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Abstract
Nickel (Ni) compounds are widely used in industrial and commercial products including
household and cooking utensils, jewelry, dental appliances and implants. Occupational exposure
to nickel is associated with an increased risk for lung and nasal cancers, is the most common cause
of contact dermatitis and has an extensive effect on the immune system. The purpose of this study
was two-fold: (i) to evaluate immune response to the occupational exposure to nickel measured by
the presence of anti-glycan antibodies (AGA) using a new biomarker-discovery platform based on
printed glycan arrays (PGA), and (ii) to evaluate and compile a sequence of bioinformatics and
statistical methods which are specifically relevant to PGA-derived information and to
identification of putative “Ni toxicity signature”. The PGAs are similar to DNA microarrays, but
contain deposits of various carbohydrates (glycans) instead of spotted DNAs.

The study uses data derived from a set of 89 plasma specimens and their corresponding
demographic information. The study population includes three subgroups: subjects directly
exposed to Nickel that work in a refinery, subjects environmentally exposed to Nickel that live in
a city where the refinery is located and subjects that live in a remote location. The paper describes
the following sequence of nine data processing and analysis steps: (1) Analysis of inter-array
reproducibility based on benchmark sera; (2) Analysis of intra-array reproducibility; (3) Screening
of data - rejecting glycans which result in low intra-class correlation coefficient (ICC), high
coefficient of variation and low fluorescent intensity; (4) Analysis of inter-slide bias and choice of
data normalization technique; (5) Determination of discriminatory subsamples based on multiple
bootstrap tests; (6) Determination of the optimal signature size (cardinality of selected feature set)
based on multiple cross-validation tests; (7) Identification of the top discriminatory glycans and
their individual performance based on nonparametric univariate feature selection; (8)
Determination of multivariate performance of combined glycans; (9) Establishing the statistical
significance of multivariate performance of combined glycan signature.

Copyright: © 2013 Vuskovic M, et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Department of Computer Science, San Diego State University, San Diego 92182 CA, USA, Tel:
858-344-7857; mvuskovic@mail.sdsu.edu.

NIH Public Access
Author Manuscript
J Proteomics Bioinform. Author manuscript; available in PMC 2014 April 13.

Published in final edited form as:
J Proteomics Bioinform. ; 6(12): 302–312. doi:10.4172/jpb.1000295.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The above analysis steps have delivered the following results: inter-array reproducibility ρ=0.920
± 0.030; intra-array reproducibility ρ=0.929 ± 0.025; 249 out of 380 glycans passed the screening
at ICC>80%, glycans in selected signature have ICC ≥ 88.7%; optimal signature size (after
quantile normalization)=3; individual significance for the signature glycans p=0.00015 to 0.00164,
individual AUC values 0.870 to 0.815; observed combined performance for three glycans
AUC=0.966, p=0.005, CI=[0.757, 0947]; specifity=94.4%, sensitivity=88.9%; predictive (cross-
validated) AUC value 0.836.
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Introduction
Nickel is used in large number of every-day applications including coins, jewelry, household
and cooking utensils, orthodontic and orthopedic implants, and batteries [1]. Exposure to Ni
as a result of daily dermal contact or through occupational or environmental sources is
known to produce a variety of pathologies including allergic contact dermatitis [2] and
cardiovascular diseases [3]. Long-term occupational exposure is associated with lung and
nasal cancers [4], and an increased risk for acute respiratory syndromes such as mild
irritation and inflammation, bronchitis, pulmonary fibrosis, asthma, and pulmonary edema
[5]. The general population is also exposed to Nickel via ingestion, since Nickel is a
contaminant in drinking water and is present as a component or contaminant of foods [6,7].
Nickel can also be secreted in human breast milk leading to early dietary exposure of infants
[8].

Due to the growing evidence about their toxic effects, in 1990, certain Ni compounds have
been classified by the International Agency for Research on Cancer (IARC) as being
carcinogenic to humans [9]. Excellent reviews of carcinogenic activities of Nickel are given
[10-13].

Understanding the mechanisms of Nickel carcinogenicity and identification of biomarkers of
susceptibility to Nickel toxicity is needed to allow development of tests for earlier
identification and protection of individuals with high risk for the development of Nickel-
related diseases.

This paper presents early results of linking Nickel exposure and presence of Nickel in
human body to immune response measured by expressions of anti-glycan antibodies (AGA)
using a new platform which is based on printed glycan arrays (PGA).

