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Abstract
COVID-19 has spread worldwide, including the United States, United Kingdom, and Italy, along with its site of origin in China,
since 2020. The virus was first found in the Wuhan seafood market at the end of 2019, with a controversial source. The clinical
symptoms of COVID-19 include fever, cough, and respiratory tract inflammation, with some severe patients developing an
acute and chronic lung injury, such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis (PF). It has already
claimed approximately 300 thousand human lives and the number is still on the rise; the only way to prevent the infection is to
be safe till vaccines and reliable treatments develop. In previous studies, the use of mesenchymal stem cells (MSCs) in clinical
trials had been proven to be effective in immune modulation and tissue repair promotion; however, their efficacy in treating
COVID-19 remains underestimated. Here, we report the findings from past experiences of SARS and MSCs, and how SARS
could also induce PF. Such studies may help to understand the rationale for the recent cell-based therapies for COVID-19.
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Introduction

The SARS-CoV-2 virus, originating from bat coronavirus,

broke out in Wuhan, a city with a population of 11 million

that spent months under strict lockdown since the outbreak.

This virus belongs to the family Coronaviridae and genus

Betacoronavirus, same as the human SARS-CoV, MERS-

CoV, and human CoV-HKU, which were found to infect

humans. A devastating effect in SARS-CoV-2-infected

patients is severe acute respiratory syndrome, the symptoms

including fever, cough, fatigue, shortness of breath, and loss

of smell. With progress of the disease, acute lung injury

might lead to ARDS or PF. While some research groups have

reported the ARDS to not be like the typical syndrome1,

histopathological findings have shown the occurrence of

interstitial fibrosis in a critical patient with COVID-192.

Another feature in patients with COVID-19 is cytokine

storm syndrome3, making a significant difference between

the dead and discharged patients4. These features are com-

mon with those seen in SARS in 2003 and could possibly be

due to the similarities between the viruses5.

SARS and Pulmonary Fibrosis

Severe acute respiratory syndrome (SARS) is an infectious

disease that causes severe respiratory illness and even death.

The SARS epidemic originated in southern China in Novem-

ber 2002 and became a global outbreak in 2003. During

November 2002–July 2003, a total of 8,098 probable SARS

cases were reported to the World Health Organization

(WHO) from 29 countries, including 29 cases from the

United States; 774 SARS-related deaths (case-fatality rate:

9.6%) were reported (World Health Organization; summary

table of SARS cases by country, November 1, 2002–August

7, 2003). The disease was found to be caused by a novel
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coronavirus, which was named SARS-CoV by WHO.

Patients with SARS initially presented with fever, cough,

chills, malaise, myalgia, headache, shortness of breath, and

diarrhea that progressed in severity over the following

weeks6. Most patients recovered from the infection while

approximately one-third developed severe pulmonary com-

plications, leading to ARDS, necessitated intubation, and

ventilatory support. Autopsies of patients with fatal SARS

showed lung fibrosis at various stages of progression7. Many

survivors of SARS developed residual PF. In a retrospective

study of SARS, 72.7% of patients showed mild or moderate

lung function damage after 7-year follow-up8. Hui et al.

reported that at 1-year follow-up, 27.8% of patients had

abnormal CXR findings, and 23.7% of patients had DLCO

values < 80% of predicted values, hence indicating PF9.

Although PF may be seen in other respiratory viral dis-

eases as well, it is more common after SARS-CoV infection.

However, the mechanisms of SARS-CoV infection-related

PF remain to be fully understood. Activation of transforming

growth factor b (TGFb) pathway and increased degradation

of angiotensin-converting enzyme2 (ACE2) or angiotensino-

gen system-mediated lung fibrosis may play major roles.

