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Abstract

Background: Porcine endogenous retrovirus (PERV) poses a potential risk of zoonotic infection in xenotransplantation.
Preclinical transplantation trials using non-human primates (NHP) as recipients of porcine xenografts present the
opportunity to assess the zoonosis risk in vivo. However, PERV poorly infects NHP cells for unclear reasons and therefore
NHP may represent a suboptimal animal model to assess the risk of PERV zoonoses. We investigated the mechanism
responsible for the low efficiency of PERV-A infection in NHP cells.

Principal Findings: Two steps, cell entry and exit, were inefficient for the replication of high-titer, human-tropic A/C
recombinant PERV. A restriction factor, tetherin, is likely to be responsible for the block to matured virion release, supported
by the correlation between the levels of inhibition and tetherin expression. In rhesus macaque, cynomolgus macaque and
baboon the main receptor for PERV entry, PERV-A receptor 1 (PAR-1), was found to be genetically deficient: PAR-1 genes in
these species encode serine at amino acid 109 in place of the leucine in human PAR-1. This genetic defect inevitably impacts
in vivo sensitivity to PERV infection of these species. In contrast, African green monkey (AGM) PAR-1 is functional, but PERV
infection is still poor. Although the mechanism is unclear, tunicamycin treatment, which removes N-glycosylated sugar
chains, increases PERV infection, suggesting a possible role for the glycosylation of the receptors.

Conclusions: Since cynomolgus macaque and baboon, species often used in pig-to-NHP xenotransplantation experiments,
have a defective PAR-1, they hardly represent an ideal animal model to assess the risk of PERV transmission in
xenotransplantation. Alternatively, NHP species, like AGM, whose both PARs are functional may represent a better model
than baboon and cynomolgus macaque for PERV zoonosis in vivo studies.
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Introduction

The control of potential risk of zoonosis is a prerequisite for the

development of clinical xenotransplantation. Potential transmission

to xenotransplantation recipients and further spread to the general

public of porcine endogenous retroviruses (PERV) has been a major

concern in the xenotransplantation field [1,2,3]. PERVs are present

in the pig genome in the form of provirus DNA. These proviruses are

descendants of viral DNA integrated in the germ line chromosome

by ancient exogenous retroviral infections and most of them have

become defective through evolution [4,5,6,7]. However, certain

intact PERVs can infect human cells in vitro, posing a potential risk of

zoonosis in pig-to-human xenotransplantation [8,9,10]. Pig genomes

have 50–100 PERV copies, and their integration pattern is highly

polymorphic. This makes it very difficult, if not impossible, to

remove PERV sequences from transplantation source pigs [8,11,

12,13,14,15,16]. Although PERV infection has not been detected in

retrospective analysis of patients treated with porcine cells and tissues

[17,18,19,20,21,22], this risk cannot be excluded in xenotransplan-

tation. Longer exposure to PERV of less immunosuppressed patients

in successful xenotransplantation would increase the chance of

PERV transmission. Therefore, development of transplantation

source animals with reduced PERV activity, development and

refinement of clinical tests for PERV transmission, and accurate

preclinical risk assessment, are much needed.

Three subgroups of PERVs with distinctive env genes have been

identified in pig genomes [5,6]. PERV-A and PERV-B can infect

several species including human cells, while PERV-C tropism is

limited to pig cells [9,23]. However, it has been shown that

recombination between PERV-A and PERV-C occurs frequently,

producing a high titer, human tropic PERVA/C [23,24]. These

recombinant PERVs use the same receptor for cell entry as

PERV-A, and they are almost exclusively the form of isolates

derived by co-cultivation of porcine primary cells and human cells

[10,24,25]. This form is therefore considered to be most

problematic [2,3,26].

Ongoing preclinical transplantation trials using non-human

primates (NHP) as recipients of porcine cells, tissues, and organs
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present the opportunity to assess the zoonosis risk in vivo

[27,28,29,30,31,32]. NHP offer the opportunity to evaluate the

risk of PERV transmission after a long exposure to the pig

xenograft, a variety of tissue can be analysed and the immuno-

suppression required can be simulated. However, the use of NHP

to assess the risk of PERV transmission has been debated. Initial

studies showed that NHP cell lines were not permissive for PERV

infection [8,9,23,33]. Other reports, which used sensitive PCR or

RT-PCR to detect PERV sequences, suggested that NHP cells are

susceptible [34,35,36]. By using a high titer PERV derived from

NIH miniswine animals, it was possible to show that PERV could

infect rhesus macaque and African green monkey (AGM) cell lines.

