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Stokes flow analogous to viscous electron
current in graphene
Jonathan Mayzel1, Victor Steinberg 1,2 & Atul Varshney 1,3

Electron transport in two-dimensional conducting materials such as graphene, with dominant

electron–electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-

field relation (negative resistance), distinct from the classical Ohm’s law. The transport

behavior of these materials is best described by low Reynolds number hydrodynamics,

where the constitutive pressure–speed relation is Stoke’s law. Here we report evidence of

such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting

of a rectangular cavity—analogous to the electronic system. We extend our experimental

observations to elliptic cavities of different eccentricities, and validate them by numerically

solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions.

We verify the existence of a predicted threshold at which vortices appear. Strikingly,

we find that a two-dimensional theoretical model captures the essential features of

three-dimensional Stokes flow in experiments.
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E lectron transport in conducting materials is often hindered
by lattice disorder, impurities, and interactions with pho-
nons and electrons1. In ultraclean two-dimensional (2D)

materials, the transport is primarily affected by electron–phonon
(γp) and electron–electron (γee) scattering processes; γ is the scat-
tering rate of each process. In the limit γp � γee, a fast momentum
relaxation of electrons results in a linear relationship between local
current and applied electric field called Ohm’s law. This relationship
breaks down when the momentum exchange rate of electrons with
each other is much faster than with the lattice2 (γee � γp). In this
regime, strongly interacting electrons move in a neatly coordinated
manner which resembles the flow of viscous fluids3,4. Thus,
hydrodynamic equations can be employed to describe the transport
behavior of electron flow provided mean free path (‘ee) for
momentum-conserving electron–electron collisions is the shortest
length scale in the problem, i.e., ‘ee � w; ‘p; where w is the system
size and ‘p is the mean free path for momentum-nonconserving
electron–phonon collisions3–7. The first experimental signature of
hydrodynamic electron flow was obtained in the measurements
of differential resistance of electrostatically defined wires in a 2D
electron gas in (Al,Ga)As heterostructures8,9.

Recent development in the synthesis of ultrapure crystals has
facilitated the investigation of the viscous flow regime of electrons
at elevated temperatures, so called viscous electronics10–13.
Experiments on viscous electron flow through narrow constric-
tions in doped single- and bi-layer graphene reveal anomalous
(negative) local resistance10. It was understood that the negative
resistance may arise due to viscous shear flow which generates a
vortex (whirlpool) and a backflow producing a reverse electric
field that acts against the applied field driving the source-drain
current2,10,14,15. Concurrently, Levitov and Falkovich (L&F)
developed a theoretical model based on Stokes flow of strongly
interacting electrons2,16. They explored three transport regimes of
electron fluids, namely: Ohmic, mixed ohmic-viscous and viscous,
in an infinitely long 2D rectangular strip, with point source and
drain contacts located at the center, on opposite sides of the strip.
Linearized 2D Navier-Stokes equation in the limit of low Rey-
nolds number (Re � 1) is used to describe the transport regimes
of incompressible electron fluids that yields bi-harmonic stream
function, in contrast to the harmonic stream function for the
Ohmic case. Here, the dimensionless Reynolds number (Re)
defines the ratio of inertial and viscous stresses in fluids4. Fur-
thermore, they extended their model for viscous electron flow in a
three-dimensional (3D) conducting slab of small, finite thickness,
and showed that the extra dimension in the Stokes equation
translates into an effective resistance term2.

A steady, viscous, and incompressible Newtonian fluid flow in
a 3D slab of width w and height h at Re � 1 is described as
ηð∂2x þ ∂2y þ ∂2zÞui ¼ ∇P, where ui(x,y,z)= ui(x,y)uz(z), η is the
dynamic viscosity of the fluid and P is the pressure field3.
As a vertical parabolic velocity profile uz= z(h−z)/h2 is globally
uniform, and ∇PðzÞ ¼ const due to the uniformity of the
velocity in both spanwise (x) and streamwise (y) directions, one
gets similar to what is suggested in ref. 2 the following 2D line-
arized stationary Navier-Stokes equation after integration of
the vertical velocity profile: ½ηð∂2x þ ∂2yÞ � 12η=h2�uiðx; yÞ ¼ 6∇P.
The threshold value to realize a vortex in a rectangular slab of
thickness h is ε≡ 12w2/h2 ≤ 120 and it arises when the viscous
shear force exceeds the wall friction (Ohmic) due to the bound-
aries. Therefore, in a 3D system the viscous effect will be more
pronounced when the system is thicker, at the same width, since
the friction arising from the top and bottom walls will be less
significant. The criterion value to observe vortices, i.e. ε < εc, is
estimated numerically for the rectangular slab in ref. 2 (see also
Supp. Info. therein).

