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ABSTRACT

Background: In previous studies, several asthma phenotypes were identified using clinical and
demographic parameters. Transcriptional phenotypes were mainly identified using sputum and
bronchial cells.

Objective: We aimed to investigate asthma phenotypes via clustering analysis using clinical vari-
ables and compare the transcription levels among clusters using gene expression profiling of the
blood.

Methods: Clustering analysis was performed using 6 parameters: age of asthma onset, body
mass index, pack-years of smoking, forced expiratory volume in 1 s (FEV1), FEV1/forced vital
capacity, and blood eosinophil counts. Peripheral blood mononuclear cells (PBMCs) were isolated
from whole blood samples and RNA was extracted from selected PBMCs. Transcriptional profiles
were generated (Illumina NovaSeq 6000) and analyzed using the reference genome and gene
annotation files (hg19.refGene.gft). Pathway enrichment analysis was conducted using GO, KEGG,
and REACTOME databases.

Results: In total, 355 patients with asthma were included in the analysis, of whom 72 (20.3%) had
severe asthma. Clustering of the 6 parameters revealed 4 distinct subtypes. Cluster 1 (n ¼ 63) had
lower predicted FEV1 % and higher pack-years of smoking and neutrophils in sputum. Cluster 2
(n¼ 43) had a higher proportion and number of eosinophils in sputumandblood, and severe airflow
limitation. Cluster 3 (n¼ 110) consisted of younger subjects with atopic features. Cluster 4 (n¼ 139)
included features of late-onsetmild asthma. Differentially expressedgenes between clusters 1 and2
were related to inflammatory responses and cell activation. Th17 cell differentiation and interferon
gamma-mediated signaling pathways were related to neutrophilic inflammation in asthma.

Conclusion: Four clinical clusters were differentiated based on clinical parameters and blood
eosinophils in adult patients with asthma form the Cohort for Reality and Evolution of Adult
Asthma in Korea (COREA) cohort. Gene expression profiling and molecular pathways are novel
means of classifying asthma phenotypes.
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INTRODUCTION
Asthma is a common chronic inflammatory
disease of the airways that involves airway inflam-
mation, variable airway obstruction, and
hyper-responsiveness.1 Various factors, including
genetic susceptibility, environmental exposure,
and medication compliance, influence the
heterogeneous clinical manifestations of asthma,
highlighting the growing emphasis on
phenotypes.1–3 Asthma phenotypes have been
defined via cluster analysis based on clinical
variables.4,5 Previously, cluster analysis of the
Korean asthmatic cohort revealed 4 distinct
clusters: smoking asthma, severe obstructive
asthma, early onset atopic asthma, and late-onset
mild asthma.6

Pathobiologic alterations in asthma are increas-
ingly identified as heterogeneous and differences
in the expression of many biological pathways
underlie differences in the phenotypic expressions
of the disease.7 Asthma phenotypes can be
considered as different biological processes with
distinctive but overlapping genomic,
transcriptomic, and physiologic features.8

Accordingly, the identification of differentially
expressed genes (DEGs) associated with asthma
phenotypes may be a better approach to capture
the various pathways of asthma pathophysiology.

Recent transcriptomic profiling of adult
asthmatics mainly involved the use of airway cells,
such as induced sputum, bronchial biopsies,
and brushing.9–12 According to a study that
employed transcriptomics and peripheral
blood mononuclear cell (PBMC), PBMC could
recapitulate systemic changes accompanying
asthma exacerbation.13 We aimed to identify
asthma phenotypes via clustering analysis with
clinical parameters and compare the levels of
transcription among clusters via gene expression
profiling of PBMCs.
METHODS

Study subjects

A total of 456 adult asthmatics with available
PBMC samples and medical records from the
Cohort for Reality and Evolution of Adult Asthma in
Korea (COREA) between 2005 and December
2020 were enrolled in the study. The diagnosis of
asthma was confirmed via airway hyper-
responsiveness, as indicated by a 20% reduction
in forced expiratory volume in 1 s (FEV1) with a
methacholine dose of 16 mg/mL (PC20) through a
provocation test,14 or airway reversibility in FEV1
>12% (and at least 200 mL) after inhalation of a
short-acting b-agonist.15 Patients with active
infection, such as pneumonia, severe lung
damage, bronchiectasis, or a history of lung
resection were excluded. Induced sputum
samples were obtained by inhalation of
nebulized sterile saline solution followed by
coughing and expectoration of airway secretions.
Eosinophilic inflammation was defined as positive
if it induced sputum eosinophils�2%, blood
eosinophil count�150 cells/mL, or fractional
excretion of nitric oxide (FeNO) level�20 ppb.16