Transforming Growth Factor Beta

In the early phase of SARS infection, elevated serum levels

of TGFb1 have been reported10. Activation of TGFb path-

ways leads to the production of fibrin, collagen, and secreted

proteases (matrix metalloproteinases)11. Sime et al. had

demonstrated the overexpression of active TGFb to result

in severe interstitial and pleural fibrosis12. TGFb in the lungs

is required to promote the differentiation of lung fibroblasts

into myofibroblasts, which is necessary for pulmonary tissue

repair after lung injury. SARS-CoV infection not only

enhances the expression of TGFb but also facilitates its sig-

naling activity through viral nucleocapsid (N) protein. Over-

expression of N protein in lung epithelial and fibroblast cells

potentiates TGFb-induced expression of platelet-activating

factor I (PAI-I) and collagen I while attenuating Smad3/

Smad4-mediated apoptosis of human peripheral lung epithe-

lial HPL1 cells. Thus, N protein modulates TGFb signaling

and blocks apoptosis of SARS-CoV-infected host cells,

besides promoting tissue fibrosis13.

Angiotensin-Converting Enzyme 2

Renin-angiotensin system is known to be activated after lung

injury to promote tissue repair; when in excess, it may even

lead to tissue fibrosis14. Angiotensin II (ANG II), converted

from angiotensin I via the angiotensin-converting enzyme

(ACE), is the major effector peptide in this function. ANG

II has been found to be present at high levels in mice treated

with bleomycin and in patients with PF, and is known to

induce alveolar epithelial cell apoptosis15. AngII has profi-

brotic actions on growth factor expression, extracellular

matrix synthesis, migration, and motility of lung fibroblasts

mediated through both angiotensin type 1 receptor (AT1)

and angiotensin type 2 receptor (AT2). ANGII can stimulate

the production of TGFb in lung tissue mediated by AT1;

TGFb itself can also regulate the level of ANGII. This

“autocrine loop” involving ANGII and TGFb is believed

to exist in lung tissues16. Application of ACE inhibitors,

such as captopril, to inhibit ANGII production has been

shown to attenuate experimental PF in animal models

induced by bleomycin17. In 2000, a novel homolog of ACE,

termed angiotensin-converting enzyme2 (ACE2) was iden-

tified18. ACE-2 could cleave Angiotensin II to a seven-

amino acid peptide Ang1–7. Uhal et al. found Ang1–7 to act

through its receptor Mas to inhibit bleomycin-induced fibro-

sis by inhibiting the activation of JNK, which is required for

bleomycin and angiotensin II-induced apoptosis15,19. Thus,

ACE2 can act against lung fibrosis by the negative regula-

tion of local AngII level. ACE2 is a membrane-anchored

carboxypeptidase highly expressed in airway epithelial and

type I and II alveolar epithelial cells; it was found to be the

virus-cell entry receptor during the SARS-CoV outbreak20.

The spike protein of SARS-CoV binds to ACE2 for entry and

infects the target cells in humans21. Using a SARS infection

model in ACE2 knockout mouse, Kuba et al. were able to

show that ACE2 is indeed essential for SARS infection in

vivo, and ACE2 expression in lungs is remarkably down-

regulated in wild-type mice infected with SARS-CoV22,23.

The reduced expression of ACE2 may result in an increased

ANGII level thereby leading to more severe lung fibrosis.

Cell-Based Therapy in COVID-19
Treatment

In patients with SARS, supportive care is the only proven

beneficial treatment, including mechanical ventilation or

in-line suction24. Antiviral drugs, such as ribavirin, are fre-

quently used in patients, but their efficacy is yet to be pro-

ven. Significant toxicity is another issue in ribavirin-treated

patients, with chances of approximately 76% hemolysis25.

Even if steroids are used to prevent the cytokine storm, bone

damage can be found in retrospective studies26. In this global

emergency of the COVID-19 pandemic, physicians have

tried every rational treatment, including the drugs against

autoimmune and human immunodeficiency virus (like

hydroxychloroquine)27; however, the studies failed to show

expected results. Tissues like bone marrow, adipose, pla-

centa, and cord blood are rich in MSCs. Their characteristics

may differ from the source28, but their common immunomo-

dulating activities have been proven in both experimental

research and clinical treatment, as in graft-versus-host dis-

ease (GvHD)29,30. MSCs are hypoimmunogenic for alloreac-

tive T-cells and have promoted hematological recovery in

many preclinical trials31.

