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Abstract
Background: Due to the growing amount of biological knowledge that is incorporated into
metabolic network models, their analysis has become more and more challenging. Here, we
examine the capabilities of the recently introduced chemical organization theory (OT) to ease this
task. Considering only network stoichiometry, the theory allows the prediction of all potentially
persistent species sets and therewith rigorously relates the structure of a network to its potential
dynamics. By this, the phenotypes implied by a metabolic network can be predicted without the
need for explicit knowledge of the detailed reaction kinetics.

Results: We propose an approach to deal with regulation – and especially inhibitory interactions
– in chemical organization theory. One advantage of this approach is that the metabolic network
and its regulation are represented in an integrated way as one reaction network. To demonstrate
the feasibility of this approach we examine a model by Covert and Palsson (J Biol Chem, 277(31),
2002) of the central metabolism of E. coli that incorporates the regulation of all involved genes. Our
method correctly predicts the known growth phenotypes on 16 different substrates. Without
specific assumptions, organization theory correctly predicts the lethality of knockout experiments
in 101 out of 116 cases. Taking into account the same model specific assumptions as in the
regulatory flux balance analysis (rFBA) by Covert and Palsson, the same performance is achieved
(106 correctly predicted cases). Two model specific assumptions had to be considered: first, we
have to assume that secreted molecules do not influence the regulatory system, and second, that
metabolites with increasing concentrations indicate a lethal state.

Conclusion: The introduced approach to model a metabolic network and its regulation in an
integrated way as one reaction network makes organization analysis a universal technique to study
the potential behavior of biological network models. Applying multiple methods like OT and rFBA
is shown to be valuable to uncover critical assumptions and helps to improve model coherence.

Published: 25 April 2008

BMC Systems Biology 2008, 2:37 doi:10.1186/1752-0509-2-37

Received: 23 July 2007
Accepted: 25 April 2008

This article is available from: http://www.biomedcentral.com/1752-0509/2/37

© 2008 Kaleta et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1752-0509/2/37
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18439260
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Systems Biology 2008, 2:37 http://www.biomedcentral.com/1752-0509/2/37
Background
The analysis of metabolic networks aims at the under-
standing of metabolic capabilities of organisms to adapt
to, and to maintain growth under different external and
internal conditions. Various tools exist today to analyze
and predict behavior of organisms solely based on meta-
bolic network structure.

Important results have been obtained by applying meth-
ods like flux balance analysis [1], modeling by differential
equations [2], stochastic simulations [3], or elementary
flux mode analysis [4]. While some of these methods con-
centrate on the network as a whole, others like elementary
flux modes decompose it into smaller parts that form
functional modules. Chemical organization theory [5]
aims at the understanding of reaction networks from both
sides. Its basic aim is to identify parts of the network, or
more precisely, sets of molecular species, that are likely to
coexist on a long time scale without any of the species
vanishing or other species appearing anew. This not only
encompasses steady states of the network as might be
identified by elementary flux mode analysis (see Ref. [6]
for the relation between elementary modes and organiza-
tions), but also conditions in which there are positive pro-
ductions of metabolites. Therefore it can be seen as a
method that defines a mapping from a reaction network
consisting of reactions and metabolites to a set of poten-
tial phenotypes [7] of the network as specified by the set
of organizations it contains. The theory of chemical
organizations has previously been applied to a model of
the central sugar metabolism of E. coli [8]. It was shown
that organizations in the model coincided with known
growth phenotypes of E. coli under different growth con-
ditions. The growth on each of the carbon sources glucose,
lactose, and glycerol could be matched to a specific organ-
ization. However, as negative regulation for some genes
was ignored because the down-regulation of genes cannot
push gene expression levels below the basal level, some
organizations represented biologically infeasible system
states, for example the simultaneous uptake of all carbon
sources.

In this paper, we present an approach to explicitly con-
sider inhibitory regulatory interactions within the analysis
of chemical organizations. This allows the more faithful
and more precise consideration of biological network
models, making the identification of all potential pheno-
types of regulated metabolic networks possible. First, the
basic concepts of the theory of chemical organizations are
presented in the next section. Then, the approach to deal
with inhibitory interactions is introduced. The method is
then first applied to a subnetwork of a network model of
the central metabolism of E. coli to predict growth pheno-
types. Finally, the method is applied to the complete net-
work model to predict the lethality of gene knockouts.

Theory of Chemical Organizations
The theory of chemical organizations [5] provides a new
method to analyze complex reaction networks. Extending
ideas by Fontana and Buss [9], one main objective is to
determine combinations of network species that are more
likely to be present over long periods of (simulation-)
time than others. Such sets of species are called organiza-
tions. To be an organization, a species set has to fulfill two
properties: algebraic closure and self-maintenance. The
first property – closure – ensures that given the molecular
species of an organization, there is no reaction within the
reaction network that could create a novel species not yet
present in the organization. The second property – self-
maintenance – guarantees that every molecular species
that is consumed within the organization can be recreated
from organization species at a suffcient rate for its mainte-
nance. The basic concepts required for this paper are sum-
marized now more formally.

Reaction network

Let  be a set of molecular species,  denotes the

set of all multisets with elements from . A multiset dif-
fers from a set in the fact that it can contain the same ele-
ment more than once. The set of reactions  occurring

among the species  can then be defined by a relation

. We call the pair  a reaction

network.

Closed set

A set of species  is closed, if for all reactions

 with , then also . In

other words: if the educts of a reaction are contained in
, then also its products must be in . There is no reac-

tion in  that could create any new species not yet in 

from species contained in .

Self-maintaining set

Given a reaction system  with m = | | species

and n = | | reactions, S = (mi, j) be its m × n stoichiomet-

ric matrix, where mi, j is the number of molecules of spe-

cies i that is produced in reaction j (i.e., right hand side
minus left hand side). A set of species  is called self-

maintaining if a flux vector v = (v1, v2, ..., vn) ∈  exists

such that the following three conditions are fulfilled:

(1) For every reaction  with , its

corresponding flux is .
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
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(2) For every reaction  with , its

corresponding flux is .

(3) For every species i ∈ , its concentration change is

nonnegative: (Sv)i ≥ 0.

In other words: if we consider only the sub-network made
up by the species of  and additionally the species that

can be created from  (but are not in ) (conditions (1)
and (2)), we can find a positive flux vector, such that no
species of  decays (condition (3)).

Organization

A set of species  that is closed and self-maintaining

is called an organization.

Balanced organization

An organization  is a balanced organization, if a flux

vector conforming to the self-maintenance condition can
still be found, if in requirement 3 of the self-maintenance
definition, the greater equal condition is replaced by
equality:

(3') For every species i ∈ , its concentration change is
zero: (Sv)i = 0.