Neutrophilic asthma was defined as having
neutrophil percentages in the sputum of 61% or
higher.17 Eosinophilic inflammation was
confirmed, followed by checking for neutrophilic
inflammation in patients without eosinophilic
inflammation. Severe asthma was determined
according to the international European
Respiratory Society/American Thoracic Society
(ERS/ATS) guidelines.18 This study was approved
by the Institutional Review Board of the Asan
Medical Center (2019-0376). All patients
provided written informed consent.
Cluster analysis

We conducted a two-phase cluster analysis
to categorize adult patients with asthma into
the COREA cohort. This approach employs unsu-
pervised learning techniques to ensure accurate
and reliable clustering.

In the initial phase, we used the GaussianMixture
Model (GMM) with the assistance of the MCLUST
package19 to determine the optimal number of
clusters and their centroids. This method was
specifically chosen to uncover the underlying
patterns within complex datasets. To determine
this, we relied on both the Bayesian Information
Criterion (BIC) and Integrated Complete-data
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Likelihood (ICL)20 to select the most suitable
combination of components and the covariance
architecture. The GMM was parameterized and
initiated using a model-based hierarchical clus-
tering approach. Remarkably, both methods
consistently identified the division into 4 distinct
groups, as depicted in Supplementary Fig. 1A.

In the subsequent phase, we employ K-means
clustering using ECLUST,21 considering the cluster
counts and centroids established in the initial
phase. The resulting cluster are shown in Fig. 1B.
To validate these findings, we assessed the
silhouette score (Supplementary Fig. 1C) and
performed principal component analysis (PCA) to
examine the cluster distributions (Supplementary
Fig. 1D).

Six variables were selected for cluster analysis
based on their contribution to the characterization
of asthma phenotypes, namely age of asthma
Fig. 1 Summary of the statistical methods. BMI, body index mass; FEV
onset, body mass index (BMI), pack-years of
smoking, FEV1 as a percentage of the predicted
value, FEV1/forced vital capacity (FVC), and blood
eosinophil counts. One notable aspect of the
cluster analysis in this study was the inclusion of
eosinophilic inflammation, differentiating it from
previous cluster analyses conducted on the
COREA cohort.6 Of the 456 asthmatics, 355 with
complete data for the 6 variables were employed
for the cluster analysis. The study protocol for
cluster analysis is presented in Fig. 1.
RNA extraction from PBMC

RNA extraction from PBMCwas performed using
TRI Reagent solution (Invitrogen), following the
manufacturer’s instructions. Initially, the PBMC
sample was homogenized in 1 mL of TRI Reagent
solution. Subsequently, 200 mL of chloroform was
added, thoroughly mixed, and incubated at room
temperature (RT) for 10 min. The mixture was then
1, forced expiratory volume in 1 s; FVC, forced vital capacity
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centrifuged at 12 000�g for 15 min at 4�C, and the
aqueous phase was transferred to a 1.5 mL tube.
Following that, 500 mL of isopropanol was added,
vortexed for 5 s, and incubated at RT for 7 min. The
mixture was centrifuged at 12 000�g for 8 min at
4�C, and the supernatant was discarded. Subse-
quently, 1 mL of 75% ethanol was added, and the
mixture was centrifuged at 7500�g for 5 min at
4�C. The ethanol was removed, and the RNA pellet
was briefly air-dried. Finally, the RNA pellet was
dissolved in nuclease-free water.22
RNA exome sequencing

The assessment of RNA purity was conducted by
analyzing 1 mL of the total RNA extract using a
NanoDrop 8000 spectrophotometer. Additionally,
the integrity of the total RNA was evaluated using
an Agilent Technologies 2100 Bioanalyzer, which
provided 2 key metrics: the RNA Integrity Number
(RIN) and the percentage of RNA fragments >200
nucleotides in the fragment distribution value
(DV200).