In animal studies, MSCs have shown potential in treating

acute lung injury, ARDS, asthma, and fibrosis32; their

mechanisms of action might include the inhibition of inflam-

matory cytokines, such as TNFa33,34. Thus, based on the
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passive defense method, virus-infected cells release interfer-

ons (IFNs) and stimulate genes like p21 to restrain cell

growth. Stem cells may enhance this intrinsic viral resis-

tance35. Khoury et al. had shown systemic MSC administra-

tion to potentially reduce lung injury after respiratory tract

infections, such as influenza36. On the other hand, cell therapy

offers an option for direct or indirect effects, like anti-

inflammation and improved regeneration through cell-

derived microvesicles or exosomes37,38. Although many

physicians are using the previous regimens with minor mod-

ifications for COVID-19 treatment, Chao et al. tested whether

MSCs would have any therapeutic potential. In the study,

seven patients received MSC infusion, and interestingly, all

recovered from the symptoms, including high fever (38.5 +
0.5�C), weakness, shortness of breath, and low oxygen satura-

tion39. However, the study was not well-documented in terms

of the cell source and manufacturing details.

Summary

Despite the global pandemic threatening many lives, fami-

lies, and economies worldwide, safety of any unproven treat-

ment should be established carefully. Recently, many

companies have been selling unlicensed cell-based treat-

ments, such as stem cell products or kits for the extraction

of exosomes40. This irresponsible behavior is not only

harmful to the human body but also encroaches on other

evidence-based and approved clinical studies. Although the

therapeutic effects or benefits are still being evaluated, past

experiences obtained from experiments and clinical trials

have been contributing to patient and medical care. Based

on most of the certified clinical trials, reports have suggested

considerable effectiveness in the treatment of COVID-19

and PF. Thus, to improve the confidence of cell-based ther-

apy, safety and rationale would be more important than

effectiveness in this hopeless and distressing situation.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

review was funded by Buddhist Tzu Chi Bioinnovation Center, Tzu

Chi Foundation (MF00A130SS04).

ORCID iD

Hong-Meng Chuang https://orcid.org/0000-0003-1978-3618

Horng-Jyh Harn https://orcid.org/0000-0001-6777-3284

Ching-Ann Liu https://orcid.org/0000-0002-0392-7069

References

1. Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiu-

mello D. COVID-19 does not lead to a “typical” acute respira-

tory distress syndrome. Am J Respir Crit Care Med. 2020;

201(10):1299–1300.

2. Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19):

a clinical update. Front Med. 2020;14(2):126–135.

3. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS,

Manson JJ; HLH Across Speciality Collaboration, UK.

COVID-19: consider cytokine storm syndromes and immuno-

suppression. Lancet. 2020;395(10229):1033–1034.

4. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors

of mortality due to COVID-19 based on an analysis of data of

150 patients from Wuhan, China. Intensive Care Med. 2020;

46(5):846–848.

5. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S,

Baghbanzadeh M, Aghamohammadi N, Zhang W, Haque U.

The SARS, MERS and novel coronavirus (COVID-19) epi-

demics, the newest and biggest global health threats: what

lessons have we learned?. Int J Epidemiol. 2020;49(3):

717–726.

6. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A,

Yung MY, Leung CB, To KF, Lui SF, et al. A major outbreak

of severe acute respiratory syndrome in Hong Kong. N Engl J

Med. 2003;348(20):1986–1994.

7. Gu J, Korteweg C. Pathology and pathogenesis of severe acute

respiratory syndrome. Am J Pathol. 2007;170(4):1136–1147.

8. Wu X, Dong D, Ma D. Thin-section computed tomography

manifestations during convalescence and long-term follow-up

of patients with severe acute respiratory syndrome (SARS).

Med Sci Monit. 2016;22:2793–2799.

9. Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, Sung

JJ. The 1-year impact of severe acute respiratory syndrome on

pulmonary function, exercise capacity, and quality of life in a

cohort of survivors. Chest. 2005;128(4):2247–2261.

10. Beijing Group of National Research Project for SARS.

Dynamic changes in blood cytokine levels as clinical indica-

tors in severe acute respiratory syndrome. Chin Med J (Engl).

2003;116(9):1283–1287.

11. Chuang HM, Chen YS, Harn HJ. The versatile role of matrix

metalloproteinase for the diverse results of fibrosis treatment.

Molecules. 2019;24(22):4188.

12. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J.

Adenovector-mediated gene transfer of active transforming

growth factor-beta1 induces prolonged severe fibrosis in rat

lung. J Clin Invest. 1997;100(4):768–776.

