactivity to select the optimum implantation target. There-

fore, LFP signals recorded from the basal ganglia have the potential to provide stable and high-per-

formance BMI input signals for the control of neuroprosthetic devices in paralysed patients,

complementary or alternative to spikes or ECoG signals recorded from the cortex. In this regard, it

is important to note that some LFP reactivity is retained when movements are imagined rather than

actioned (Kühn et al., 2006), suggesting that peripheral afferents may not be necessary for the beta

suppression and gamma increases tracked here.

Nevertheless, several critical issues need to be addressed before neuroprosthetic control by STN

LFPs can be considered for implementation in BMIs. Any application is predicated on the assumption

that the spectral reactivity demonstrated in the STN of treated PD patients is more-or-less preserved

in chronically paralysed patients. This remains to be proven. Although our results suggest that basal

ganglia LFP changes might potentially be useful in force control, the selection of movements or

effectors is also important in BMI control. Whether and to which extent movements involving differ-

ent body parts, such the lower as opposed to the upper limb, can be decoded from the STN LFP

remains unaddressed, although microelectrode recordings suggest some spatial segregation in

activity related to different limbs in the human STN (Rodriguez-Oroz et al., 2001;

Theodosopoulos et al., 2003). In addition, we have not demonstrated the specificity of STN LFPs

for the decoding of force. Finally, plasticity of cortical control signals is likely to play a significant role

in the maximisation of the performance of BMIs (Carmena et al., 2003; Ganguly and Carmena,

2009), and yet whether subcortical signals can adapt over time remains to be seen.

A B

Figure 8. Implications of reduced movement related modulation in beta and gamma band activity in STN LFP with reduced dopaminergic input. (A)

The range of forces that can be generated will be reduced if the scale between the STN encoding signal and the force is to remain the same. This will

lead to unscaled, bradykinetic force generation. (B) The scale between the STN encoding signal and the force will be increased if the range of force

that can be generated is to be kept similar. This will lead to abnormally high force generation and more coarse force control.

DOI: 10.7554/eLife.19089.018
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Limitations and conclusion
There are some limitations in the current study which need to be acknowledged. First and foremost,

we were unable to predict the force in about half of our patients. There may be many reasons for

this, including disease related impairments despite dopaminergic therapy, post-operative stun

effects and failure to pick up LFP activity from the ‘motor’ STN due to electrode targeting error.

Confirmation that some electrode contacts were in or touching the STN was given by the surgical

team at each centre upon review of pre- and post-operative imaging blinded to the electrophysio-

logical results. According to this standard seven out of the nine electrodes affording force prediction

were on target, with the other two electrodes in the posterolateral tail of STN. This suggests that

significant movement-related spectral modulation in the beta and gamma bands, -the basis for

selecting out this group in the first place, might be a good electrophysiological marker of proximity

to the STN, and perhaps to the region of the STN involved in the motor representation of the hand

in particular. Noteworthy in this regard, the spatial gradient of gamma reactivity was more acute

than that of beta reactivity. In contrast, six out of the 12 electrodes that did not allow reasonable

force prediction were identified as neither being in nor touching the STN and these subsequently

revised on four sides or left inactive on two sides. A stun effect or disease related impairment might

help account for the lack of joint beta and gamma reactivity in the remaining patients in this group,

although two of these still had significant modulation in the beta band and one in the gamma band.

Such factors are also likely to have contributed the variation in prediction performance between

subjects in whom some force prediction was possible. Amongst these, predicted force based on the

STN LFP features was also noisier than the measured force. This could be caused by dynamic fluctua-

tions and short-time-scale events in the STN LFP oscillatory activity (Feingold et al., 2015). It could

be improved by incorporating a time history of the LFP signals which is equivalent to filtering the

control input from the brain, and by incorporating filtering algorithms in the predicted force (the

plant output of the model) in the time domain, such as the Kalman filter, or by convolving the output

with a static nonlinearity (Fagg et al., 2009; Flint et al., 2014). Alternatively the relatively noisy pre-

dictions might in part reflect involuntary dyskinetic movement that did not impinge on grip force

and yet may have been parameterised in the LFP control signal. Second, in a minority of trials grip

forces were predicted based on the STN LFP but there was no measured force. This might represent

a movement intention with consequent LFP change without movement execution, or voluntary

movements that were not captured by the force dynamometer. Likewise these factors might have

modified baseline LFPs in some trials leading to the negative force predicted in rare trials, unless

predictions were clamped so as not to fall below zero. Third, the force prediction presented here

focuses on the rest, force initialization, development and stable force holding phase of a grip, but

does not include the force release or termination phase.