RNA exome sequencing libraries were prepared
according to the manufacturer’s instructions (Swift
RNA Library Kit and IDT Exome v2.0 kit).23 The
process commenced with the fragmentation of
25 ng of total RNA, resulting in the generation of
small RNA fragments typically ranging from 200
to 250 bp in length. Subsequently, the
fragmented RNA underwent random priming and
reverse transcription to produce the first-strand
cDNA. Simultaneously, tailing and ligation were
performed to incorporate the cleaved i7 adapter
into the 30 end of the cDNA molecule. The exten-
sion step led to the formation of a dsDNA duplex
for adapter ligation, thereby appending truncated
i5 adapter to the 30 ends of the primer-extended
cDNA molecules.

The constructed libraries were quantified based
on the absorbance using a Qubit� 2.0 fluorometer
with a Quant iT dsDNA HS Assay Kit (Thermo
Fisher). As per the protocol for the IDT Exome v2.0,
hybridization required a minimum of 500 ng of
each library. The pre-hybridization solution,
including library and blocker components, was
dried in the tubes designated for the hybridization
reaction employing a SpeedVac system. Subse-
quently, the hybridization mix was then added to
the desiccated capture library. The resulting
mixture was then incubated for 16 h at 65�C within
a thermal cycler.

Captured libraries were subsequently subjected
to PCR-amplification to enrich the fragments, using
the KAPA HiFi HotStart Ready Mix and an eleven-
cycle PCR program. The quality of the amplified
libraries was verified using automated electro-
phoresis (Tapestation; Agilent Technologies). After
the performance of qPCR using KAPA SYBR FAST
qPCR Master Mix (Kapa Biosystems), we combined
libraries that were index tagged in equimolar
amounts in the pool. RNA sequencing was per-
formed using an Illumina NovaSeq 6000 (DNA-
LINK, Inc., Seoul, Korea).
Bioinformatics analysis

A total of 456 samples were sequenced using
Illumina NovaSeq 6000. The sequenced data were
converted to count data using the following steps.
Adapter sequences were trimmed by Trimmo-
matic (v0.39) with a phred score of 33 and the
paired end mode setting.24 The trimmed reads
were aligned using HISAT2 (v2.2.0) with
reference to the hg19 genome.25 Finally, the
aligned data were sorted using samtools (v1.9)26

and counted using HTSeq (v0.12.4)27. The
reference genome and gene annotation file
(hg19.refGene.gft) were downloaded from the
UCSC Genome Browser (https://genome.ucsc.
edu/). Pathway enrichment analysis was
performed using DAVID Bioinformatics Resources
(https://david.ncifcrf.gov) and Enrichr guideline.28

DEGs were mapped to the GO database, and
the number of genes corresponding to each
entry was calculated. Enrichment analysis was
conducted using the KEGG29 and REACTOME
pathway databases (https://reactome.org) for
DEGs.
Statistical analysis

Analysis of variance (ANOVA) for parametric
data and Kruskal-Wallis tests for nonparametric
data were used to determine the significance of
differences among the 4 clusters. Bonferroni post
hoc analysis was conducted to identify between-
group differences. LIMMA30 was performed on
data adjusted for age, sex, and BMI, and
transcript expression was compared between
clusters. Batch effects in the high-throughput

https://genome.ucsc.edu/
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experiments were corrected. P values were deter-
mined using Fisher’s exact and binomial tests. To
further enhance the accuracy and reliability of
identifying differentially expressed genes (DEGs)
as markers distinct from each cluster, the
Benjamini-Hochberg method was applied for false
discovery rate correction. All calculations were
performed using R software (version 4.1.1). P < .05
was considered significant.
RESULTS