A rigorous link between organizations and the potential
dynamics of a reaction system is provided by Theorem 1
from Ref. [5]: Assume that the dynamics is modeled as a
"chemical" differential equation system dx(t)/dt =
Sv(x(t)), then all steady states of the system are instances
of organizations. In other words, the species with concen-
tration levels greater than zero in a particular steady state
are exactly those species contained in a corresponding
organization. Note that organizations do not necessarily
contain a steady state, as they can also embody growth in
which species have increasing concentrations. The only
assumption made for this theorem is that molecules that
are present and can react will react sooner or later (for-

mally: , if and only if for all i ∈ : xi > 0).

Note that this assumption differs fundamentally from the
assumption made by methods like elementary mode anal-
ysis, which assume that each reaction can be switched off
independently even if the reactants are present in large
concentrations [6].

Computing Organizations

To compute organizations, the convex polyhedral cone 

can be used which is defined by the n + m inequalities v ≥

0 and S · v ≥ 0 in the flux space . This cone contains

all self-maintenance flux vectors as described in the self-
maintenance definition. In order to find species sets that
are self-maintaining and closed, the extreme rays span-
ning  are combined in a recursive fashion and the
resulting species sets tested. The Supplement contains a
detailed description of the algorithm, and outlines a heu-
ristic approach to compute organizations for large net-
work models, for which the runtime of the algorithm
exceeds practical limits (see Additional file 1).

Methods
Regulation has not yet been explicitly considered in the
analysis using the theory of chemical organizations. The
aim of this section is to elaborate a concept that allows us
to also account for regulation. This concept makes it pos-
sible to also study regulated metabolic networks using
organization theory. The basic idea is to map regulatory
rules to normal chemical reaction rules. For inhibitory
rules and rules using the direction of a reversible flux we
introduce pseudo species representing the absence of a
species and the direction of a flux, respectively.

Types of Regulation
To examine the effects of regulation on chemical organi-
zations we first need to discuss the general types of regu-
latory interactions that occur in biological systems in
more detail.

Regulation appears on different levels in the cell, being
carried out by a variety of biological entities (e.g., small
molecules, proteins, RNA) acting on further biological tar-
get entities. As we are considered with reaction networks,
we focus here on the regulation of reactions. Two different
types of regulation have to be considered. The first type of
regulation only changes the flux of the regulated reaction
slightly. Certain types of autoregulation fall into this cate-
gory. This kind of regulation does not change the structure
of the reaction network and hence does not affect its
organizational hierarchy. The second type of regulation is
more drastic: it turns a reaction completely off or enables
a formerly unavailable reaction. This is the case, for exam-
ple, when the expression of a protein that catalyzes a reac-
tion is suddenly repressed. As a consequence, the
catalyzed reaction is not available to the network anymore
once the protein is completely degraded. The induction of
uptake pathways is an example for enabling novel reac-
tions. New reaction pathways become suddenly available.

( )  → ∈   ∉ M( )

v → = 0
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Note that, even though drastic, this kind of categorization
of regulation leads to meaningful models, for example
when translated into a boolean regulatory network [10]
and also generalizes to discretization using more than two
levels as used in Ref. [11].

Regulatory interactions do not happen instantly. The time
delay between the onset of a regulatory event and its
measurable effect in the system can vary between millisec-
onds (e.g., phosphorylation of proteins in signal cascades
[12]) and minutes (e.g., changes in gene expression [13]).
However, as we are here interested in the long term behav-
ior of the system, we do not take different time scales of
regulation into account.

Modeling Regulatoy Interactions
Several approaches exist to represent and model regula-
tory interactions [14], for example, boolean logic
[10,15,16], stochastic models [17], and differential equa-
tions [18]. Whereas some approaches require a very
detailed knowledge of the mechanisms and kinetics
behind the regulation, the representation of regulatory
networks by boolean logic can be useful if the knowledge
about the underlying kinetics is limited [11]. In this
approach, the state on or off is assigned to a regulated reac-
tion [15]. We will adopt this notion to model regulatory
interactions.

Two types of regulatory events have to be considered: acti-
vation, in which a species is required in order to perform a
certain reaction, and inhibition, in which a species inhibits
a certain reaction and makes it unavailable. To model this
kind of regulation we make use of the properties of reac-
tions being similar to rewriting rules, where the left hand
side is being replaced by the right hand side. Taking this
approach, the molecules on the left hand side need to be
present for the reaction to proceed. Additionally, regula-
tory events can be triggered not only by the presence or
absence of a species, but also by a species being available
in excess or not.

Activation
Activation or turning on a reaction by a specific species
can be simply modelled by considering this species as a
kind of a catalyst. In terms of rewriting rules this approach
can be considered as an additional constraint on the pres-
ence of certain species for the reaction to proceed. By this,
the reaction can only take place when the activating spe-
cies is present. Being a catalyst, the activating species is not
consumed within the reaction it catalyzes.

Let us consider the general case in which species E acti-
vates a reaction that transforms a reactant A into product
B. In the absence of E, the reaction shall have a zero flux,

while the flux shall become positive in the presence of E
and A. A reaction A → B activated by E becomes:

E + A → E + B.

Note that adding E as a catalyst on the reactant and prod-
uct side of the reaction equation does not change the sto-
ichiometric matrix S. Still, one unit of A is being
consumed to produce one unit of B. Therefore any flux
vector that guarantees self-maintenance for a set of metab-
olites including E but without considering E as an activa-
tor, will also guarantee self-maintenance when E is added
as a catalyst to model activation.

Inhibition
Handling inhibition is more diffcult. If inhibitor I inhibits
a reaction, we could add an if-statement to each reaction
that guarantees that the reaction is only available when I
is absent. But since we intend to model regulation within
the language of reactions, such if-statements would not
fulfill our requirements. An alternative way to model inhi-
bition is to understand it as another type of activation,
that is, as the activation of a reaction by the absence of an
inhibitor. For achieving this we have to introduce a
pseudo species Ī that represents the absence of inhibitor I.
In terms of rewriting rules, such species is just a constraint
on the presence of a certain species for a reaction to take
place. A reaction A → B inhibited by I becomes:

Ī + A → Ī + B.

Only in the absence of I, represented by pseudo species Ī,
educt A can react to form product B.