In the infected NHP cells, PERV provirus and transcripts were

detected but no reverse transcriptase activity was found in the

supernatant of these cells, suggesting that PERV infection of NHP

cells was not productive [37]. However, the mechanism respon-

sible for the poor infectivity and the lack of PERV replication in

NHP cells remains unclear. Here, the reasons for the low

susceptibility of NHP cells to PERV infection have been

investigated. The implication of our results on the suitability of

NHP models, and the choice of the NHP species for the study of

PERV transmission, is discussed.

Results

The low PERV permissivity is mainly caused by reduced
entry in NHP cells

To determine whether PERV can productively infect NHP cells,

progeny virus production was measured in a time course following

PERV infection of African green monkey (AGM) COS7 and

VERO cells, and rhesus macaque FRhK4 cells. The same cell lines,

but also expressing huPAR-2 via a MLV-based retroviral vector,

were also tested. Cells were infected with the replication-competent

PERV-A14/220, a PERV-A/C recombinant, used as a represen-

tative of isolates derived from primary porcine cells [24,38]. Cells

were seeded in equal number at different time points after PERV

infection, and the following day their supernatant was collected and

the production of infectious PERV was determined by infection of

human 293T cells [39]. PERV titers, obtained from NHP cells with

or without huPAR-2, were lower than that by control human 293T

cells. Infectious viruses were barely present in the supernatant of

wild-type FRhK4 and VERO cells for up to three weeks post

infection (Figure 1A). PERV titer from wild type COS7 and

huPAR-2-transduced NHP cells was, however, detected, increasing

in the first two weeks and stabilising at week three to various levels

(Figure 1A–B). HuPAR-2 expression resulted in substantially higher

PERV titer; in case of VERO cells to about 100 fold.

To define whether PERV replication is blocked in NHP cells at

early or late stages of the virus life cycle, PERV integration and

transcription in NHP cells were measured by quantitative PCR.

PERV DNA was measured one week post infection (Figure 1C),

while expression of PERV RNA was evaluated two weeks post

infection (Figure 1D). The amount of PERV gag DNA copies in the

parental cells were more than 100 times lower than that in human

293T cells, indicating that there is a major block in the early virus

entry stage (Figure 1C, open bars). This block was alleviated by

expression of huPAR-2, as PERV DNA was 10 to 1000 times higher

in huPAR-2-transduced NHP (NHP/huPAR-2) cells than in parental

cells (Figure 1C). PERV RNA expression levels, measured as gag

RNA copies, corresponded to those of proviral DNA (compare

Figure 1C and 1D). Overall, upon expression of a functional receptor,

PERV-A can successfully enter the NHP cells and integrate in the

host genome (Figure 1C), viral genes are transcribed (Figure 1D) and

infectious particles produced (Figure 1B).

However, the infectious titers produced by NHP/huPAR-2

cells, especially VERO/huPAR-2 and FRhK/huPAR-2, were still

much lower than by human 293T cells (Figure 1A and B). This

indicated that the amount of viral transcripts achieved in NHP/

huPAR-2 cells did not correlate well with the infectious titer, and

suggested that there may be another block to PERV replication in

a late stage of the life cycle. Therefore, we examined PERV

protein production in the NHP cell lysate and supernatant by

western blot using an anti-PERV capsid antibody. Whilst similar

amounts of Gag precursors were present, the amount of processed

capsid (p27) in the cell lysate in NHP/huPAR-2 cells was much

higher than in 293T cells (Figure 2A, cell lysate). In contrast, the

amount of PERV p27 in the supernatant was lower in the NHP

cells than in human 293T cells (Figure 2A, SN). These results

suggest an inefficient release of ‘matured’ PERV from NHP cells.