Finally, despite the observation that the first order linear model provides a good approximation

of the relationship between STN LFP features and gripping force, the model may be an over simplifi-

cation. Moreover, the results do not settle the discussion as to which circuits predominantly account

for the selection of motor scaling, which can equally be attributed to cortical function (DeLong and

Wichmann, 2010).

Despite these limitations, our findings do suggest that signals elaborated in and/or transmitted

through the basal ganglia, and the STN in particular, carry information about motor scaling. We

have also shown that features in the STN LFP combined with a simple dynamic model can be used

to reliably predict the gripping force profile of the contralateral hand, even in individual grips. We

propose that the LFPs from deep brain structures such as the STN could potentially provide stable

and high-performance BMI input signals, complementary or alternative to neuronal spikes or ECoG

signals recorded from the cortex. The recording stability and rich information content in the STN

LFP about movement intentions and parameters make it an interesting signal with respect to BMI

control.

Materials and methods
The core paradigm and most subjects are the same as those in a previously published study

(Tan et al., 2013), with two more subjects being recruited for the current study.
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Subjects
In the main paradigm, eleven patients with idiopathic Parkinson’s Disease (mean disease duration

11.3 years, mean age 61.3 years, range 49–73 years; seven males) provided informed consent to

take part in this study, which was approved by the local ethics committees. Patients underwent bilat-

eral implantation of DBS electrodes into the STN, as a prelude to therapeutic high frequency stimu-

lation for advanced idiopathic PD with motor fluctuations and/or dyskinesia. Techniques to target

and implant electrodes in the STN have previously been described (Foltynie and Hariz, 2010).

Microelectrode recordings were not made during surgery. The permanent quadripolar macroelec-

trode used was model 3389 (Medtronic Neurologic Division, Minneapolis, MN, USA) featuring four

platinum-iridium cylindrical surfaces. Its contacts are numbered 0, 1, 2, and 3, with 0 being the most

caudal and contact three being the most cranial. Localisation was supported intra-operatively by the

effects of direct stimulation and by immediate post-operative stereotactic imaging. Nonetheless, in

acknowledgement of the fact that not all electrode contacts could be expected to lie in the STN per

se, we term the area sampled by the electrode contact the STN region (STNr). DBS electrode exten-

sion cables were externalized through the scalp to enable recordings prior to connection to a subcu-

taneous DBS pacemaker, implanted in a second operative procedure up to seven days later. One

out of the eleven patients (case 2) had only one electrode externalised for testing, thus we could

record from 21 STN regions (STNr). Clinical details of the patients are given in Table 1. The patients

showed 53.4 ± 6.0% (p<0.001) improvement in the motor section of the Unified Parkinson’s Disease

Rating Scale (UPDRS) on treatment with levodopa, indicating good responsiveness to this drug.

Experimental paradigm
Subjects were seated in a comfortable chair with their shoulders adducted and their elbows flexed

at about 90˚. Subjects were first asked to grip the dynamometer with maximal effort three times,

with each trial lasting for 3 s. Then they were presented with a series of imperative visual cues (red

light-emitting diode illuminated for 3 s), separated by 11–13 s, and instructed to ‘choose an effort

level from the scale provided and then to squeeze the force dynamometer at this chosen effort level

when the light comes on and maintain this squeeze for the duration of the light’. Subjects were pro-

vided with the Rated Perceived Exertion Scale with 11 levels ranging from zero to 10 (Borg, 1998)

printed on a piece of A4 paper. They were asked to try and randomise their selection of effort levels,

so that the levels were varied from trial to trial, and all levels were represented. The subjects

reported the effort level verbally after each grip. The mean number (± SEM) of trials per hand per

subject was 31 ± 2 grips, with a mean number of trials per level per subject of 3 (±1). In particular, 2–

3 trials were self-rated as maximal effort and 2–3 trials self-rated as minimal effort in each subject.

Patients were asked to grip following illumination of the LED, but were not requested to respond as

quickly as possible. There was no other feedback provided to the patients related to the generated

force.

Recordings
Recordings were made when the patients were ON their usual dopaminergic medication, 3–6 days

postoperatively, while electrodes were externalized and before implantation of the pulse generator.