Study population

The initial dataset included 456 subjects; how-
ever, the final analysis included 355 individuals
who had complete data for the 6 clinical variables
used in the cluster analysis; these variables include
age of asthma onset, BMI, pack-years of smoking,
FEV1, FEV1/FVC, and blood eosinophil counts
(Fig. 1). A four-cluster model that best fit the study
subjects was determined via hierarchical cluster
analysis using Ward’s method and K-means anal-
ysis (Fig. 2A and B). The clinical characteristics of
the study population are presented in Table 1.
Among the patients with asthma, the mean age
(SD) of 49.6 (15.6) years and the mean BMI (SD)
of 25 (4.4). The study group included 204 (57.5%)
females, with 164 (46.2%) individuals being
Fig. 2 Cluster analysis. (A) Heatmap showing the clustering results and
atopic. Additionally, there were 111 (31.3%) ex-
smokers and 44 (12.4%) current smokers.
Notably, 72 (20.3%) patients had severe asthma.
The mean predicted FEV1 % predicted (SD) stood
at 75.1 (18.3) (Table 1).
Phenotypic characteristics of the clinical clusters

Four clusters were identified using the cluster
approach outlined in the methods section. The
detailed characteristics of the 4 clusters are pre-
sented in Table 1.
Cluster 1

Eighteen percent of subjects (n ¼ 63) were
grouped into Cluster 1, which featured “smoking
asthma with neutrophilic inflammation.” This clus-
ter was characterized by older, predominantly
male (74.6%) subjects with a heavy smoking his-
tory, and lower potential of being atopic (33.3%).
The mean age (SD) of asthma onset was 51.3 (14.9)
and the BMI for the subjects in this cluster was the
highest (27.0 � 6.0) among the clusters. This result
differs from that of other clusters with severe
airflow limitation and neutrophil-dominant airway
inflammation. The baseline predicted FEV1 was
56.3 � 13.0 and FEV1/FVC for airway obstruction
was 58.8 � 9.9. Subjects in this cluster had
(B) K-means clustering



Total (n ¼ 355) Cluster 1 (n ¼ 63) Cluster 2 (n ¼ 43) Cluster 3 (n ¼ 110) Cluster 4 (n ¼ 139) P

Age (y) 49.6 � 15.6 60.1 � 13.5 47.1 � 10.8 33.8 � 11.0 58.1 � 9.3 <.001

Sex (female, %) 204 (57.5) 16 (25.4) 27 (62.3) 64 (58.2) 97 (69.8) <.001

BMIb 25.0 � 4.4 27.1 � 6.0 23.1 � 4.1 25.3 � 4.6 24.5 � 3.0 <.001

Age of asthma onset (y)b 43.1 � 17.1 51.3 � 14.9 41.9 � 11.0 24.5 � 10.1 54.6 � 9.7 <.001

Smoking <.001
Never (%) 200 (56.3) 12 (19.0) 27 (62.8) 66 (60.0) 95 (68.4)
Former (%) 111 (31.3) 38 (60.3) 15 (34.9) 24 (21.8) 34 (24.5)
Current (%) 44 (12.4) 13 (20.6) 1 (2.3) 20 (18.2) 10 (7.2)
Pack-year (y)b 16.8 � 12.6 24.0 � 16.3 14.8 � 7.4 12.4 � 8.9 13.7 � 8.0 <.001

Atopy (%)a 164 (46.2) 21 (33.3) 25 (58.1) 71 (64.5) 47 (33.8) <.001

Allergic rhinitis (%) 174 (49.0) 24 (38.1) 22 (51.2) 57 (51.8) 71 (51.1) 0.254

Exacerbations (previous
year) (%)

75 (21.1) 9 (14.3) 10 (23.3) 27 (24.5) 29 (20.9) 0.369

ICS dose (%) 0.773
Low 164 (48.0) 27 (42.9) 19 (45.2) 53 (51.5) 65 (48.1)
Moderate to high 178 (52.0) 35 (56.5) 23 (54.8) 50 (48.5) 70 (51.9)

ACT score 16.8 � 4.5 16.5 � 4.7 14.7 � 3.6 16.6 � 4.6 17.6 � 4.3 0.006

Severity <.001
Mild (%) 160 (45.1) 3 (4.8) 8 (18.6) 72 (65.5) 77 (55.4)
Moderate (%) 123 (34.6) 24 (38.1) 10 (23.3) 36 (32.7) 53 (38.1)
Severe (%) 72 (20.3) 36 (57.1) 25 (58.1) 2 (1.8) 9 (6.5)

Total IgE (kU/L) 409.4 � 585.7 444.5 � 656.4 450.3 � 492.5 454.6 � 678.0 344.8 � 496.5 0.095