Tetherin (also known as BST-2, CD317 or HM1.24) is a

restriction factor inhibiting the release of enveloped viruses from

the producer cells by tethering the virions on the cell surface. The

mRNA level of tetherin in NHP cell lines was quantified by real-

time RT-PCR and compared to that in the human cell lines, 293T

and HeLa, which express significantly different levels of human

tetherin. While retroviral particles are successfully released from

293T cells, they are withheld on the cell surface of HeLa cells by a

tetherin-mediated mechanism [40]. NHP cells express 10–100

times more tetherin mRNA than 293T cells (Figure 2B). In

particular, VERO cells have only 5 times less mRNA than HeLa

cells and they showed the highest amount of p27 in the cell lysate

among NHP cells, whilst it was undetectable in the supernatant

(Figure 2A). These results suggest that, in addition to the block at

virus entry, a higher level of tetherin expression compared to that

in 293T cells contributes to inefficient PERV replication in the

NHP cells.

NHP cells express a level of PERV-A receptors similar to
human cells

PERV-A14/220 contains the receptor binding domain derived

from PERV-A and therefore uses PERV-A receptors for cell entry

[38,41]. To investigate the reason behind the poor efficiency of

PERV-A14/220 entry in NHP cells, we cloned the PERV-A

receptors from AGM COS7 cells (AGMPAR-1 and AGMPAR-2),

rhesus macaque FRhK4 cells (rhPAR-1 and rhPAR-2), cynomol-

gus macaque primary splenocytes (cynPAR-1 and cynPAR-2), and

baboon primary PBMC (baPAR-1 and baPAR-2). Based on these

sequences, quantitative RT-PCR was set up to determine

expression levels of the receptor and compare them to those of

PERV-A susceptible human cell lines 293T, HT1080, HeLa, and

primary PBMC.

PAR-1 mRNA levels were found to be similar in NHP and

human cells. Primary cells express about five times less PAR-1

mRNA than the cell lines (Figure 3A). The amount of PAR-2

mRNA was more variable. All human cells and AGM VERO had

a low level of PAR-2, at least 2.5 orders of magnitude less than

PAR-1. Instead, FRhK4 cells, primary baboon PBMC, and

cynomolgus splenocytes expressed 10 times more PAR-2 mRNA

than human cells and VERO cells (Figure 3A).

Serine109 renders rhPAR-1, cynPAR-1, and baPAR-1
unable to mediate PERV-A entry

PAR amino acid sequences deduced both from our NHP PAR

sequences and NCBI database sequences were aligned using the

ClustalW programme. The extracellular domain 2 (ECL2) was

located according to the huPAR-2 topology previously predicted

[42]. The sequence of ECL2 was well conserved among different

PERV Infection in NHP Cells
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species with the exception of a serine instead of a leucine at amino

acid (a.a.) 109 in rhPAR-1, cynPAR-1, and baPAR-1 (Figure 3B).

This mutation was of particular interest because this position 109

has previously been shown to be critical for PERV-A infection and

binding [42,43].

The importance of a.a. 109 has been demonstrated by our

finding that murine PAR containing proline at this position is

inactive as a PERV receptor, and that leucine-to-proline

mutations at a.a. 109 of huPAR-1 and -2 inactivate receptor

activity. This suggests that the PERV receptor function of PAR-1

containing serine 109 may be impaired. To test the ability of the

NHP receptors to support PERV-A entry, NHP PARs were HA-

tagged at the C-terminus and subcloned into an MLV-based

retroviral vector. PERV-A resistant quail QT6 cells were

transduced using VSV-G pseudotyped MLV particles carrying

PAR genes. More than 50% of the cells expressed the receptors as

assessed by flow cytometry analysis after immunostaining with an

anti-HA antibody (Figure 3C, diamond). PAR-expressing cells

were infected with PERV-A14/220 carrying the EGFP gene

(EGFP(PERV)), and the PERV infection titer determined by

monitoring EGFP signal. The titers have been represented as

percentage of that obtained on QT6/huPAR-1 cells (Figure 3C).