Grip force was measured one hand at a time using an isometric dynamometer with standard Jamar

design, and its handle set in the second of the five discrete grip diameter adjustments possible

(G200; Biometrics Ltd, Gwent, UK). The order in which left and right hands were tested was counter-

balanced across subjects. Monopolar LFPs recorded with a TMSi porti (TMS international, Nether-

lands) and its respective software. A common average reference was used for the monopolar

recordings and these were low and high pass filtered at 0.5 and 500 Hz, respectively. Bipolar signals

were derived offline by subtracting the monopolar recordings between neighbouring contacts on

each electrode. The force was only a low pass filtered at 200 Hz. EMG signals from the first dorsal

interosseous (FDI) of the activated hand were recorded in all patients, and the EMG signals from the

extensor digitorum communis or extensor carpi ulnaris of both lower arms were recorded in six out

of the 11 patients. LFP, EMG and force measurements were initially sampled at 2048 Hz. The effort

level the subject reported verbally after each grip was logged manually and then used to label each

individual trial.
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LFP analysis
Each electrode has four contact points, and the LFP data were converted off-line to give three bipo-

lar contact pairs (01, 12 and 23) per electrode. Nonetheless, in acknowledgement of the fact that

not all electrode contacts could be expected to lie in the STN per se, we term the area sampled by

the electrode contact the STN region (STNr). Continuous wavelet transform, with Morlet wavelet

and cycle number of 7, was then applied to LFP recordings from each bipolar contact pairs for time-

frequency decomposition. The average power changes relative to the pre-movement baseline over

the three trials of maximal effort gripping was calculated for each bipolar contact in the contralateral

STNr. Three features from each bipolar LFP signal were extracted: the power change in the theta/

alpha (4–12 Hz) band, beta (13–30 Hz) and gamma (55–90 Hz) frequency bands. For each electrode,

the bipolar signal with the largest movement related reduction in the beta power was selected for

analysis. Further, the average power in each frequency band and at each time point was compared

against the distribution of the average power for that frequency over a one second period of time

before the cue. Significant movement-related modulations were defined as those trials in which

there were at least 50% of time points during the second after movement onset with power smaller

than the 5% boundary (to capture event related desynchronization) or larger than the 95% boundary

(to capture event related synchronisation) of the power distribution before movement for that fre-

quency band. This procedure identified 9 STNs (from six different patients) with significant move-

ment-related modulations in both the beta band and the gamma band; three more STNs showed

significant movement-related modulations in either the beta or gamma band. However, there was

no significant movement-related modulation in either beta or gamma band in the remaining 9 STNs.

Details of the patient and the average power changes during the second after cue onset for maximal

effort gripping in the beta and gamma bands for each STN are presented in Table 1.

For force decoding, time-frequency decomposition using continuous wavelet transform was

applied to the STN LFPs from the bipolar contact previously selected. For each individual trial of

gripping, the power change for each frequency at each time point was calculated by normalizing the

power at that time point against the average power during the 1 s before cue presentation, so 0

indicates the power being the same as the baseline activity before cue, positive values indicate

power increase (referred to as ERS) and negative value indicate power decrease (referred to as

ERD). Then average power changes in theta/alpha (a: 4–12 Hz) band, the beta (b: 13–30 Hz) and

gamma (g: 55–90 Hz) frequency bands at each time point were calculated. The latter frequency

range of 55–90 Hz was selected on the basis of our previous study showing that STN LFP activities

within this range increase during the onset of a grip (Anzak et al., 2012) and correlate with the sta-

ble force achieved during a grip (Tan et al., 2013).

Force decoding procedure
Our previous study (Tan et al., 2013) showed that activity changes in the beta and gamma bands

make major contributions to the encoding of efforts in gripping. In the present study, we tested dif-

ferent hypotheses about the dynamic relationship between LFP features and force. Based on the

results from the previous study showing that the difference between gamma (g) and beta (b) modu-

lations correlates with effort at the force holding phase, the first model to be tested used the signal

of g � b as the as a control input:

Force¼ g�bð Þ �
Kp

Tp � sþ 1
e�Td �s (Model 1)

Where b and g are beta and gamma band activity change in the STNr LFP, respectively.
Kp

Tp�sþ1
e�Td �s is a standard representation of a first order linear dynamic system with a time delay in the