FEV1, pred, pre-BD (%)b 75.1 � 18.3 56.3 � 13.0 58.7 � 17.8 85.6 � 13.2 80.2 � 12.7 <.001

FEV1/FVC (%)b 72.1 � 12.6 58.8 � 9.9 63.6 � 10.7 80.6 � 11.5 73.7 � 7.0 <.001

FeNO (ppb) 51.6 � 43.2 41.0 � 42.0 71.6 � 54.2 52.8 � 40.0 47.8 � 39.8 0.002

Methacholine provocation
test, positive, n (%)c

187 (53.9) 11 (17.7) 17 (40.5) 75 (71.4) 84 (60.9) <.001

Sputum neutrophil (%)d 55.7 � 32.1 63.1 � 32.4 54.4 � 28.2 45.3 � 33.2 61.0 � 30.4 0.001
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increased sputum neutrophil (63.1 � 32.4%) with
low level of sputum eosinophil percentages and
absolute eosinophil counts compared with those
in other clusters. Approximately 55.6% of these
received regular moderate to high dose of inhaled
corticosteroids (ICS) as controllers.

Cluster 2

Cluster 2 was the smallest cluster (n ¼ 43, 12%
of subjects) with “severe eosinophilic asthma” and
comprised middle-aged subjects (mean age, 47
years), two-thirds female, with severe airflow limi-
tation at baseline (predicted FEV1 58.7 � 17.8).
This group was distinguished by T2 inflammation
with higher sputum eosinophil and blood eosino-
phil counts than the other clusters (sputum eosin-
ophil, 24.6 � 22.2%; blood eosinophil count,
1237.8 � 882.8). Subjects in this cluster had
high levels of exhaled nitric oxide (FeNO,
71.6 � 54.2 ppb). Although approximately 53.5%
of these subjects received regular moderate to
high doses of ICS, this cluster had a low asthma
control test (ACT) score (14.7 � 3.6).

Cluster 3

This cluster (n ¼ 110, 31% of subjects) consisted
of younger subjects with an atopic feature, named
“early-onset atopic asthma with normal lung func-
tion.” This cluster had the youngest age of asthma
onset (24.5 � 10.1) among the clusters. The num-
ber of subjects with atopy was 71 (64.5%). The
baseline predicted FEV1 was 85.6 � 13.2 and
FEV1/FVC was 80.6 � 11.5.

Cluster 4

Cluster 4 had the largest number of subjects
(n ¼ 139, 39% of subjects) and featured “late-onset
mild asthma.” The cluster consisted of more
women (69.8%) with mainly late-onset asthma
(mean age of asthma onset, 54.6 � 9.7) than the
other clusters. In addition, subjects in this group
had nearly normal lung function (predicted FEV1,
80.2 � 12.7; FEV1/FVC, 73.7 � 7.0).

Transcriptional differences between clinical
clusters

Each cluster was considered a unique patho-
biologic process and the transcriptome in PBMC
was compared to determine the differences in



Gene Symbol Gene name Biologic Processes Function Log Fold
Change P value

B4GALNT1 Beta-1,4-N-Acetyl-
Galactosaminyltransferase
1

Lipid metabolic process Transferase activity 1.0924 0.0084

CFD Complement Factor D Complement activation Protein binding �1.0241 0.0084

GJC2 Gap Junction Protein
Gamma 2

Cell communication,
Response to toxic substance

Gap junction channel
activity

1.0537 0.0112

GNG11 G Protein Subunit Gamma
11

Signal transduction G-protein beta-
subunit binding

1.0549 0.0112

HGH1 HGH1 Homolog Biological process NA 1.5674 0.0112

HLA-DRA Major Histocompatibility
Complex, Class II, DR
Alpha

Antigen processing and
presentation, Regulation of T-
helper cell differentiation

Peptide antigen
binding, T cell
receptor binding

�1.2499 0.0146

HLA-DRB3 Major Histocompatibility
Complex, Class II, DR Beta
3

Antigen processing and
presentation,
Immunoglobulin production

Peptide antigen
binding

�1.1875 0.0176

KCTD8 Potassium Channel
Tetramerization Domain
Containing 8

Protein homooligomerization Protein binding 1.7379 0.0208

MARVELD1 MARVEL Domain
Containing 1

Cell cycle, myelination Structural constituent
of myelin sheath

�1.1181 0.0223

ONECUT2 One Cut Homeobox 2 Regulation of cell migration DNA binding �1.0613 0.0251