13. Zhao X, Nicholls JM, Chen YG. Severe acute respiratory

syndrome-associated coronavirus nucleocapsid protein inter-

acts with Smad3 and modulates transforming growth factor-

beta signaling. J Biol Chem. 2008;283(6):3272–3280.

14. Marshall RP, Gohlke P, Chambers RC, Howell DC, Bottoms

SE, Unger T, McAnulty RJ, Laurent GJ. Angiotensin II and the

fibroproliferative response to acute lung injury. Am J Physiol

Lung Cell Mol Physiol. 2004;286(1):L156–L164.

15. Lee VY, Schroedl C, Brunelle JK, Buccellato LJ, Akinci OI,

Kaneto H, Snyder C, Eisenbart J, Budinger GR, Chandel NS.

Bleomycin induces alveolar epithelial cell death through

JNK-dependent activation of the mitochondrial death pathway.

Am J Physiol Lung Cell Mol Physiol. 2005;289(4):L521–L528.

16. Uhal BD, Kim JK, Li X, Molina-Molina M. Angiotensin-TGF-

beta 1 crosstalk in human idiopathic pulmonary fibrosis:

Chuang et al 3

https://orcid.org/0000-0003-1978-3618
https://orcid.org/0000-0003-1978-3618
https://orcid.org/0000-0003-1978-3618
https://orcid.org/0000-0001-6777-3284
https://orcid.org/0000-0001-6777-3284
https://orcid.org/0000-0001-6777-3284
https://orcid.org/0000-0002-0392-7069
https://orcid.org/0000-0002-0392-7069
https://orcid.org/0000-0002-0392-7069


autocrine mechanisms in myofibroblasts and macrophages.

Curr Pharm Des. 2007;13(12):1247–1256.

17. Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abro-

gation of bleomycin-induced epithelial apoptosis and lung

fibrosis by captopril or by a caspase inhibitor. Am J Physiol

Lung Cell Mol Physiol. 2000;279(1):L143–L151.

18. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M,

Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R,

Breitbart RE, et al. A novel angiotensin-converting enzyme-

related carboxypeptidase (ACE2) converts angiotensin I to

angiotensin 1-9. Circ Res. 2000;87(5):E1–E9.

19. Budinger GR, Mutlu GM, Eisenbart J, Fuller AC, Bellmeyer

AA, Baker CM, Wilson M, Ridge K, Barrett TA, Lee VY,

Chandel NS. Proapoptotic bid is required for pulmonary fibro-

sis. Proc Natl Acad Sci U S A. 2006;103(12):4604–4609.

20. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA,

Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC,

Choe H, et al. Angiotensin-converting enzyme 2 is a functional

receptor for the SARS coronavirus. Nature. 2003;426(6965):

450–454.

21. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in

viral entry and pathogenesis. Virology. 2001;279(2):371–374.

22. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang

P, Zhang Y, Deng W, Bao L, et al. A crucial role of angiotensin

converting enzyme 2 (ACE2) in SARS coronavirus-induced

lung injury. Nat Med. 2005;11(8):875–879.

23. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P,

Sarao R, Wada T, Leong-Poi H, Crackower MA, et al.

Angiotensin-converting enzyme 2 protects from severe acute

lung failure. Nature. 2005;436(7047):112–116.

24. Sampathkumar P, Temesgen Z, Smith TF, Thompson RL.

SARS: epidemiology, clinical presentation, management, and

infection control measures. Mayo Clin Proc. 2003;78(7):

882–890.

25. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose

DB, Dwosh HA, Walmsley SL, Mazzulli T, Avendano M,

Derkach P, Ephtimios IE, et al. Clinical features and short-

term outcomes of 144 patients with SARS in the greater Tor-

onto area. JAMA. 2003;289(21):2801–2809.

26. Zhang P, Li J, Liu H, Han N, Ju J, Kou Y, Chen L, Jiang M, Pan

F, Zheng Y, Gao Z, et al. Long-term bone and lung conse-

quences associated with hospital-acquired severe acute respira-

tory syndrome: a 15-year follow-up from a prospective cohort

study. Bone Res. 2020;8(1):8.

27. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe

M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Honoré
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