Laplace domain, where Kp is the steady state proportional gain, Tp is the time constant which is a

measure of how fast the force output responds to brain signal changes, and Td is the time delay

between the brain control signal (LFP) and the measured force which describes the latency between

the timing of brain signal changes and force output onset, s= j � w which is a complex variable. The

equivalent of Model 1 in the time domain is: Force tð ÞþTp �
qForce tð Þ

qt
¼ Kp � g t�Tdð Þ� b t�Tdð Þð Þ, which

suggests that beta and gamma modulations in STN LFP encode the instantaneous amplitude and

the differentiation of force over time.
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http://dx.doi.org/10.7554/eLife.19089.005Table%201.Patient%20details%20and%20movement-related%20modulated%20in%20beta%20and%20gamma%20bands.%2010.7554/eLife.19089.005Patient%20IDAge%20(yrs)GenderPD%20duration%20(yrs)Main%20symptomsDaily%20dose%20(mg)UPDRS%20part%20III%20(Pre-op)Movement%20related%20power%20change%20(%)%20and%20electrode%20localisationStimulation%20effectLeft%20STNRight%20STNOFFONBipoloar%20channelBetaERDGamma%20ERSLocalisationMost%20%betaStim%20settingBipoloar%20channelBetaERDGamma%20ERSLocalisationMost%20%%20betaStim%20setting1%20QS49M13Stiffness,%20bradykinesia,%20bilateral%20tremor,%20freezingLevodopa%20800Apomorphine%20(6.5%20mg/hour)Rotigotine%2083813L1L2&x2212;4.52(&x002A;)17.99(&x002A;)L1,L2%20borderMEDL1Case:%20+%20L1:%20-R1R21.1533.2(&x002A;)R0:inside/border/MED;%20R1:%20border/MEDR0Case:%20+%20R1:%20-UPDRS%20OFF%20Med,%20Stim%20ON/OFF:%2013/382%20Ox69M11Rigidity,%20bradykinesia,%20freezingRopinirole%208Pramipexole%200.75Levodopa%209003818----Electrode%20was%20not%20in%20target%20and%20therefore%20not%20recordedR0R1&x2212;4.790.92R0,R1%20inside%20onlyR1NoneStimulation%20was%20discontinued%20shortly%20after%20surgery%20due%20to%20unsatisfactory%20clinical%20effect3%20King65F17Rigidity,%20tremorAmantadine%20400%20Levodopa%206005549L0L1&x2212;5.12%20(&x002A;)7.44(&x002A;)All%20insideL1Case:%20+L0:%20-R0R1&x2212;29.03(&x002A;)3.29(&x002A;)All%20insideR1Case:%20+R1:%20-Not%20evaluated4%20QS56M10Bradykinesia,%20rigidity,%20tremor%20limping%20gaitLevodopa%201000%20Rasagiline%201Citalopram%20204012L1L2&x2212;2.48(&x002A;)37.73(&x002A;)L1,L2,L3%20inside;%20L2%20dorsolatL2Case:%20+%20L1:%20-R0R1&x2212;18.92%20(&x002A;)2.98(&x002A;)R0%20inside;%20R1%20border/dorsolatR1Case:%20+%20R0,%20R1%20(alternating):%20-UPDRS%20OFF%20Med,%20Stim%20ON/OFF:%2029/405%20QS60F11Tremor@Left;%20poor%20coordination,%20bended%20gaitLevodopa%20600%20Pramipexole%200.755316L1L2&x2212;4.94(&x002A;)6.68(&x002A;)All%20inside;%20L1%20dorsolatL1Case:%20+%20L1:%20-R2R3&x2212;0.0492.14R1%20inside;%20R2%20borderR2Case:%20+%20R1:%20-Not%20evaluated6%20Kings65M5Rigidity,%20bradykinesia,%20motor%20fluctuation,%20tremorLevodopa%20400Entacapone%20800%20Rotigotine%2084129L1L23.331.81All%20insideNoneCase%20+L2:%20-R1R2&x2212;7.37(&x002A;)0.66All%20insideR2Case%20+R1:%20-Not%20evaluated7%20QS56M10tremor@all%20four%20limbsLevodopa%20600%20Rotigotine%208%20Selegiline%20105219L0L1&x2212;10.68(&x002A;)8.42(&x002A;)L2,%20L3%20in%20superior%20STNL0Case:%20+%20L1:%20-R0R1&x2212;22.76(&x002A;)14.02(&x002A;)R0,%20R1%20in%20STN,%20R2%20lateral%20border%20of%20superior%20STNR1Case%20+R1:%20-Relocation%20after%20recording%20due%20to%20side%20effects%20on%20speech8%20Kings73M14Bradykinesia,%20tremorRotigotine%2016%20Selegeline%2010Levodopa%207003515L0L10.157&x2212;0.186All%20insideNoneCase:%20+L1:%20-R1R2&x2212;4.93%20(&x002A;)5.57(&x002A;)All%20insideR1Case:%20+R1:%20-Not%20evaluated9%20Ox63F14Rigidity,%20bradykinesiaRopinirole%2023Levodopa%2015035243.197&x2212;1.14None%20insideNoneNone&x2212;2.597.20None%20insideNoneNonePost-op%20imaging%20show%20mis-location,%20and%20electrodes%20were%20relocated%20to%20GPi10%20QS66F16Shuffle,%20poor%20balance,%20NO%20tremorLevodopa%20600Amantadine%20200Ropinirole%2024Rasagiline%2013213L0L2(L1%20no%20signal)4.332.95L0,L1%20insideL0Case:%20+L1:%20-R0R1(bipolar%20reduced%20modulation)&x2212;1.377.41(&x002A;)R1,R2%20insideR1Case:%20+R1:%20-UPDRS%20OFF%20Med,%20Stim%20ON/OFF:%2026/3211%20QS52M7Freezing,%20falls,%20postural%20instability,%20tremor@right%20sideLevodopa%201300Citalopram%2020%20Trihexyphenidyl%2065813L1L2(bipolar%20reduced%20modulation)38.7713.22L2Case:%20+L1:%20-R1R2(bipolar%20reduced%20modulation)&x2212;1.051.11R1Case:%20+R1:%20-Relocation%20after%20recordingMean61.311.343.420.1(&x002A;)%20Indicate%20significant%20movement-related%20modulation%20in%20the%20power%20of%20the%20activity%20of%20the%20specific%20frequency%20band;%20Ox,%20Kings,%20QS%20indicate%20the%20three%20neurosurgical%20centres%20where%20the%20data%20were%20recorded:%20Ox%20=%20John%20Radcliffe%20Hospital,%20University%20of%20Oxford;%20Kings%20=%20Department%20of%20Neurosurgery,%20Kings%20College%20Hospital,%20Kings%20College%20London;%20QS%20=%20Sobell%20Department%20of%20Motor%20Neuroscience%20and%20Movement%20Disorders,%20UCL%20Institute%20of%20Neurology.
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The second model to be tested assumed that the activities from beta and gamma bands have