PGA is a new biomarker-discovery platform, which has been developed and utilized for
biomarker discovery in the last several years [14]. PGA has useful advantages over nucleic
acid-based testing and other platforms including: minimal invasiveness of blood sampling,
stability of antibodies, low cost and short turnaround time. The printed glycan arrays (PGA)
are similar to DNA microarrays, but contain depositions of various carbohydrate structures
(glycans) instead of spotted DNAs. Most of these glycans can be found on the surfaces of
human normal and cancer cells, as well as on the surfaces of human infectious agents such
as bacteria and other pathogenic microorganisms. Pathologies including infection,
inflammation and malignant transformation are associated with the appearance of abnormal
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glycosylation of proteins and lipids present on surfaces of altered cells in tissues and in
circulation.

The malignancy-related abnormal glycans are called tumor-associated carbohydrate antigens
(TACA) [15]. There is evidence that numerous TACAs are immunogenic [16], and that the
human immune system can generate antibodies against them. We have also demonstrated
that the dynamics of anti-glycan antibodies detected by PGA can indicate the status of
immune response to malignancies [17-19]. A prototype of PGA with a library of 200 glycan
structures was built at Scripps Research Institute, La Jolla, California, under the auspices of
the Consortium for Functional Glycomics (CFG), [20]. Further development and
standardization of a PGA with 211 glycans was conducted at Cellexicon, Inc., La Jolla. The
latest PGA version with a total of 392 probes, containing 380 glycans of pharmacological
purity grade and 12 control probes was developed in the Tumor Glycome Laboratory at
NYU SoM. The 211 and 380 PGA versions were developed in collaboration with
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, of the Russian Academy of
Sciences, Moscow, Russia.

This paper describes a sequence of data processing and analysis steps, starting with quality
analysis of raw PGA data and ending with a putative glycan signature which provides a
basis for identification of individuals with high concentration of Nickel in urine. To the best
of our knowledge, this is the first study in which the systematic immune-profiling of AGAs
using PGA in plasma of individuals with different levels of occupational exposure to Nickel
identifies the putative immune signature of Ni toxicity. The presented results demonstrate a
potential of PGA-based analyses of serum/plasma anti-glycan antibodies coupled with the
described bioinformatics approach in search of the disease biomarkers.

Methods and Materials
Demographic and clinical data

The study population included 3 groups of subjects: (1) Nickel refinery workers in Jinchang
(30 cases), (2) Residents of Jinchang (30 cases) and (3) residents of adjacent city of Zhangye
(29 cases). The latter two groups of subjects had only environmental exposures to nickel.
The human subject protocol for this study was approved by the Institutional Review Boards
of both the New York University School of Medicine and the Lanzhou University School of
Public Health (IRB # 09-0726). Written informed consent was obtained from all
participating subjects.

The demographic information included: age, smoking status, urinary creatinine [μg/g] and
Urinary Ni [μg/L]. A characteristic of the study subjects is presented in Table 1 (Additional
information about the study population can also be found in [21].)

Urinary Ni, used to index the individual’s personal exposure to Ni, was analyzed for all
study subjects by inductively coupled plasma mass spectroscopy (Elan DRCII; PerkinElmer,
Norwalk, CT USA, [22]). Urinary cotinine, a major metabolite of nicotine and a valid bio-
marker of environmental tobacco smoke, was measured in each subject to confirm smoking
status and control its potential confounding effects. Urinary cotinine measurements were
measured using a Cotinine Direct ELISA kit (Immunalysis, Pomona, CA, USA [23]).

A simple preliminary analysis of demographic data shows that there is a significant
difference in the level of Nickel in urine among directly exposed subjects in refinery and the
subjects who are not working at refinery. For example Figure 1 shows the distributions of
urinary Nickel concentrations among three subgroups of subjects; the Kolmogorov-Smirnov
test of unequal distributions gives the following p-values: 0.0017 between refinery workers
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and Jinchang residents, and 0.0073 between refinery workers and Zhanghye residents.
However, the distributions for subjects at Jingchang and Zhanghye are significantly equal.
In addition, Figure 2 illustrates the fact that there are a greater number of subjects within the
refinery workers with high content of Nickel in urine [>9.98 μg/L] as compared with the
number of subjects in the two other study groups. It is important to notice that some
individuals not exposed occupationally to Nickel may also have high [>9.98 μg/L] content
of Nickel in urine.