Modelling flux-direction dependent regulation
Sometimes it can make sense to define regulatory rules
that depend on the direction at which one or more revers-
ible reactions operate. Two examples can be found in Cov-
ert and Palsson [19], the rule for the pyruvate response
regulator (gene pdhR) and the rule for the catabolite acti-
vator protein (gene cra). Given a reversible reaction r: A ↔
B and the following flux-direction dependent regulatory
rule:

"If the flux of reaction r is positive (forward), then activate
protein E.",

we map this regulatory rule to the following conventional
reaction rules by introducing a pseudo species fr and its

inverse counterpart :

rf : A + fr → B + fr (1)

f r
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rE : A + fr → A + fr + E (3)

Because in consistent organizations (see below) either fr

or  is present (but not both), the reaction rules assure

that either the forward rf or the backward reaction rule rb

can be active. Here, in Eq. (3), we use the presence of the
molecular species A and fr as an indicator for the activity

of reaction rf . Conversely, we can use the presence of the

molecular species B and  as an indicator for the activity

of the backward reaction rb.

If necessary, we can add a pseudo species like fr to every
reversible reaction rule r in order to obtain an indicator
for the direction in which it operates. Then, these indica-
tors can even be combined to represent a more complex
rule. Note that in Covert and Palsson [19], different flux-
directions are logically combined to indicate a surplus of
a molecular species (e.g., PYR for the regulation of pdhR;
and FDP or F6P for the regulation of cra).

Consistent organization
Introducing pseudo species causes a problem, as now two
network species represent the same molecular entity.
When computing the organizations of such a network,
some organizations might exist that contain both or nei-
ther of the two species. In both cases, the presence of the
species is not clearly defined. Either the presence and
absence is indicated simultaneously, or no statement is
made at all. Consequently, we only consider those organ-
izations in the remaining of this paper, in which for all
species it is clearly defined whether they are present or
not. We call such organizations consistent.

Consistent organization

An organization  is called a consistent organization,

if for all species S ∈  for which there exists a pseudo

species  that indicates its absence, either S or  is
contained in the organization.

In passing we note that this approach allows one to model
more than two states of a molecule, for example different
phosphorylation states.

Modeling Boolean Logic
There are few cases where a reaction is regulated by a sin-
gle molecule alone. In most cases regulation is more com-
plex, for example if the availability of a reaction is being
determined by the interaction of a set of proteins. In such

cases we need to model regulation by a set of boolean
functions. This section presents an approach to account
for such functions on the level of regulation (see also
[20]).

All binary boolean functions can be reduced to either
AND or OR, and the negation NOT. The construction of a
negation has been outlined above. In principle, it would
be suffcient to present a method to implement AND or
OR. However, we present methods for both to ease the
process of converting regulation logics to chemical reac-
tions.

First we consider the AND function. A typical regulation
incorporating an AND function is the required presence of
two activators to perform a reaction. If we consider activa-
tor E1 and activator E2 to be necessary for a reaction con-
verting educt A into product B we can write:

E1 + E2 + A → E1 + E2 + B.

Next, the OR function is considered. An example for this
case is a reaction transforming educt A into product B that
can alternatively be activated by two activators E1 and E2.
The presence of one of these activators is suffcient to per-
form the reaction. In this case, the reaction is split into
two parts; one that accounts for the presence of activator
E1, and one that accounts for the presence of activator E2:

E1 + A → E1 + B

E2 + A → E2 + B.

Taking these two basic functions, it is possible to model
all regulatory relationships that can be represented by
boolean rules in metabolic networks [20].

Example: Regulatory switch

As an example for the presented procedure, we analyze a
simple reaction network comprising – apart from inflow
and outflow – two reactions forming a switch as depicted
in Figure 1(A). The product of one reaction inhibits the
other reaction and vice versa. Additionally, an inhibitor I
can shut down both reactions. Thus, we have a simple
AND function that requires for both reactions that both I
and P1, respectively P2, are absent. A model without regu-
lation would contain only reactions transforming A to P1
and P2, the influx to A and the outflux from the products:

' = {∅ → A, A → P1, A → P2, P1 → ∅, P2 → ∅}.

The boolean expressions describing the regulation are:

A → P1 if ¬I  ¬P2

r B f A fb r r: + → + (2)

f r

f r

 ⊆


S ∈ S



Page 5 of 15
(page number not for citation purposes)



BMC Systems Biology 2008, 2:37 http://www.biomedcentral.com/1752-0509/2/37
A → P2 if ¬I  ¬P1.

Applying the presented procedure, these expressions are
transformed into chemical reactions. The resulting reac-
tion network contains the following reactions:

 = {

∅ → A, (1a)

P1 → ∅ (4)

P2 → ∅ }. (5)

The network contains 16 organizations as listed in Table
1.

Three organizations are consistent: O10 = {A, I, , },

O11 = {A, Ī, P1, }, and O12 = {A, Ī, , P2}. In the

remaining organizations it is at least for one species not
clearly defined whether it is present or not. Taking Organ-
ization 2 for example, the presence of A and I is deter-
mined with A present and I absent, but there is no
information concerning species P1 and P2. In Organiza-
tion 6, inhibitor I is present and absent at the same time.
Figure 1(B,C,D)) depicts the reaction networks belonging
to the three consistent organizations. They represent the
three states of the switch. In Organization 10, inhibitor I
is present and shuts down reactions (2) and (3), turning
the switch off. In the other two consistent organizations I
is not present and there is either a flux through reaction



P I A P I P2 2 1+ + → + + , (2a)

P I A P I P1 1 2+ + → + + , (3a)

P1 P2

P2 P1

A simple switchFigure 1
A simple switch. Regulatory switch network (A) and the 
reaction networks belonging to its three consistent organiza-
tions (B, C, and D). Absent species appear in gray. Inactive 
reactions and interactions are dashed. Panel B represents 
Organization 10 = {A, I} where inhibitor I represses both 
reactions from A to P1 and P2. Panels C and D represent 
Organization 11 = {A, P1} and Organization 12 = {A, P2} 
where one pathway is active, either over P1 or P2.

P1 P2

I
A

A

P1 P2

I
A

B

P1 P2

I
A

C

P1 P2

I
A

D

Table 1: A simple switch. All organizations of the regulatory 
switch network (Figure 18.1). Three organizations are 
consistent: 10, 11, and 12 (marked bold).

Org. Species Real Species

1 A -
2 A, Ī -
3 A, I -
4

A, 
-

5
A, 

-

6 A, I, Ī -
7

A, I, 
-

8
A, I, 

-

9
A, , 

-

10
A, I, , 

A, I

11
A, Ī, P1, 

A, P1

12
A, Ī, , P2

A, P2

13
A, Ī, I, , 

-

14
A, Ī, I, P1, 

-

15
A, Ī, , P1, , P2

-

16
A, Ī, I, , P1, , P2

-

P2

P1

P1

P2

P1 P2

P1 P2

P2

P1

P1 P2

P2

P1 P2

P1 P2
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(2) (Organization 11) or through reaction (3) (Organiza-
tion 12). They represent the two other states of the switch.