PPBP Pro-Platelet Basic Protein Chemotaxis Transmembrane
transporter activity,
chemokine activity

1.6594 0.0239

PTF1A Pancreas Associated
Transcription Factor 1a

DNA-dependent regulation
of transcription, Neuron
generation

NA �1.0614 0.033

SERPINB12 Serpin Family B Member
12

Regulation of peptidase
activity

Peptidase inhibitor
activity, enzyme
binding

�1.6900 0.0294
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gene expression between the clusters. A total of
309 transcripts were found to be significantly
differentially expressed in at least 1 of the pairwise
comparisons between clusters. Significantly
expressed genes were only found in 2 compari-
sons: cluster 1 vs 2 and cluster 2 vs 3. There were
no significant transcriptional differences across
clusters or between the other 2 clusters. The results
are presented in Tables 2 and 3, respectively.
Many genes were upregulated between clusters
1 and 2. In particular, 17 DEGs were identified (9
upregulated and 8 downregulated). Smaller
differences were found between clusters 2 and 3
as only 2 DEGs were identified (1 upregulated
and 1 downregulated) (Fig. 3A and B).
Pathway analysis of the DEGs

GO analysis was performed using the DEGs
identified through sequencing. A total of 24 GO
terms for biological processes were found be-
tween clusters 1 and 2, mainly cellular processes,
such as “regulation of T-helper cell differentiation,”
“interferon gamma (IFN-g)- mediated signaling
pathway,” and “cellular response to IFN-” (Fig. 4A).
KEGG pathway enrichment analysis revealed that
DEGs between cluster 1 and cluster 2 were
significantly enriched in biological pathways,
including “Th17 cell differentiation,” “Th1 and
Th2 cell differentiation,” “Chemokine signaling
pathway,” and “asthma” (Table 4 and Fig. 4B).
The DEGs between cluster 2 and cluste 3 were
significantly enriched in biological pathways, such
as “NOD-like receptor signaling pathway” and
“Calcium signaling pathway” (Table 4).
DISCUSSION

In this study, 4 clinical phenotypes were identi-
fied using cluster analysis based on age of asthma
onset, BMI, pack-years of smoking, FEV1 as a
percentage of predicted value, FEV1/FVC, and
blood eosinophil counts. The following names
were assigned to the 4 clusters: smoking asthma
with neutrophilic inflammation (cluster 1), severe
eosinophilic asthma (cluster 2), early onset atopic
asthma with normal lung function (cluster 3), and
late-onset mild asthma (cluster 4). Transcriptomic
profiling of the PBMC revealed genes and path-
ways that differentiate the clusters, especially be-
tween neutrophilic and eosinophilic asthma.



Gene
Symbol Gene name Biologic Processes Function

Log
Fold

Change

P
value

LINC02652 Long Intergenic
Non-Protein
Coding RNA 2652

NA NA 0.8757 0.0248

P2RX7 Purinergic
Receptor P2X 7

Positive regulation of cytokine
production, positive regulation of
protein phosphorylation, Calcium ion
transport, positive regulation of the
apoptotic process

Protein
binding

�0.7822 0.05

Table 3. Differentially expressed genes in cluster 2 compared with cluster 3. NA, not applicable. P values indicate that the difference is still
significant, even when correcting for the false discovery rate using the Benjamini-Hochberg method.The fold change (FC) is presented in the base 2 logarithm. If
it is positive in X versus Y, the analyte is more abundant in X in Y; negative values indicate less abundance