a different proportional gain, but have the same dynamic relationship in terms of time constant (Tp)

and time delay (Td) in encoding force:

Force¼ Kp1 �gþKp2 �b
� �

�
1

Tp � sþ 1
e�Td �s (Model 2)

The third model tested assumed that the dynamic relationship between force and activities at dif-

ferent frequency bands are different, with different values for the proportional gain (Kp), time con-

stant (Tp) and time delay (Td). Thus the generated force is the sum of the distinct processes with

different inputs and different transfer function parameters (Model 3):

Force¼ g �
Kp1

Tp1 � sþ 1
e�Td1�sþ b �

Kp2

Tp2 � sþ 1
e�Td2�s (Model 3)

These models were compared against models which include extra information from the STNr LFP

in the form of the relative power change in the theta/alpha frequency band (a) (Model 4 and

Model 5):

Force¼ Kp1 �gþKp2 �bþ Kp3 �a
� �

�
1

Tp � sþ 1
e�Td �s (Model 4)

Force¼ g �
Kp1

Tp1 � sþ 1
e�Td1�sþ b �

Kp2

Tp2 � sþ 1
e�Td2�sþ a �

Kp3

Tp3 � sþ 1
e�Td3�s (Model 5)

Models with only activities from single frequency bands were also evaluated to see if the combi-

nation of activities from different frequency bands was necessary for the decoding for force:

Force¼ a �
Kp

Tp � sþ 1
e�Td �s (Model 6)

Force¼ b �
Kp

Tp � sþ 1
e�Td �s (Model 7)

Table 2. Model details.