Results
We apply the method to a model of the central metabo-
lism of E. coli by Covert and Palsson [19]. The authors
used the model to study the effects of regulation on flux
balance analysis. The regulatory network is defined by a
set of boolean functions. There are 73 enzymes, which cat-
alyze 113 reactions. Of these reactions, 43 are regulated by
16 regulatory proteins and therefore controlled by logic
statements. The unregulated proteins are assumed to be
present in the cell at all times. We add an inflow for all of
them in our analysis. To incorporate the regulation into
the reaction network, we add the proteins that catalyze
reactions explicitly as catalysts in the reactions as
described above. Following the introduced protocol, the
regulatory logic is incorporated by introducing pseudo
species and adapting the reactions accordingly. The activ-
ity of several genes is described by boolean statements.
Appropriate chemical reactions are added to model this
gene regulation. We analyze two variants of the network
model by Covert and Palsson [19]: a simplified core net-
work to study wildtype growth phenotypes on different
carbon sources, and the complete network for predicting
knockout experiments. Both networks are listed in the
Supplement (see Additional file 1) and provided as SBML
files (see Additional files 2 and 3).

The core network model
For studying growth on different carbon sources including
diauxic shift, the network is reduced to the set of reactions
that lead from external glucose, lactose, and glycerol to
pyruvate via glycolysis. Additionally, the pentose-phos-
phate pathway reactions and the reactions leading from
glucose-6-phosphate to this pathway are removed. The
resulting network comprises 49 reactions of the original
network. The considered part of the network does not
contain any ATP production. However, ATP is used up by
some reactions, for example in glucose uptake. Therefore,
ATP is provided as input. Furthermore, UTP, NAD, NADP,
Ubiquinone, and external hydrogen ions are necessary for
other uptake and transformation reactions and cannot be
provided by this part of the network. These species are
added as input as well. To model growth, an outflow is
added for every biomass precursor, as in the original net-
work. Since we consider proteins as being active only
when they are produced, an outflow for every protein is
added, modeling degradation. In order to model different
growth media and conditions, self-replicator reactions for
external glucose, lactose, glycerol, and oxygen are added
of the form M → 2 M. These reactions ensure that a con-
stant supply of the respective species is available, when-
ever it is considered to be present. Using self-replicator
reactions, all 24 = 16 different growth conditions can be

modeled in a single network and can be simultaneously
considered in one analysis.

The final model comprises 95 species (including 15
pseudo species representing the absence of a species) and
168 reactions. The complete list of network reactions can
be found in the Supplement.

The complete network model
For predicting the lethality of gene knockouts we use the
complete network model of the regulated central metabo-
lism of E. coli by Covert and Palsson [19]. Depending on
the availability of oxygen and the different carbon sources
in the growth medium, influxes are added for the respec-
tive external species. The currency metabolites HEXT, PI,
ADP, ATP, NAD, NADH, Q, QH2, NADP, NADPH, FAD,
FADH, UTP, and COA are considered to be uncondition-
ally available in the cell. Input reactions are added for all
these species. Without the influxes of external carbon
sources and oxygen, the network contains 227 species and
468 reactions.

Growth Phenotypes on Different Carbon Sources
The core network model contains 16 consistent organiza-
tions. They are listed in Table 2 (see Supplement for a
graphical representation). The consistent organizations
coincide with the 16 possible growth conditions. The
smallest organization, Organization 1, just contains the
input metabolites plus the products of the hydrolyzation
of ATP, ADP, and phosphate. When analyzing the genes
that are active in this organization, we find that the
response regulators for glucose, lactose, and glycerol are
active, indicating that the respective carbon sources are
not present. Due to the absence of oxygen, the aerobic
response regulators ArcA and Fnr are also active.

In Organization 2, external oxygen is available. Conse-
quently, the aerobic response regulators ArcA and Fnr are
absent here. This is the only difference between Organiza-
tions 1 and 2.

Glucose uptake
The first organization that utilizes an external carbon
source is Organization 3, which contains the reactions for
glucose uptake. Consequently, the metabolites of the cen-
tral metabolism are present in this organization. When
examining the proteins of the organization, we find that
the glucose response regulator Mlc is absent. The organi-
zation next in size is Organization 4. Here, lactose is addi-
tionally in the medium. Although the repressor of the lac
gene, LacI, is absent in the organization, no uptake reac-
tions for external lactose are contained in the organiza-
tion. The lactose permease LacY, a product of the lac
genes, is missing. As glucose is available in the medium,
the lactose uptake system is not induced by the presence
Page 7 of 15
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of external lactose. This effect is known as inducer exclu-
sion. The metabolite required for upregulation of the lac
genes is not taken up by the cell. Organization 5 repre-
sents a similar case in which glycerol is available in the
growth medium but not taken up. All external carbon
sources and oxygen are available in Organization 10, but
the cell is still exclusively utilizing glucose. Organizations
6 to 9 represent further input combinations defining
growth conditions with external glucose available. The
availability of oxygen does not change the reactions in the

part of the central metabolism that is considered in the
core model.

Lactose uptake
In Organization 13, lactose is the exclusive external car-
bon source. Consequently, LacI is absent as it is bound by
allolactose, a derivative of lactose. Hence, it cannot
repress the genes necessary for lactose uptake and utiliza-
tion. We find the corresponding gene products present in
this organization, namely LacZ and LacY. Additionally,

Table 2: Growth phenotypes of the core model. Consistent organizations in the core network model of the regulated central 
metabolism of E. coli, ordered by size. 