Fig. 3 Volcano plots based on the transcriptomics data between clusters. Volcano plots represent -log10 (P-value) for genome-wide genes
(Y-axis) plotted for each log2 (fold change) (X-axis). Red and blue dots indicate genes that are significantly up (red)- and down (blue)-
regulated between (A) cluster 1 vs. cluster 2 and (B) cluster 2 vs. cluster 3, respectively. Green dot lines indicate the cut-off criteria of 5%
false discovery rate (horizontal) and a log2 fold change (Log2FC) of 1 (vertical).
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Recent studies revealed different asthma phe-
notypes through cluster analysis using clinical
and demographic characteristics, owing to the
heterogeneity and diverse nature of the dis-
ease.4,6,31 Previously, we reported 4 asthma
clusters based on clinical variables such as FEV1
predicted, BMI, onset age, skin test, smoking
history, and history of exacerbation, in 2
independent Korean adult asthma cohorts:
smoking asthma, early onset atopic asthma,
severe obstructive asthma, and late-onset mild
asthma.6 However, the previous study lacked
specific information on airway inflammation.
This study is a valuable addition to the previous
study as specific data on the patterns of
eosinophilic inflammation were employed in the
cluster analysis.

The present study aimed to investigate the
transcriptional differences among the 4 clusters,

https://doi.org/10.1016/j.waojou.2024.100871


Fig. 4 Bar charts for the top 17 (A) Gene Ontology and (B) KEGG and REACTOME pathway enrichment analysis terms based on the
differentially expressed genes between cluster 1 and cluster 2
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particularly between Cluster 1 (neutrophil-
enriched type) and Cluster 2 (eosinophil-enriched
type). Cluster 1 was mainly composed of male
smokers and may be proposed to have a chronic
obstructive pulmonary disease (COPD) overlap
(ACO). The subjects in this cluster exhibited more
severe airflow obstruction with neutrophilic asthma
than those in other clusters. Meanwhile, cluster 2,
with T2 inflammation patterns and worsened
airflow limitation, could be considered as repre-
senting severe eosinophilic asthma. Differential
gene expression between clusters 1 and 2
revealed upregulated genes in cluster 1 that were
related to cell chemotaxis and response to toxic
substances, indicating active cellular recruitment.
Especially, HLA-DRA and HLA-DRB3 are known to
play important roles in Th17, Th1, and Th2 in-
flammatory pathways. Other genes (eg, CFD,
SERPINB12, PPBP, and GNG11) can also influence
the pathogenesis of asthma by regulating various
inflammatory responses.32 Recent studies
have demonstrated that genes related to cell
chemotaxis are upregulated in the neutrophilic
inflammation group based on transcriptional
clustering,33,34 which is consistent with our results.

Recent studies focused on the increased Th17/
IL-17 and Th1/IFN-g responses in neutrophilic
asthma, which is associated with corticosteroid-
resistant asthma.35 In this study, differences in
pathways related to Th17 cell differentiation and
IFN-g-mediated signaling were found between
cluster 1 (neutrophilic) and cluster 2
(eosinophilic) DEGs. Th17 cells produce IL-17 A,
IL-17F, and IL-22 and are primarily involved in
forms of asthma in which neutrophils
contribute more to inflammation than eosino-
phils.36,37 IFN-g was demonstrated to be
most commonly associated with neutrophilic
airway inflammation.38 Some studies using
transcriptome-associated clusters with induced
sputum reported upregulation of IFN- and TNF-
associated genes and IL-1 and TNF-a/NF-kB
pathways in clusters related to neutrophilic
asthma.10,12 The present data supported these
findings as relevant mechanisms in neutrophilic
asthma and further suggested specific molecular
pathways involving the IFN-g-mediated signaling.

Interestingly, although the clinical characteristics
allowed discrimination between cluster 3 (named
“atopic asthma with normal lung function”) and
cluster 2 (named “severe eosinophilic asthma”), few
significant transcriptional differences were identi-
fied in this comparison. These 2 phenotypes have
been considered to markedly overlap as subtypes