The generation of vortices in a fluid flow is typically associated
with high-Re flow and inertial effects. However, such inferences
are likely based on the incorrect notion that low-Re flow is
irrotational, which is only applicable to an ideal fluid without
viscosity, where the Kelvin circulation theorem is valid3,17.
Thus, it is evident that a non-potential or rotational flow bears
vorticity, but to produce vortices in Stokes flow requires sub-
stantial efforts due to a strong dissipation of vorticity at Re � 1.
Strikingly, in a wall-dominated microfluidic channel flow, vor-
tices could be generated at low aspect ratio, w/h, of the channel
despite a significant wall friction and viscous dissipation2.

Here, motivated by the observation of a distinct vortex flow in
a strongly interacting electron system discussed above, we per-
form experiments on a viscous flow of ordinary Newtonian fluid,
at low-Re, in a microfluidic device consisting of a rectangular
cavity, analogous to the 2D electronic system. Indeed, we observe
a pair of symmetric vortices in the cavity region, when the geo-
metrical criterion for the vortex observation ε < εc is satisfied, in
agreement with the predictions2 of L&F. Further, we expand
our observations to elliptical cavities of different eccentricities (e)
and verify them with the analytical predictions2 by numerically
solving the bi-harmonic equation obtained for the viscous flow
with no-slip boundary conditions.

Results
Rectangular cavity. A long-exposure particle streak image in
Fig. 1b (see also corresponding Supplementary Movie 1)
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Fig. 1 Experimental setup and vortex flow in a rectangular cavity.
a Schematic of the experimental setup (not to scale). b Particle streaks of
the flow in a rectangular cavity (e→ 1) at Re= 0.07; see also corresponding
Supplementary Movie 1. White arrows indicate the flow direction
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illustrates the vortex flow at Re= 0.07 in the rectangular cavity
region (e→ 1) of the device shown in Fig. 1a and described in
Methods section. A pair of symmetric vortices appears in the
cavity regions; here we show only one side of the cavity. The flow
in elliptic cavities is shown in Fig. 2 and discussed in the next
section. For the rectangular cavity, the streamlines and velocity
field, obtained from micro-particle image velocimetry (μPIV), of
the vortex flow (Fig. 3a) resemble the structures of the current
streamlines and potential map as analyzed by L&F for viscous
flow in an infinite long 2D rectangular strip16. Furthermore, we
obtain the location of the vortex center at x0 ≈ 0.96w (see Figs. 1b
and 3a), which is in fair agreement with the analytical predic-
tion16 of x0 ≈ w.

Elliptic cavities. Next, we investigated elliptical cavities with
different eccentricities, e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2=a2
p

, where a and b are the
major and minor axes of an ellipse, respectively. Figure 2a, b show
long-exposure images depicting the vortex flow for e= 0.95
(at Re= 0.08) and e= 0.9 (at Re= 0.07), respectively; see also
Supplementary Movies 2–4. The corresponding streamlines and
velocity field are shown in Fig. 3b, c. For e= 0.95, the vortex
center appears at x0 ≈ 0.85w (see Figs. 2a and 3b), and for e= 0.9
the vortex is pushed towards the cavity edge and its center is
located at x0 ≈ 0.95w (see Figs. 2b and 3c). However, for e= 0.75
we do not observe a vortex (Fig. 2c and Supplementary Movie 4),
which is discussed further.

Analytic solution and numerical simulations. Using the Stokes
equation, the incompressibility condition, and the fact that the
system is 2D, we introduce the streamline function ψ(x,y) via 2D
velocity uðx; yÞ ¼ z ´∇ψ, which reduces the Stokes equation
to the bi-harmonic equation18,19 ð∂2x þ ∂2yÞ2ψðx; yÞ ¼ 0. We solve
the bi-harmonic equation analytically for disk geometry and
numerically for elliptical geometries with no-slip boundary
conditions uy= ux= 0, where uy and ux are transverse and
longitudinal components of u, respectively. For a disk geometry
(e= 0) of radius R centered at the origin and the flow is injected
(collected) with speed u0 at y= R (y=−R), we do not observe
vortices in the flow field (Supplementary Figure 1a,b). However,
the real part of the pressure field

Pðx; yÞ ¼ ηu0<
8iR2

π

�z

ð�z2 þ R2Þ2
 !

; ð1Þ

where �z ¼ x � iy, exhibits non-trivial patterns (Supplementary
Figure 1c).