Consistent Organiza. Species Growth medium Uptake

1 Input metabolites, ADP, PI, ArcA, Fnr, GalR, GalS, GlpR, LacI, Mlc, PykF, Ubiquitous 
proteins

- -

2 Input metabolites, ADP, O2, O2xt, PI, GalR, GalS, GlpR, LacI, Mlc, PykF, Ubiquitous 
proteins

O2 -

3 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, LCTSxt, NADH, PI, PPI, 
UDPG, ArcA, Crr, FadR, Fnr, Food, GalP, GalR, GalS, GlpR, LacI, Pgk, PtsGHI, PykF, 
Ubiquitous proteins

GLC GLC

4 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, LCTSxt, NADH, O2, 
O2xt, PI, PPI, UDPG, ArcA, Crr, FadR, Fnr, Food, GalP, GlpR, Pgk, PtsGHI, PykF, 
Ubiquitous proteins

GLC, LCTS GLC

5 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, GLxt, LCTSxt, NADH, 
PI, PPI, UDPG, ArcA, Crr, FadR, Fnr, Food, GalP, GalR, GalS, LacI, Pgk, PtsGHI, PykF, 
Ubiquitous proteins

GLC, GL GLC

6 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, GLxt, LCTSxt, NADH, 
O2, O2xt, PI, PPI, UDPG, ArcA, Crr, FadR, Fnr, Food, GalP, Pgk, PtsGHI, PykF, Ubiquitous 
proteins

GLC, GL, LCTS GLC

7 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, NADH, PI, PPI, UDPG, 
Crr, FadR, Food, GalP, GalR, GalS, GlpR, LacI, Pgk, PtsGHI, PykF, Ubiquitous proteins

GLC, O2 GLC

8 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, NADH, O2, O2xt, PI, 
PPI, UDPG, Crr, FadR, Food, GalP, GlpR, Pgk, PtsGHI, PykF, Ubiquitous proteins

GLC, LCTS, O2 GLC

9 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, GLxt, NADH, PI, PPI, 
UDPG, Crr, FadR, Food, GalP, GalR, GalS, LacI, Pgk, PtsGHI, PykF, Ubiquitous proteins

GLC, GL, O2 GLC

10 Input metabolites, Glycolysis metabolites, ADP, G1P, GLC, GLCxt, GLxt, NADH, O2, 
O2xt, PI, PPI, UDPG, Crr, FadR, Food, GalP, Pgk, PtsGHI, PykF, Ubiquitous proteins

GLC, GL, LCTS, O2 GLC

11 Input metabolites, Glycolysis metabolites, ADP, G1P, GL, GL3P, GLxt, NADH, NADPH, 
O2, O2xt, PI, PPI, QH2, UDPG, ArcA, Crr, Fnr, Food, GalP, GalR, GalS, GlpABC, GlpF, 
GlpK, LacI, Mlc, Pgk, PtsGHI, PykF, Ubiquitous proteins

GL GL

12 Input metabolites, Glycolysis metabolites, ADP, G1P, GL, GL3P, GLxt, NADH, NADPH, PI, 
PPI, QH2, UDPG, Crr, Food, GalP, GalR, GalS, GlpD, GlpF, GlpK, LacI, Mlc, Pgk, PtsGHI, 
PykF, Ubiquitous proteins

GL, O2 GL

13 Input metabolites, Glycolysis metabolites, Lactose derivatives, ADP, G1P, GLC, LCTS, 
LCTSxt, NADH, PI, PPI, UDPG, ArcA, Crr, Fnr, Food, GalE, GalK, GalM, GalP, GalT, GlpR, 
LacY, LacZ, Mlc, Pgk, PtsGHI, PykF, Ubiquitous Proteins

LCTS LCTS

14 Input metabolites, Glycolysis metabolites, Lactose derivatives, ADP, G1P, GLC, LCTS, 
LCTSxt, NADH, O2, O2xt, PI, PPI, UDPG, ArcA, Crr, Fnr, Food, GalE, GalK, GalM, GalP, 
GalT, LacY, LacZ, Mlc, Pgk, PtsGHI, PykF, Ubiquitous Proteins

GL, LCTS LCTS

15 Input metabolites, Glycolysis metabolites, Lactose derivatives, ADP, G1P, GLC, GLxt, 
LCTS, LCTSxt, NADH, PI, PPI, UDPG, Crr, Food, GalE, GalK, GalM, GalP, GalT, GlpR, 
LacY, LacZ, Mlc, Pgk, PtsGHI, PykF, Ubiquitous proteins

LCTS, O2 LCTS

16 Input metabolites, Glycolysis metabolites, Lactose derivatives, ADP, G1P, GLC, GLxt, 
LCTS, LCTSxt, NADH, O2, O2xt, PI, PPI, UDPG, Crr, Food, GalE, GalK, GalM, GalP, GalT, 
LacY, LacZ, Mlc, Pgk, PtsGHI, PykF, Ubiquitous Proteins

GL, LCTS, O2 LCTS

For brevity, pseudo species indicating the absence of a species are not listed. A list of abbrevations can be found in the Supplement. A species 
followed by 'xt' denotes its extra-cellular form. "Ubiquitous proteins" include the proteins that are considered ubiquitously present in the cell and 
therefore are not listed separately. They are: Eno, Fba, Fbp, GalU, GapA, Glk, GpmA, GpmB, GpsA, PfkA, PfkB, Pgi, Pgm, PykA, and TpiA. "Input 
metabolites" denotes the metabolites provided as input to the system: HEXT (external hydrogen), Q (Ubiquinone), ATP, UTP, NAD, and NADP. 
"Glycolysis metabolites" denotes the metabolites of the glycolysis: G6P, F6P, FDP, T3P2, T3P1, 13PDG, 3PG, 2PG, PEP, and PYR. "Lactose 
derivatives" denotes the derivatives of lactose in the central metabolism: GAL1P, GLAC, UDPGAL, bDGLAC, bDGLC.
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derivatives of lactose, for example galactose, are contained
in this organization. These metabolites are created in the
pathway leading from lactose to the central metabolism.
Another diauxic shift effect can be observed in Organiza-
tion 14. Here, external lactose and glycerol are present as
carbon sources, but as in the case with glucose and lactose,
only lactose is taken up. Organizations 15 and 16 repre-
sent further growth conditions in which lactose is taken
up. Once again, the availability of oxygen does not change
the reactions in the modeled part of the central metabo-
lism.

Glycerol uptake
Glycerol is the exclusive external carbon source in Organ-
ization 11. As all proteins necessary for glycerol uptake are
present, glycerol is taken up. For glycerol uptake, three dif-
ferent enzymes catalyze the reaction from glycerol-3-
phosphate to dihydroxyacetone-phospate, a metabolite of
glycolysis. One of these enzymes, glycerol-3-phosphate-
dehydrogenase, is constitutively expressed in the model.
The other two proteins, glycerol-3-phosphate kinases
GlpABC and GlpD are specific for anaerobic, respectively
aerobic growth conditions. Therefore, GlpABC is present
and GlpD absent in Organization 11, where no oxygen is
available. When oxygen is available as in Organization 12,
GlpD is present and GlpABC absent.