Pathway No. of overlapping/
total genes

P value
Gene symbolCluster 1

vs. 2
Cluster 2

vs. 3

Staphylococcus aureus
infectiona

3/96 0.0997 CFD, HLA-DRA, HLA-DRB3

Asthmaa 2/31 0.2489 HLA-DRA, HLA-DRB3

Antigen processing and
presentationa

2/78 0.2489 HLA-DRA, HLA-DRB3

Th1 and Th2 cell
differentiationa

2/92 0.2489 HLA-DRA, HLA-DRB3

Th17 cell differentiationa 2/108 0.2489 HLA-DRA, HLA-DRB3

Cell adhesion moleculesa 2/148 0.0183 HLA-DRA, HLA-DRB3

Phagosomea 2/152 0.0183 HLA-DRA, HLA-DRB3

Influenza Aa 2/172 0.0220 HLA-DRA, HLA-DRB3

Chemokine signaling
pathwaya

2/192 0.0247 PPBP, GNG11

Neutrophil degranulationb 3/482 0.7178 CFD, SERPINB12, PPBP

Immune Systemb 5/2016 0.7178 CFD, SERPINB12, HLA-DRA,
PPBP, HLA-DRB3

Interferon gamma
signalingb

2/91 0.7178 HLA-DRA, HLA-DRB3

Downstream TCR
signalingb

2/98 0.7178 HLA-DRA, HLA-DRB3

Hemostasisb 3/621 0.0896 CFD, PPBP, GNG11

MHC class II antigen
presentationb

2/123 0.0972 HLA-DRA, HLA-DRB3

NOD-like receptor
signaling pathwaya

1/181 0.0338 P2RX7

Calcium signaling
pathwaya

1/240 0.0338 P2RX7

Neuroactive ligand-
receptor interactiona

1/341 0.0338 P2RX7

Table 4. Top pathways enriched by the top differentially expressed genes between clusters No, number. P-values were corrected using the
Benjamini-Hochberg method. aKEGG pathway. bREACTOME pathway
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of allergic asthma.39 Cluster 1, 2, and 3 showed no
significant transcriptional differences as compared
to cluster 4, which represents late-onset mild
asthma. As this study was a cross-sectional study
performed with a small number of asthmatics, a
large-scale prospective asthma transcriptomics
study is needed to obtain distinct results.
To our knowledge, this study is the first to
confirm the usefulness of PBMC for transcriptomic
analysis of Korean asthmatics. Blood expresses
approximately 80% of the genes encoded by the
human genome and contains many cells involved
in immune responses.40 In addition, blood is easily
accessible. Currently, available transcriptome

https://doi.org/10.1016/j.waojou.2024.100871
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studies in asthmatics were mainly performed with
airway epithelium and induced sputum.10,41

However, a study comparing the transcriptome
profiles in PBMC from 118 adult asthmatics
between stable and exacerbation status revealed
that PBMC could reflect systemic changes
according to asthma exacerbation at the gene
expression level.13 This study supports the
hypothesis that PBMCs cab recapitulate airway
inflammation and biological processes, and that
transcriptomic analysis using of PBMCs can yield
similar results to those obtained from airway
samples.

The present study had several limitations. First,
cluster analysis with several clinical variables may
not be appropriate for the objective classification of
asthma with heterogenous features. However, the
clinical variables used for this cluster analysis were
considered to have significant influences on
asthma.Theappropriatenessof the clinical variables
usedmust be verified. Second, airway samples such
as sputum, bronchial epithelium, and bron-
choalveolar lavage fluid, were not utilized for the
transcriptomic analysis. Future studies are neces-
sary to establish a direct link between blood and
airway transcriptome profiles. Third, this study
exclusively focused on patients diagnosed with
asthma and did not include a healthy control group.
Furthermore, there were no comparative results for
clusters 3 and 4. Fourth, the identified clinical and
molecular phenotypes of asthma require external
validation in an independent asthma cohort; how-
ever, this was not conducted in this study. Future
external validation is necessary to expand the scope
of our research. Fifth, in the comparison between
clusters 2 and 3, 3 pathways associatedwith a single
gene were identified, and the inability to identify
impact of this genemight limit interpretation. Lastly,
the contribution of environmental exposure to
asthma development has not been fully assessed.
As asthma is a heterogeneous disease with gene-
environment interactions, further studies are
required to evaluate gene-environment associa-
tions via epigenetic analysis in a larger sample of
Korean asthmatics.

In conclusion, we have identified 4 clinical
clusters and confirmed transcriptional differences
in PBMC between these clusters in Korean
asthmatics. Furthermore, for asthmatics with se-
vere airflow limitation, differences in DEGs be-
tween eosinophil-enriched and neutrophil-
enriched clusters were found to be related to
chemotaxis and immune and inflammatory re-
sponses, including IFN-g-mediated signaling
pathways. Overall, analyzing transcriptional levels
in blood may provide valuable insights into the
molecular mechanisms of asthma phenotypes.
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