All the PARs tested conferred permissivity to PERV-A entry in

QT6 cells, with the exceptions of cynPAR-1, baPAR-1, and

Figure 1. PERV-A infection analysis in NHP cell lines. HuPAR-2 gene was delivered into rhesus macaque FRhK4 cells, AGM COS7 and VERO cells
using a VSV-G pseudotyped MLV-based vector. HuPAR-2 transduced or wild type NHP cells and human 293T cells were infected with PERV-A14/220 at
MOI 20 (titer calculated on 293T cells). A and B) At the different time points indicated, 16106 PERV-infected cells FRhK4 (black triangle), COS7 (white
circle), VERO (cross) and 293T (black square) cells were seeded. The day after, supernatant was collected and 5-fold dilutions used to infect 293T cells.
72 hrs later, cells were immunostained with an anti-PERV CA antibody. Data represent the average of two independent experiments (6 standard
error of the mean, SEM). C) One week post-infection, genomic DNA was extracted and copy numbers of PERV gag and 18S rRNA gene were measured
by quantitative PCR. D) Two weeks post-infection, total RNA was extracted and RNA copy numbers of PERV gag and 18S ribosomal RNA were
measured by quantitative RT-PCR. PERV gag copy number was calculated from standard curves and normalised per 18S rRNA copy. Each sample was
run in duplicate. Histograms represent the average of two independent experiments (6 SEM).
doi:10.1371/journal.pone.0013203.g001
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rhPAR-1. These receptors share the serine at a.a. 109, which is

different from the other receptors (Figure 3B). To test whether the

L109S change was responsible for the inability to support PERV-

A entry, a huPAR-1 mutant carrying a serine instead of leucine in

ECL2 (huPAR-1S109) and a rhPAR-1 with the opposite mutation

(rhPAR-1L109), were generated. Once expressed in QT6 cells

rhPAR-1L109 could efficiently mediated PERV-A entry. In

contrast, the ability of huPAR-1S109 to function as receptor was

reduced to 15% (Figure 3C). The a.a. substitution in position 109

appeared to have a negative effect on receptor function. These

results suggest that PERV-A may enter rhesus monkey FRhK4

cells only through the poorly expressed PAR-2, providing a reason

for the low susceptibility to PERV infection. This genetic trait

should influence PERV infection to be inefficient in all baboon,

rhesus, and cynomolgus macaque cells in vivo and in vitro.

Tunicamycin treatment of AGM cells increases PERV-A
infection

AGM COS7 and VERO cells express two functional receptors

(Figure 4), and their mRNA was expressed at a similar level to

highly permissive human cell lines (Figure 3B). Therefore, there

may be other reasons why PERV-A poorly infects AGM cells.

Removal of N-linked glycosylation by tunicamycin treatment of

the target cells has been shown to rescue retroviral infectivity in

certain cell lines [44,45,46]. To test whether N-linked glycosyla-

tion could play a role in the low susceptibility of AGM cells to

PERV-A14/220 infection, 293T, COS7, and VERO cells were

infected with serial dilutions of EGFP(PERV) after overnight

treatment with tunicamycin. The viral titer on tunicamycin-

treated AGM cells was more than 10-fold higher than untreated

cells, whereas it had no effect on 293T cells (Figure 4A). These

data suggested that removal of N-linked glycosylation in AGM

cells could relieve a possible block to PERV-A infection. To better

understand the role of tunicamycin in the improvement of the

susceptibility to PERV, we analysed the effect this drug had on

soluble PERV-A Env binding on AGM cells. PERV-A Env, but

not PERV-C Env, successfully bound to 293T cells, with no

difference after tunicamycin treatment. No binding was detected

to either tunicamycin-treated or untreated AGM cells (Figure 4B).

However, the lack of binding could be due to low assay sensitivity,

as noted previously [42].

To understand whether the tunicamycin effect was receptor-

specific or cell-specific, HA-tagged huPAR-1 and AGMPAR-1

were stably overexpressed on COS7 and VERO cells as well as

on quail QT6 cells. More than 98% of the cells expressed the

HA-tagged receptors, and its level on the cell surface was

determined by the mean fluorescence intensity (MFI) after anti-

HA immunostaining (Figure 4C, diamond). Whilst PERV

infection of 293T and quail QT6 cells was not affected by

tunicamycin treatment, the susceptibility of AGM cells to

PERV-A14/220 infection was increased. This was regardless

of which receptor, huPAR-1 or AGMPAR-1, was expressed

(Figure 4C), suggesting that partial rescue of PERV infection by

tunicamycin in AGM cells was cell-specific, and did not depend

on the receptor expressed. Indeed, the HA-tagged receptors

from the different cell lines without tunicamycin treatment

showed different patterns by western blot indicating cell-

dependent, differential, glycosylation (Figure 4D).