Further, we consider an ellipse with major axis a and minor axis
b, where flow is injected and collected with a speed uo at (0, ±b).
Since vortices did not appear for a disk (e= 0), and did appear for
an infinite rectangular strip (e→ 1) we expect that at some critical
value of eccentricity vortices would start to emerge. The
streamline function for the ellipse is obtained using a multi-step
computational approach: First we define the vorticity of the flow
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Fig. 2 Long-exposure particle streaks of the flow in cavities of different eccentricity values. Snapshots of the flow in cavities of a e= 0.95, Re= 0.08; b e=
0.9, Re= 0.07; and c e= 0.75, Re= 0.02; see also corresponding Supplementary Movies 2–4. Black arrows indicate the flow direction
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Fig. 3 Velocity field obtained from micro-particle image velocimetry for different eccentricities. Color map of fluid velocity magnitude |u| obtained by μPIV
in the cavity region for a e→ 1, Re= 0.07; b e= 0.95, Re= 0.08; and c e= 0.9, Re= 0.07. Velocity field and streamlines are shown by arrows and lines,
respectively
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field ω=∇ × u, which is used to obtain the complex harmonic
function

Φð�zÞ ¼ 1
η
P þ iω: ð2Þ

Since 1
η P and ω form a Cauchy-Riemann pair, we can use

conformal mapping to map Φ from a disk to an ellipse. The
mapping formula is given by20,21:

κ ¼ ffiffiffiffi
m4

p
sn

2KðmÞ
π

sin�1 zffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
� �

;m

� �
; ð3Þ

where sn is the Jacobian elliptic sine, and K(m) is the complete
elliptic integral of the first kind with modulus m. This formula
maps the interior of an ellipse in the z-complex plane to the
interior of a disk in the κ-complex plane. Then, from Φ in the
elliptical geometry, the real part of the vorticity is extracted as
ω ¼ <ðΦÞ and then an inverse Laplacian is applied on ω that
yields ψ up to a harmonic function ψ= ψ0+ F, where ψ0 is the
result of the inverse Laplacian and F is a general harmonic
function determined by boundary conditions. The most general
form of a harmonic function in elliptic coordinates (μ,ν) that
preserves the symmetries in the problem is given by:

Fðμ; νÞ ¼
XN
n¼0

Ane
�nμ þ Bne

nμð Þ cos nν: ð4Þ

The coefficients An and Bn are determined by fitting ψ to the
no-slip boundary conditions, and N is the highest order for which
the coefficients are computed. A detailed numerical scheme is
delineated in Supplementary Notes. Results from numerics show
that vortices exist for any ellipse with non-zero eccentricity, for
instance, see Fig. 4b for e= 0.97 and corresponding experimental
results in Fig. 4a. In addition, we show velocity fields computed
numerically and obtained experimentally for e= 0.9 and 0.95 in
Supplementary Figures 2 and 3, respectively.

Next, we compute the distance of separatrix from the edge of
the ellipse normalized with the cavity width, i.e. ξ/w, for different
elliptical cavities. Figure 5 shows the variation of ξ/w as a function
of e, ranging from a disk (e= 0) to an infinite rectangular
strip (e→ 1), obtained numerically from the fitted harmonic
function of different orders N (open symbols). Based on Fig. 5,
it suggests that, for a disk, a vortex “lies” on the disk edge, and
as the disk is deformed into an elliptical geometry the vortex
escapes the edge and develops inside the ellipse. The experimental
results in Fig. 5 (solid symbols) exhibit the same trend as from the
numerical simulations. There is though a significant quantitative
discrepancy between the experimentally measured ξ/w and the
computed value.

Discussion
The quantitative discrepancy in the ξ/w dependence on e can
likely be explained by the different flow regimes considered in the
experiment and numerical simulations. The numerical simula-
tions were conducted for the 2D viscous flow without any wall
friction and with zero size inlet-outlet channels (in analogy with
the electrical transport corresponding to a pure viscous case with
a zero contact size), whereas the experimental flow is 3D
with finite-size inlet-outlet channels (0.5 mm channel width
compared to the cavity width of ~2 mm). The latter flow can
be approximated by a quasi-2D viscous flow with the friction
term ε= 12w2/h2, corresponding to a mixed viscous-ohmic case.

As discussed by L&F2, in the mixed viscous-ohmic regime,
vortices will form when the resistance to viscosity ratio ε is
smaller than some critical value εc, which is geometry dependent.
In our experimental system, ε < εc for the rectangular cavity with
ε= 12 (see Methods section) and for elliptic cavities, the value of
εc is not known and probably further depends on the eccentricity
e; ε < εc holds true only for e→ 1. Thus, the experimental results
for the rectangular strip ε=εc ¼ 0:1 � 1 match quite well with the
analytical predictions (Fig. 3a and related text). For ellipses with
varying eccentricity e, this critical threshold is probably lower and
reduces further with decreasing e. For e > 0.9, εc is possibly still
higher than 12, so we do observe vortices, even though their size
and streamlines do not match with the numerical solution of the
purely viscous case. A comparison between the numerical and
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Fig. 4 Experimental and numerical results for e= 0.97. Color map of fluid
velocity magnitude |u| in the cavity region for e= 0.97 from a experiment
and b numeric with N= 16. Velocity streamlines and flow direction are
shown by lines and arrows, respectively
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experimental results of the velocity magnitude and flow field for
ellipse with e= 0.97 can be seen in Fig. 4. For ellipse with e ~ 0.75,
the critical threshold is probably <12, therefore we do not observe
vortices. This issue requires further investigation by solving the
equation for the mixed viscous-ohmic case for an ellipse with no-
slip boundary conditions and by conducting experiments for a
fixed value of the eccentricity e and various values of ε.