Predicting Gene Knockout Experiments
Knockout experiments are performed using the complete
network model. Gene knockouts are modeled by deleting
all reactions in which the corresponding protein takes part
as educt or product. The set of consistent organizations is
determined for each knockout experiment using a heuris-
tic approach detailed in the Supplement. The lethality of
a knockout can be predicted by the existence of organiza-
tions containing all biomass precursor metabolites. If
such an organizations is not found, the knockout is pre-
dicted to be lethal. We use organization theory (OT) and
an adapted version of organization theory (aOT, see
below) to predict the same gene knockouts as Covert and
Palsson [19], who used regulatory flux balance analysis
(rFBA) for gene knockout predictions. Reference [19] is
also our source for in vivo data and predictions by flux bal-
ance analysis (FBA) and rFBA. The results are summarized
in Table 3. Out of 116 experiments, the predictions by
FBA are correct in 97 cases (83,6%). The predictions by
rFBA are correct in 106 cases (91,4%) and improve the
results of FBA in nine cases. Unmodified OT predicts the
lethality of knockouts correctly in 101 cases (87,1%),
while aOT predicts 106 cases (91,4%) correctly as rFBA.
The additional model-specific assumptions made by aOT
are taken from Covert and Palsson [19] and will be
described in detail now.

Assumption that accumulation of mass is lethal
In two cases, OT predicts a lethal knockout to be nonle-
thal (rpiA, and rpiA + rpiB on glucose). The self-mainte-
nance property allows for the accumulation of internal
metabolites, while in rFBA, only steady states are consid-
ered, and any accumulation of metabolites is regarded as
lethal. In these two cases, the organizations containing all
biomass precursors contain metabolites with positive pro-
ductions. (Note, that all species except the pseudo species
indicating the absence of species decay in the network
model. Hence, all organizations are indeed balanced
organizations. However, accumulation of metabolites
occur, if the decay reactions, which are not present in the
original network, are removed.) Hence, OT predicts the
knockout to be nonlethal while rFBA predicts it to be
lethal as no steady state exists. In aOT we restrict our anal-
ysis to organizations that are balanced (i.e., internal
metabolites are not allowed to accumulate). With this
model specific assumption aOT classifies the two knock-
out experiments correctly.

Assumption that secreted molecules have no effect
Further three incorrect predictions by OT (ackA and pta on
acetate, and ppc on glycerol) yield deeper insights into the
differences between chemical organization theory and
regulatory flux balance analysis, namely in the treatment
of by the cell secreted molecules.

In the case of acetate uptake, there are two pathways that
enable the utilization of this carbon source as depicted in
Figure 2(A). One pathway leads directly from acetate to
acetyl-CoA, and the other takes the route via acetyl phos-
phate. The first pathway is catalyzed by the acetyl-CoA
synthethase (gene acs). According to the model, the corre-
sponding gene is only transcribed if no carbon source is
available or at most acetate or formate, or both. The sec-
ond pathway is catalyzed by acetate kinase A (gene ackA)
and phosphotransacetylase (gene pta). If one of these
genes is knocked out, the first pathway can still support
the central metabolism, given that acetate is the exclusive
external carbon source. In this case, chemical organization
theory predicts both knockouts as lethal, which is not the
case in vivo and correctly predicted by rFBA. The reason for
this discrepancy is that in any network containing the bio-
mass precursor metabolite pyruvate, this metabolite will
be secreted by the cell. Therefore, such a network also
comprises the external form of pyruvate which is an inhib-
itor for the only remaining uptake reaction for acetate.
Consequently, there exists no organization containing all
biomass precursor metabolites when acetate is the exclu-
sive carbon source in the growth medium and the second
pathway is knocked out. Because the presence of metabo-
lites is not explicitly considered in rFBA, this inhibition is
not detected by rFBA. However, because the knockout is
nonlethal in in vivo experiments, the levels of secreted
Page 9 of 15
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pyruvate might not be suffcient to have an effect on the
expression of acs. Or, the cell switches its uptake from ace-
tate to pyruvate until it is depleted and then switches back
to acetate again.

The incorrect prediction of the knockout of ppc on glycerol
as nonlethal can be explained by the same argument.
Gene ppc codes for the phosphoenolpyruvate carboxylase,
which supplies the citric acid cycle with oxaloacetate

Table 3: Comparison of knockout predictions. 

glc gl suc ac rib glc (-O2) Dual Substr. Reference

aceA +/+/+/+ +/+/+/+ -/-/-/- +/+/+/+ [30]
aceB -/-/-/- [31]
aceEF -/+/-/- -/+/-/- +/+/+/+ +/+/+/+ +/+/+/+ (glc-ac) [32]
ackA +/+/+/- [33]
ackA + pta + acs -/-/-/- [33]
acnA +/+/+/+ +/+/+/+ +/+/+/+ +/+/+/+ +/+/+/+ [31,34]
acnB +/+/+/+ +/+/+/+ +/+/+/+ -/+/+/+ +/+/+/+ [34]
acnA + acnB -/-/-/- -/-/-/- -/-/-/- -/-/-/- -/-/-/- [34]
acs +/+/+/+ [33]
adh +/+/+/+ -/+/+/+ [35]
cyd +/+/+/+ [36]
cyo +/+/+/+ [36]
eno -/-/-/- -/-/-/- -/-/-/- +/+/+/+ (gl-suc) [37]
fbaA -/+/+/+ [38]
fbp +/+/+/+ -/-/-/- -/-/-/- -/-/-/- [39]
frdA +/+/+/+ +/+/+/+ +/+/+/+ +/+/+/+ [30]
fumA -/+/-/- +/+/+/+ [31]
gap -/-/-/- -/-/-/- -/-/-/- +/+/+/+ (gl-suc) [37]
glk +/+/+/+ [38]
glk + pfkA +/+/+/+ [38]
glk + pts -/-/-/- [38]
gltA -/-/-/- -/-/-/- [34]
gnd +/+/+/+ [38]
icd -/-/-/- -/-/-/- [34]
mdh +/+/+/+ +/+/+/+ +/+/+/+ +/+/+/+ [40]
ndh +/+/+/+ +/+/+/+ [41]
nuo +/+/+/+ +/+/+/+ [41]
pfl +/+/+/+ [42]
pgi +/+/+/+ +/-/-/- +/-/-/- [38]
pgi + gnd -/-/-/- [38]
pgi + zwf -/-/-/- [38]
pgk -/-/-/- -/-/-/- -/-/-/- +/+/+/+ (gl-suc) [37]
pgl +/+/+/+ [38]
ppc -/+/-/- -/+/-/+ +/+/+/+ +/+/+/+ (gl-suc) +/+/+/+ (glc-suc) [38,40]
pta +/+/+/- [33]
pts +/+/+/+ [38]
pykA +/+/+/+ [38]
pykA + pykF +/+/+/+ [38]
pykF +/+/+/+ [38]
rpiA -/+/-/+ +/+/+/+ +/+/+/+ (glc-rib) [43]
rpiA + rpiB -/-/-/+ -/+/+/+ +/+/+/+ (glc-rib) [43]
rpiB +/+/+/+ +/+/+/+ +/+/+/+ (glc-rib) [43]
rpiR + rpiA +/N/+/+ +/N/+/+ +/N/+/+ (glc-rib) [43]
sdhABCD +/+/+/+ -/-/-/- -/-/-/- +/+/+/+ [30]
sucAB- lpd -/+/+/+ -/+/+/+ -/+/+/+ +/+/+/+ +/+/+/+ (glc-suc) [30,32]
tpi -/+/+/+ -/-/-/- -/-/-/- -/-/-/- +/+/+/+ (glc-suc) +/+/+/+ (glc-gl) [37,44]
zwf +/+/+/+ [38]