Discussion

Our initial study on the PERV-A14/220 infection time course

confirmed that it poorly infects and replicates in NHP cells

compared to that in human 293T cells (Figure 1). This study also

indicated that there are at least two steps at which PERV

replication is blocked in NHP cells: cell entry and exit.

Figure 2. Inhibition of PERV release from NHP cells and expression of tetherin mRNA in NHP cell lines. A) HuPAR-2-transduced NHP
cells or wild type human 293T cells were infected with PERVA14/220. Two weeks later, 1 mL of supernatant was harvested and concentrated 10 times.
The same 16106 cells were lysed in radioimmunoprecipitation assay (RIPA) buffer. For NHP cells, one fourth of these cell lysate and supernatant
samples were separated by 10% SDS-PAGE and immunoblotted using an anti-PERV CA antibody. Since PERV titer from 293T cells was more than 50
times higher than that from NHP cells, one fortieth of the 293T samples were loaded in the same gel, ten times less than that from NHP cells. The
differently processed capsid forms were detected in the cell lysate (upper panel), while in the supernatant (SN) p27 was the major form (bottom
panel). B) Tetherin RNA level in RNA from NHP FRhK-4, COS7 and VERO cells and human 293T and HeLa cells lines was quantified by quantitative RT-
PCR. Samples were run in triplicate. The amount of copies for each gene was extrapolated from analysis of the standard curves. Histograms represent
the mean of human (left bars) and NHP (right bars) tetherin copy number normalised to one 18S rRNA copy obtained by two independent
experiments (6 SEM).
doi:10.1371/journal.pone.0013203.g002
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At the cell exit step, PERV-A14/220 appeared to be released

much less effectively from NHP cells than from human 293T cells.

Whilst processed PERV capsid (p27) produced by 293T cells were

found mostly in the culture supernatant, the majority of p27

produced by NHP cells was associated with cells and not released to

the supernatant (Figure 2A). This suggests that the matured virions

are retained on the NHP cell surface, reminiscent of a tetherin-

mediated inhibition of retroviral release [40,47]. Consistent with the

possibility that tetherin causes poor PERV release in NHP cells, the

amount of tetherin mRNA in the NHP cell lines was 10–100 times

higher than in the 293T cells (Figure 2B). However, the relevance of

this finding to the in vivo context is unclear, as the control of tetherin

expression, which is class type I interferon-inducible, is different

in vivo from that in the cell lines used in this study. Though the in vivo

tetherin expression in NHP has yet to be investigated, species

difference compared to humans may be insignificant.

The block at the cell entry step is critical and, in the case of

macaques and baboons, we identified a genetic defect in a PERV-

A receptor gene, PAR-1. Firstly, expression of a functional human

PERV-A receptor rendered NHP cell lines more amenable for

viral entry and propagation (Figure 1), indicating that entry of the

virus is a critical step in the low permissivity of NHP cells. Our

study on cloned PAR-1 showed that rhesus macaque, cynomolgus

monkey, and baboon PAR-1 genes encode serine at a.a. 109, and

are unable to support PERV-A14/220 infection (Figure 3B and

C). PERV poorly infects rhesus macaque cells probably via

rhPAR-2, whose expression is lower than that of PAR-1

(Figure 3A). This PERV-A14/220 infection route is likely to be

minor in humans, as huPAR-1 expression is more robust than that

of huPAR-2 in most tissues in vivo [42]. These NHP species

therefore lack the major infection route potentially used by PERV

in humans. This fact must be taken into account in pig-to-NHP

transplantation, where cynomolgus macaque and baboon are

currently the most often used NHP species [48], and have been

preferentially employed in PERV transmission studies in vivo

[28,29,30,31,32]. The negative PERV transmission results in such

experiments should be interpreted with caution.