Models 1–3 use activity change in the beta band (b) and gamma bands (g) from the STN LFP as

model inputs. Models 4 and 5 take into account extra information about the low frequency activity

change (a). Models 6–8 only use the activity change from a single frequency band (a, b and g,

respectively) as model input. Tp and Td are the time constant and time delay of the first order linear

dynamic model, respectively.

Model ID Model equation No. of free parameters

1 Force ¼ g � bð Þ �
Kp

Tp �sþ1
e�Td �s 3

2 Force ¼ Kp1 � g þ Kp2 � b
� �

� 1

Tp�sþ1
e�Td �s 4

3 Force ¼ g �
Kp1

Tp1 �sþ1
e�Td1 �s þ b �

Kp2

Tp2 �sþ1
e�Td2 �s 6

4 Force ¼ Kp1 � g þ Kp2 � bþ Kp3 � a
� �

� 1

Tp �sþ1
e�Td �s 5

5 Force ¼ g �
Kp1

Tp1 �sþ1
e�Td1 �s þ b �

Kp2

Tp2 �sþ1
e�Td2 �s þ a �

Kp3

Tp3�sþ1
e�Td3 �s 9

6 Force ¼ a �
Kp

Tp �sþ1
e�Td �s 3

7 Force ¼ b �
Kp

Tp �sþ1
e�Td �s 3

8 Force ¼ g �
Kp

Tp �sþ1
e�Td �s 3
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Force¼ g �
Kp

Tp � sþ 1
e�Td �s (Model 8)

The predicted force was clamped so it did not fall below zero. The parameters in different models

(Kp, Tp, Td) were estimated for each STN separately.

Cross validation and model assessment
Cross-validation was used to evaluate the generalisability and decoding performance of the pro-

posed models with the STNr LFP features as inputs for predicting gripping force. For each STN/con-

tralateral hand, the parameters of different models were first identified using least-squares

optimisation applied on a set of training data to fit the corresponding STNr LFP features and mea-

sured force of the training data. The decoding accuracy of the models was evaluated by applying

the model with identified parameters on another set of testing data. When evaluating the perfor-

mance of the model applied to across-trial averages, the average of STNr LFP features and forces

over multiple trials of low effort levels was first used as the training data to identify the model

parameters, and the model was then tested on average data from high effort trials; or vice versa, i.e.

using the across-trial average of high effort trials as training data and the averages from low effort

trials as testing data. Bayesian information criterion (BIC) was used for model selection. The BIC

value for each model is calculated as: BIC ¼ n � ln s2

e

� �

þ k � ln nð Þ; where s2

e is the error variance: s2

e ¼

1

n
�
Pn

t¼1
F tð Þ � F̂ tð Þ
� �2

with F tð Þ and F̂ tð Þ the actually measured and predicted force of each time point

respectively; n is the total number of time points; k is the number of free parameters in the model.

When evaluating the performance of the model on individual trials, a five-fold cross validation

was used. All data from each recording session were partitioned into five equal folds. During each

iteration, one fold was retained for testing, and the other four folds were used as training data to

identify model parameters. Five iterations would allow for each observation being used for validation

exactly once. The five results were then combined to produce a single complete estimation for one

session. Different evaluation parameters including within trial correlation (WithinTrialR), correlation

between the measured and predicted stable force were quantified based on the testing data.

In addition, for cross-subject validation, the 1st order dynamic model with STN LFP features as

inputs was used to predict the gripping force of individual trials in another independent patient

group. Ten patients were recorded in the study when the patients were asked to grip as fast and as

hard as they can in each trial in response to an external cue. The details of patient information and

experimental paradigms were reported in a previous publication (Anzak et al., 2012). Twenty trials

were collected for each hand when the patients were on their normal dopaminergic medication.

Within each STN in this independent patient group, a 4-fold cross validation was used. For each iter-

ation, 15 trials were used to fit the model to estimate model parameters and the model was used to

predict force on the remaining five trials. The same procedure was repeated four times so each trial

was used for prediction exactly once. The correlation coefficients between the predicted force and

measured force for each individual trial were quantified.

All analyses were performed in Matlab (version 2012b). Median and the range of values are

reported if the sample number is smaller than 10, or the distribution is not normal. Otherwise, means

± standard error of means (SEM) are presented throughout the text. Correlation coefficients were

Fisher-z transformed before any statistical test, but the raw values were presented in the text and

the figures.
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