Comparing in vivo knockout experiment results with predictions made by FBA, rFBA, OT and by aOT. A '+' indicates growth, a '-' no growth of the 
mutants on the indicated substrate(s). For cases denoted as 'N', data was not available. Results and predictions are derived from in vivo/FBA/rFBA/
(a)OT. In vivo data and references, FBA and rFBA predictions are taken from Ref. [19]. In five instances, predictions made by OT deviate from rFBA 
predictions (bold cases). See text for discussion. The growth medium contained glucose (glc), glycerol (gl), succinate (suc), acetate (ac), or ribose 
(rib). Anaerobic condition is denoted by '-O2'.
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(OA). When ppc is knocked out, the only alternative for
OA production is the glyoxylate shunt, consisting of the
isocitrate lyase (gene aceA) and the malate synthase A
(gene aceB). However, the glyoxylate shunt is only active
if E. coli grows on acetate or fatty acids as the sole carbon
source [21]. Hence, the knockout of ppc on a glycerol
growth medium is lethal in vivo, as the glyoxylate shunt is
not activated. In the model, the glyoxylate shunt is regu-
lated by the fatty acid and acetate response regulators IclR
and FadR as depicted in Figure 2(B). Gene fadR is only
expressed if external glucose, or no acetate is available in
the growth media. If activated, FadR leads to an upregula-
tion of iclR, which then leads to a downregulation of aceA
and aceB, inactivating the glyoxylate shunt. If acetate is
available in the growth medium, fadR is not expressed,
and thus aceA and aceB are expressed at high levels, acti-
vating the glyoxylate shunt. Any organization containing
the biomass precursor metabolite acetyl-CoA also con-
tains acetate, which is secreted. Hence, any organization
containing the biomass precursors also contains the exter-
nal form of acetate, which activates the glyoxylate shunt.

Even though considerable amounts of acetate secretion on
glycerol media has only been reported in high density cul-
tures [22], OT indicates the possibility for E. coli to grow
on glycerol if ppc is knocked out. Our result suggests that

the activation of the glyoxylate shunt would be enough.
There have been reports of E. coli strains growing on glu-
cose media that were also able to grow with ppc knocked
out, which is usually lethal. This was facilitated by a muta-
tion that lead to an upregulation of the glyoxylate shunt
[23]. Thus, the results of OT might be biological feasible
in this case.

The problems encountered in the regulation by secreted
species can be resolved by introducing a pseudo species
representing the secreted version of a species. Therefore, in
aOT, a metabolite that can be secreted is represented by
two species: one represents the metabolite at high concen-
tration (e.g., when externally supplied), the other species
represents the metabolite at low concentration (e.g., when
secreted). These modifications allow aOT to correctly pre-
dict the three cases discussed above. Note that the under-
lying assumption of this modification is also made by
Covert and Palsson [19].

Discussion
By transforming the boolean formalism that represents
the regulation of a metabolic network into reaction rules,
we were able to demonstrate how chemical organization
theory can be applied to regulated metabolic networks.
Using a model of the central metabolism of E. coli [19],

Illustration of knockout experimentsFigure 2
Illustration of knockout experiments. Panel A: Illustration of the sub-network that explains why deletion of pta or ackA is 
wrongly predicted as lethal by OT. According to the model, the alternative route via acs is inhibited by the presence of exter-
nal pyruvate, which is always excreted when biomass is produced. Thus, there cannot be an uptake of external acetate. In vivo, 
however, the excreted pyruvate is negligible. Panel B: Illustration of the sub-network that explains why deletion of ppc is 
wrongly predicted as viable by OT. The glyoxylate shunt is activated if no external glucose but external acetate is present. 
According to the model, acetate is always excreted when biomass is produced. Therefore, the glyoxylate shunt is always 
upregulated, if glucose is not contained in the growth medium. Arrows indicate metabolic reactions, squares indicate activation 
and T-shaped lines inhibition. Dotted arrows indicate schematic reactions, which abstract a set of metabolic reactions.
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each of the 16 wildtype growth scenarios were correctly
predicted down to the presence of each protein. Each
external condition could be directly mapped to a single
organization implying a distinct qualitative state of the
network (i.e., a set of molecular species present).

Knockout experiments
Without specific assumptions, organization theory (OT)
was able to predict the lethality of knockout experiments
correctly in 101 out of 116 cases (87.1%). With model
specific assumptions, "adapted" organization theory
(aOT) was able to predict the lethality of knockout exper-
iments correctly in 106 cases (91.4%), achieving the same
performance as rFBA [19]. When comparing the perform-
ance of OT and rFBA with respect to knockout predictions,
it must be noted that the model used for the comparison
was co-developed with rFBA. Specific assumptions were
made that were deliberatly not made in the pure organiza-
tion analysis as OT shall provide an universal analysis
technique applicable to general biological network mod-
els (e.g., [24]). In this light, we consider the performance
of organization theory as competitive.

Moreover, there are cases in other models in which predic-
tions by OT are more accurate than those by FBA. This
occurs, for example, due to the fact that FBA only incom-
pletely takes co-factors into account. These co-factors are
molecules that are necessary for some reactions to pro-
ceed. They can interact through various means with the
substrates and products of a reaction. In the (unregulated)
metabolic model by Reed et al. [25], we identified 10
cases in which OT correctly classifies a knockout as lethal
while (r)FBA does not. The reason for this difference is
that the identified co-factors are necessary for producing
biomass metabolites (i.e., metabolites that appear on the
left hand side of the biomass producing reaction), but
they are not considered as biomass metabolites (see Sup-
plement for details).