Intriguingly, both AGMPAR-1 and AGMPAR-2 are able to

support PERV-A infection (Figure 3C). When the same amount of

huPAR-1 and AGMPAR-1 was expressed on the cell surface of

PERV-A-resistant QT6 cells, the efficiency of PERV-A14/220

mediated-EGFP transduction was similar (Figure 4C), suggesting a

comparable affinity of the receptors for the virus. However, AGM

cells are poorly infected by PERV-A14/220. No evidence of an

Fv1/TRIM5a-like restriction activity was found (data not shown),

consistently with previous data in the literature [37,49]. No

inhibitors secreted from AGM cells were detected in the supernatant

of these cells (data not shown). Tunicamycin treatment to inhibit N-

glycosylation in the target cells could, however, rescue PERV-A

infectivity (Figure 4A). This effect was cell-specific rather than

receptor-specific (Figure 4C), and it correlated with cell differences

in PAR glycosylation, i.e. a heavier glycosylation of the receptors in

NHP cells than in 293T and QT6 cells (Figure 4D). A possible

Figure 3. Endogenous expression, sequence and function of
NHP PERV-A receptors. A) Total RNA was extracted from NHP and
human cells and analysed by quantitative RT-PCR. Primers used for
amplification of NHP PAR-1 (white bars, left) huPAR-1 (white bars, right)
NHP PAR-2 (grey bars, left) and human PAR-2 (grey bars, right) are listed
in Table S1. PAR copy number was calculated from standard curves and
normalised per 18S rRNA copy. Histograms represent average of at least
two independent experiments (6 SEM). B) Human (huPAR-1 and
huPAR-2), mouse (muPAR), rat (ratPAR), chimpanzee (chimPAR-1 and
chimPAR-2), rhesus macaque (rhPAR-1 and rhPAR-2) PAR and baboon
PAR-2 (baPAR-2) sequences were present in the NCBI database. African
green monkey (AGMPAR-1 and AGMPAR-2), cynomolgus macaque
(cynPAR-1 and cynPAR-2) and baboon (baPAR-1 and baPAR-2) PAR
sequences were obtained by RT-PCR of RNA extracted from NHP cell
lines and primary cells using specific primers (Table S1). Deduced amino
acid sequences were aligned using ClustalW software. The three amino
acids different between muPAR and huPARs are in bold and the amino
acid 109 critical for PERV-A receptor function as previously described
[42] is boxed. C) C-terminal HA-tagged PAR sequences were cloned into

a MLV-based vector and introduced into quail QT6 cells by transduction
of VSV-G pseudotyped retroviral particles. Percentage of HA-positive
cells was measured by cell surface staining of the transduced cells and
flow cytometry analysis (black diamond). 56104 PAR expressing QT6
cells were seeded and the day after infected with serial dilution of
EGFP(PERV)-containing supernatant. After 72 hrs, EGFP expression was
monitored and titers inferred. EGFP(PERV) titer on huPAR-1 expressing
QT6 cells was 1.760.56104 Etu/mL and arbitrarily chosen as 100%
infection. Histograms represent the average of three independent
experiments (6 SEM).
doi:10.1371/journal.pone.0013203.g003
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explanation for the tunicamycin-mediated increase in PERV-A

infectivity is that heavy N-glycosylation of the receptor could

prevent PERV binding, and that tunicamycin treatment could

relieve this block. This was, however, not supported by our Env

binding assay, since tunicamycin treatment did not increase Env

binding to AGM cells (Figure 4B). Further investigation should be

conducted to clarify the mechanism behind the poor permissivity of

AGM cells to PERV-A. A limit of this study is the use of different

cell lines between human and NHP. PERV-A infection conducted

in parallel using the same primary human and NHP cells such as

PBMC could provide more information on the suitability of AGM

as animal model in xenotransplantation.

Here, infection of human-tropic, recombinant PERV-A/C in

NHP cells has been examined, and several steps have been

identified which are responsible for the lower efficiency of infection

compared to that of human cells. PERV entry is inefficient in

rhesus macaque cells because of the defect in PAR-1 PERV-A

receptor function. The same is predicted for baboon and

cynomolgus monkey cells, which have the same defective

mutation. A genotypic analysis of the PAR sequences in the

candidate species to be employed in pig-to-NHP transplantation

will provide useful information on the likelihood that an animal

may be as susceptible as humans to PERV infection. Indeed,

AGM has no such defect in the PAR-1 gene, suggesting possible

advantage for the use of this species.