By using the condition for the vortex generation, which is
derived in the quasi-2D approximation of a 3D channel flow, we
assume that the 2D model is applicable to characterize the 3D
flow. The results of vortex observation in 3D flow indicate the
validity of this assumption and its applicability. To further vali-
date this assumption we compute the divergence of the 2D
velocity field close to the mid-height of the cavity (▽⋅u) based on
the experimental data. As can be seen in Fig. 6, the divergence
field is close to zero in the cavity regions which suggests a 2D
nature of the flow. The non-zero deviations in the divergence field
are produced either by velocity fluctuations since they appear in
plus/minus pairs or by the lower accuracy of PIV measurements
in the region close to the inlet and outlet, where the velocities are
high. A comparison between the divergence fields computed from
experimentally and numerically obtained velocity fields for e=
0.97 is shown in Supplementary Figure 4.

In conclusion, we have numerically examined the 2D flow of a
Newtonian fluid by using an experimental, 3D flow at Re � 1;
the latter can be reduced to a quasi-2D flow with the wall friction
term, as suggested in ref. 2. We have shown that vortices do
appear in a rectangular cavity when the criterion ε < εc is satisfied,
verifying the analytical prediction of L&F with a good accuracy.
Furthermore, we expand the analytical predictions to disk and
elliptic geometries, and validate the latter by experimental
observations of vortices and the normalized vortex separatrix
distance ξ/w. The observed quantitative discrepancies in ξ/w as a

function of the eccentricity may be explained by a reduction of
the criterion value for the onset of the vortex observation εc with
decreasing eccentricity, e, from unity for a rectangular cavity
down to zero for a circular disk. The criterion ε < εc of obtaining a
vortex breaks down at some value of e, which leads to a dis-
agreement with the theory. Thus, conducting experiments in low-
Re Newtonian fluid flow allows us to inspect unusual vortex flow
properties which are experimentally unobservable in graphene or
in other 2D electronic systems. It is important to notice that in a
Newtonian fluid flow the boundary conditions are known, simple,
and verified, whereas in graphene they are less clear and may
evolve due to edge currents, partial slip22–25, etc.

Methods
Experiments. The experimental system consists of a straight channel (40 × 0.5 ×
2 mm3) endowed with a long rectangular cavity (e→ 1) at the center of the
channel, as illustrated in Fig. 1a. The devices are prepared from transparent
acrylic glass [poly(methyl methacrylate)]. The width and thickness of the cavity
are w= h= 2 mm, which gives ε= 12. An aqueous glycerol solution (60% by
weight) of viscosity η= 11 mPa·s at 20 °C is used as a working fluid in the
experiments. A smooth gravity-driven flow of the fluid is injected via the inlet
into the straight channel, and its flow rate is varied by changing the fluid column
height (see Fig. 1a). The fluid exiting from the outlet of the channel is weighed
instantaneously W(t) as a function of time t by a PC-interfaced weighing balance
(BA-210S; Sartorius) with a sampling rate of 5 Hz and a resolution of 0.1 mg.
The flow speed �uð Þ is estimated as �u ¼ �Q=ðρwhÞ, where time-averaged fluid
discharge rate �Q ¼ ΔW=Δt, fluid density ρ= 1156 Kgm−3. Thus, the Reynolds
number is defined as Re ¼ wρ�u=η.

Imaging system. The fluid is seeded with 2 μm sized fluorescent particles (G0200;
Thermo Scientific) for flow visualization. The cavity region is imaged in the
midplane directly via a microscope (Olympus IMT-2), illuminated uniformly with
a light-emitting diode (Luxeon Rebel) at 447.5 nm wavelength, and a CCD camera
(GX1920; Prosilica) attached to the microscope records 104 images with a spatial
resolution of 1936 × 1456 pixel and at a rate of 9 fps. We employ micro-particle
image velocimetry (μPIV) to obtain the spatially resolved velocity field u= (uy, ux)
in the cavity region26. An interrogation window of 32 × 32 pixel2 (55 × 55 μm2)
with 50% overlap is chosen to procure u. Experiments are repeated on cavities of
different e values.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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