Influence of model specific assumptions
In our analysis of the model by Covert and Palsson [19],
we found five cases in which OT predictions differ from
rFBA predictions. All of these cases can be resolved by aOT
in a straightforward way by taking assumptions into
account also made by rFBA in [19]. In particular, the devi-
ation between OT and (r)FBA has uncovered two critical
aspects:

First, (r)FBA only considers steady states. A system state
with accumulating metabolites is regarded as lethal. In
OT, accumulating metabolites are explicitly allowed to
also cover system states related to growth. To adopt the
steady state assumption in OT however, one simply can
restrict the analysis to balanced organizations in aOT.
However, only considering steady states is not necessarily

the best "natural" choice. As models usually are not com-
plete, the biological system might contain pathways that
are not modeled but can take care of overproduced metab-
olites. Also, certain molecular species accumulate in the
cell at certain time points, for example in different phases
of the cell cycle. Hence, states with positive productions of
certain species are not necessarily lethal.

Second, in OT only the presence or absence of metabolites
is considered. Hence, even smallest concentrations of spe-
cies will potentially trigger further responses. When
secreted metabolites have much lower concentrations
than external metabolites supplied by the growth
medium, this can lead to wrong predictions as secreted
metabolites shall not trigger further regulation (cf. Figure
2). However, the problem can easily be resolved by intro-
ducing two species representing the metabolite at a high
and at a low concentration, respectively. Alternatively, we
could use the positive flow from the carbon source as a
signal for the high concentration of the external metabo-
lite (as it has been done by Covert and Palsson [19]). Note
however, that with the unmodified OT we found a pheno-
type that indicates how to bypass the in vivo lethality of a
knockout in one case.

Identification of all potential qualitative phenotypes
Organization theory provides a rigorous link between an
organization and the potential dynamics of the reaction
system (cf. Theorem 1 in Ref. [5]): if there is a steady state,
then the species with positive concentrations must be an
organization. Thus, we can guarantee that there is no
other species combination that can give rise to a stationary
state. Note that the species sets our method identifies con-
tain also proteins, so that the organizations we obtain
describe not only which metabolites are present but also
which proteins are active in any possible steady state.

A related issue has been raised by Shlomi et al. [26]: The
choice of a flux vector producing biomass in the FBA
phase of rFBA leaves open a whole range of possible flux
vectors in the space of possible solutions of rFBA. Thus,
also the outcome of the experiments might depend on
this choice. In contrast, OT takes all possible fluxes into
account. If there are several qualitative phenotypes (i.e.
sets of species with positive concentrations) consistent
with the regulatory rules, several organizations will be
found (see Methods).

Application to large-scale models
The largest organization does not necessarily encompass
the whole system. Thus when analyzing larger models, OT
allows the exact prediction of those parts of a model that
can give rise to a steady state. Parts missing in such a state
can then be refined. For example in the case of knockout
experiments, we can determine which part of a network is
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still available. Such knowledge is important when trying
to reduce a metabolic model for a specific purpose, for
example to increase the production of a certain metabo-
lite. Even though the presented method can also be used
for genome scale networks, it remains to be seen if all of
the regulated organization in such a system could still be
found. The bottleneck in the computation is the determi-
nation of all organizations of a regulated network before
checking if they are consistent. Their number can grow
exponentially with network size, in which case computa-
tion is primarily constrained by the available memory.
This problem might be circumvented by an approach that
partitions the solution space of the self-maintainance con-
dition and searches those partitions in parallel for organ-
izations (see Supplement for algorithmic details).
However, such an approach has not yet been imple-
mented. Currently, the analysis of a pure (non-regulated)
metabolic network of genome scale by [25] is possible
with the heuristic approach (see Supplement). If the
number of organizations in such a network is small, all of
them can be found with the heuristic approach [27].
Whether and how this scales to regulated genome-scale
models is an open issue.

Other Approaches for Integrated Network Analysis
In recent years other approaches for the integration of reg-
ulatory networks into stoichiometric analysis have been
proposed: Steady-state regulatory flux balance analysis
(SR-FBA) [26] builds on rFBA and allows the flux analysis
within one step. Boolean regulatory rules are integrated
into the FBA approach by using mixed-integer linear pro-
gramming. Thus, fluxes that obey the regulatory con-
straints can be computed directly without prior
determination of the state of the regulatory network as in
rFBA. In contrast to our approach SR-FBA focuses, like
FBA, on specific fluxes through the network. Thus a possi-
ble flux for each possible reaction among the molecules
like in organization theory (by the definition of closure),
is not required for a feasible flux vector in SR-FBA. Like-
wise problems with co-factors like in FBA occur (see Dis-
cussion and Supplement).

Another approach, a matrix formalism to analyze regula-
tory systems, has been proposed by Gianchandani et al.
[28]. Similar to our approach, they formulate the regula-
tory network by representing it as reactions in the stoichi-
ometric matrix. Then they analyze the integrated network
by using extreme pathway analysis [29]. The main differ-
ence to our work is that modelling based on the stoichio-
metric matrix requires a flux through the regulatory
network. Thus inhibitors and activators are consumed
upon interaction and are not modelled as catalysts. Even
though the authors only analyzed a pure regulatory net-
work, an integration into a metabolic network seems to be
possible. Interestingly, the concept of a functional state of

the resulting network, i.e., the state when all external
inputs are defined, resembles the organizations we found.
However, those states are restricted to the regulatory part
of the network, since the closure of the participating mol-
ecules is not taken into account. Another aspect of this
concept that has not yet been analyzed is to which extent
this method can also be applied to larger networks, for
example those we analyzed in this work. The integration
of the regulatory network into a metabolic network using
a flux through the network might further increase the
combinatorial explosion of the number of extreme path-
ways. Nonetheless, this approach is valuable for identify-
ing underlying pathways in a regulatory network, a
prospect which has not yet been analyzed in connection
with OT.

Conclusion
Because OT does not rely on kinetics, it can serve as a first
step to analyze the potential behavior of regulated sys-
tems. The analysis delivers all potential network pheno-
types described by the sets of molecular species that can
coexist over a long time (cf. Theorem 1 in Ref. [5]). The
further analysis of the network can then focus on interest-
ing phenotypes. Taking the other direction, it is possible
to validate in silico network models. All phenotypes of
interest observed in vivo should have corresponding
organizations in the network model.

When regulation is considered in metabolic networks, the
presented approach offers the advantage that both the
metabolism and its regulation are modeled within one
single framework: chemical reaction rules forming a net-
work. The unification comes at the expense of introducing
a set of pseudo species to represent the absence of species.
This allows one to model and consider inhibitory interac-
tions within the framework of organization theory. Using
an appropriate user interface, the pseudo species can be
easily hidden.
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