Materials and Methods

Cell lines
Human embryonic kidney 293T cells [50] were maintained in

Dulbecco’s modified Eagle Medium (DMEM, Gibco) supplement-

ed with 15% fetal bovine serum (FBS, BioSera). Quail QT6 cells

(American Type Culture Collection (ATCC), CRL-1708), African

green monkey COS7 (ATCC, CRL-1651) and VERO cells

(ATTC, CCL-81), and rhesus macaque FRhK4 cells (ATCC,

CRL-1688) were grown in DMEM supplemented with 10% FBS.

Primary baboon (Papio anubis) and cynomolgus macaque (Macaca

fascicularis) cells were obtained at the Institut de Transplantation et

de Recherche en Transplantation-Université de Nantes, France,

according to the standard procedure of the EU FP6 Consortium

Xenome project LSHB-CT-2006-037377 approved by the

European Commission.

Plasmids and virus production
Production of EGFP-carrying PERV-A [EGFP(PERV)] has been

previously described [42]. Replication-competent PERVA14/220

was produced by transfection of 293T cells with 18 mL of FuGene-6

(Roche) and 3 mg of the plasmid pCRPERVA14/220 [38]. Viral

particles carrying the receptor genes were produced by three plasmid

transfection, as previously described [42]. The following expression

plasmids, pcDNA3-huPAR1HA and pcDNA3-huPAR-2HA, and

Figure 4. Effect of tunicamycin treatment on PERV infection and analysis of N-glycosylation of PERV-A receptors. Cells were treated
for 16 hrs with tunicamycin at the final concentration of 100 ng/mL (293T cells), 200 ng/mL (COS7 and VERO cells) or 25 ng/mL (QT6 cells). A)
Tunicamycin-treated (grey) or untreated (white) cells were infected with serial dilution of EGFP(PERV) and the titers calculated 72 hrs later by flow
cytometry analysis. Histograms represent the average of four independent experiments (6 SEM). B) Cells were incubated with 100 ng in 0.5 mL of
soluble PERV-A360 Env or PERV-C360 Env and Env binding was detected using a FITC-conjugated anti-rabbit IgG antibody and flow cytometry
analysis. A representative set of results of three independent experiments are shown for tunicamycin-treated cells with PERV-A360 Env (A+T),
untreated cells with PERV-A360 Env (A), untreated cells with PERV-C360 Env (C) is shown. Almost identical histograms were obtained for PERV-C360
binding with and without tunicamycin treatment. C) Quail QT6, AGM COS7 and VERO cells were stably transduced with MLV-vectors carrying HA-
tagged huPAR-1 or AGMPAR-1. More than 98% of the cells were positive for anti-HA antibody staining (data not shown). Mean fluorescence intensity
(MFI) of anti-HA staining for each population was normalised to the MFI of the wild type cells (black diamond). Tunicamycin-treated (grey) or
untreated (white) cells were infected with serial dilutions of EGFP(PERV) and the titers determined by EGFP expression monitored by flow cytometry
analysis. Histograms represent the average of two independent experiments (6 SEM). D) HA-tagged huPAR-1 (upper panel) and AGMPAR-1 (bottom
panel) transduced cells were lysed in RIPA buffer and treated (+) or not (2) with PNGase F. Proteins were separated in a 10% SDS-PAGE and
immunoblotted using an anti-HA antibody. The N-glycosylated (+NG) and the de-glycosylated (2NG) forms are indicated.
doi:10.1371/journal.pone.0013203.g004
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the retroviral vectors pCFCRhuPAR-2, pCFCRhuPAR-1HA,

pCFCRhuPAR-2HA have been previously described [42]. To

facilitate the production of HA-tagged NHP PARs, a ClaI restriction

site was introduced, in frame, upstream of the HA-tag sequence in the

pcDNA3-huPAR2HA (pcDNA3/huPAR-2ClaHA) by PCR-based

mutagenesis using complementary primers C11–C12, in association

with primers C3–C13 (Table S1) as previously described [42].

Cloning of NHP PERV-A receptor and tetherin genes
Total cellular RNA was extracted using the RNeasy kit (Qiagen)

and reverse transcribed as previously described [42]. NHPPAR

and NHP tetherin sequences were then amplified using HotStart

polymerase (Qiagen) and the following primer pairs (Table S1):

C1–C2 (AGMPAR-1), C5–C2 (rhPAR-1, cynPAR-1, baPAR-1),

C3–C4 (AGMPAR-2), C6–C7 (rhPAR-2, cynPAR-2, baPAR-2),

C9–C10 (NHP tetherin). PCR products for NHP tetherins were

cloned into a pGEM-T easy vector (Promega). C-terminal HA-

tagged receptors were produced by introducing the PCR product

into pcDNA3/huPAR-2ClaHA using EcoRI and ClaI restriction

sites present in the forward and reverse primer, respectively. The

mutant receptors huPAR-1S109 and rhPAR-1L109 were gener-

ated by PCR-mutagenesis using the following primer pairs (Table

S1): C16–C17 and C18–C19 (huPAR1S109) or C14–C15 and

C2–C5 (rhPAR-1L109). Finally, HA-tagged receptors were then

subcloned in the MLV-based retroviral vector pCFCR using the

restriction sites EcoRI and NotI.

Transduction and infection assay
16105 cells were infected with 1 mL of the PERVA14/220-

containing supernatant (MOI ,20) in the presence of 8 mg/mL

polybrene. Cells were kept in culture for 4 weeks. At different time

points, 16106 PERV-infected cells were seeded in a 6-well plate

and, the day after, serial dilutions of their supernatant were used to

infect 36104 293T cells. After 72 hrs, the titer was determined by in

situ immunostaining of infected cells as previously described [39].

The receptor transduction and EGFP(PERV-A) infection were

performed as follows: 56104 target cells were seeded in a 12-well

plate and the day after, 500 mL of virus-containing supernatant and

8 mg/mL of polybrene were added. HA-tagged receptor or EGFP

expression was verified 48 hrs post transduction/infection by flow

cytometry analysis, as previously described [42].

Soluble Envelope Binding Assay
Expression plasmid for soluble PERV-A360 and PERV-C360

Env fused to rabbit immunoglobulin c-heavy chain (rIgG) were a

kind gift from Dr C Wilson [51]. Soluble proteins were produced

by transfection of 293T cells with pSKPERV-A360 or pSKPERV-

C360 plasmid. Binding assay was performed as previously

described [51].

Immunoblotting
16106 PERV-infected cells were lysed as previously described

[42]. Virus particles in the supernatant of virus-producing cells

were concentrated by a centrifugation for 4 hrs at 16000G at 4uC.

For the glycosylation assay, a quarter of the total cell lysate was

digested with 1500U of N-glycosidase F enzyme (PGNase F, New

England Biolabs) at 37uC for 2 hrs. The whole reaction of digested

proteins, a quarter of the other cell lysates and of the concentrated

supernatant, was used for immunoblotting as previously described

[42,47], using the monoclonal antibody HA.11 (Covance) or an

anti-PERV capsid antibody [39].

Quantitative RT-PCR
Quantitative RT-PCR was conducted as previously described

[47]. The amount of RNA between each samples was normalized

using the housekeeping gene 18S rRNA. The assay was performed in

duplicate using the Eppendorf RealPlex 4 as previously described

[47]. Used as a copy number standards are: pCR-PERVA14/220

(PERV gag), pGEM-rhesus macaque tetherin and pGEM AGM

tetherin (NHP tetherin), human tetherin-expressing plasmid [40],

pcDNA3-huPAR1HA, pcDNA3-huPAR-2HA, pcDNA3/HA ex-

pressing NHP PARs (described above), TOPO-18S rRNA gene [42].

PERV-A receptors accession number
PERV-A receptor amino acid sequences were derived from the

following nucleotide sequences. Already present in the NCBI database

prior to this study were: human PAR-1 [AY070774] and PAR-2

[AY070775], chimpanzee PAR-1 [XM_001156784] and PAR-2

[XM_001164395], rhesus macaque PAR-1 [XM_001091189] and

PAR-2 [XM_001099620], murine PAR [NM_029643.3] and rat

PAR [NM_001109670]. The following nucleotide sequences were

determined in this study and deposited in the GenBank database:

AGMPAR-1[HM347351], AGMPAR-2 [HM347352], baboon PAR-

1 [HM347353], baboon PAR-2 [HM347354], cynomolgus macaque

PAR-1 [HM347355] and PAR-2 [HM347356].

Supporting Information

Table S1 Primers used in this study.

Found at: doi:10.1371/journal.pone.0013203.s001 (0.05 MB

DOC)
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