Printed glycan arrays
A printed glycan array (PGA) is used as a biomarker-discovery platform in a form of a
“glycochip”. This glycochip is generated using standard robotic nano-printing technology
that allows printing of a large range of amine-functionalized glycans/probes on amine-
reactive N-hydroxysuccinimide (NHS)-activated glass slides (Schott GmbH, Germany) with
surface modified for rapid covalent coupling. Glycans are printed in concentration of 50 μM
generating spot sizes of ~ 70 microns. In addition to 380 glycans, 12 control probes
including print buffer samples as reagents for background quality control and a spot-
reference location are included in each print set of 392 probes. All these 392 probes are
distributed within two sub-arrays, each containing replicate subarrays of 14×14=196 probes/
spots. Each glycochip divided into two subarrays, accommodates 24 sub-grids, with 12
replicates for each printed glycan/probe.

The measurement of binding of human anti-glycan antibodies (AGA) to arrayed glycans,
also called “immunoprofiling”, is achieved as described in [24]. Briefly, the glycochip is
first incubated at 37°C with the subject’s plasma diluted 1:15 in a Carrier Buffer, allowing
the binding of plasma antibodies to arrayed glycans. Plasma IgG, IgM and IgA
immunoglobulins bound to glycans are visualized simultaneously with the “combo”
biotinylated secondary goat anti human IgG, IgM and IgA antibodies (Pierce Biotechnology,
Inc., Rockford, IL), and streptavidin-Alexa555 (Invitrogen/Molecular Probes, Carlsbad, CA).
Fluorescence signal intensities that correspond to the binding of antibodies to glycans are
scanned using Perkin Elmer ScanArrayG at 90% laser power, and quantified with ImaGene
software (BioDiscovery, Inc., El Segundo, CA). The total relative fluorescence signal
intensity values (appx. range: 1,000 – 12,000,000 Relative Fluorescence Units) are used for
further data processing and analyses.

The quantified images are automatically analyzed for missing, or for overflowed spots (rare
events) which are excluded from the final summarization of replicates performed by median.
This process has enabled robust and accurate measurements.

Figure 3 shows an excerpt from a scanned image of a glycochip developed with plasma of
one of the study subjects. The four subgrids represent two replicates (columns) and two
complementary subarrays (rows) which contain all 380 glycans in our current library and 12
control probes.

Quality analysis and data pre-processing
In order to begin statistical analysis of PGA data with the goal of discovering potential
putative signatures associated with the immune-responses to Nickel exposure, it is vital to
first address the accuracy and the reproducibility of measurements, specifically the intra-
and inter-array reproducibility of PGA signals. The former relates to precision of
measurement of AGA bindings within a single array, while the latter relates to between-
array biases induced by the platform, or even by the quality of plasma.

The first step in this quality analysis is to test the platform with the benchmark sera. The
process of printing, development and scanning of glycochips at NYU Tumor Glycome
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Laboratory is interleaved with immunoprofling of the test sera called here “pooled arrays”.
The test sera is prepared by pooling sera from several healthy subjects, which are then stored
in larger quantities for usage in all similar experiments. The interleaving is performed for
each new glycochip print batch, and in each of the immunoprofiling experiments/days. In
this project 8 pooled arrays have been used. The scatter plots in Figure 4 show concordance
between four typical pairs of pooled arrays out of total of 28 combinations (others were
omitted to fit the page). The labels at the diagram axes indicate the instances of pooled sera
arrays. The numbers above diagrams are Lin’s concordance correlation coefficient [25] CCC
(left) and the Pearson correlation coefficient PCC (right). The fact that PCC is consistently
higher than CCC, suggests a linear inter-slide bias in location and scale. This bias can be
mostly removed by various normalization techniques. The results for all 28 combinations of
pooled arrays are summarized in Figure 5.

The four diagrams in Figure 5 show Lin’s Concordance Correlation Coefficient (CCC),
Pearson Correlation Coefficient, Overall Lin’s Concordance Correlation Coefficient [26,27]
(OCCC), and Coefficient of Variation (CV). The first diagram (CCC) suggests relatively
large bias between arrays, while the Pearson CC shows that the inter-array concordance is
satisfyingly good. The OCCC and CV are computed independently for each array: the
former is obtained by applying CCC to 66 combination pairs of 12 replicated subgrids on the
same glycochip. These two diagrams show excellent intra-array concordance, i.e. small
measurement error. All diagrams are obtained after screening out the glycans with small
intensities, small Inter Class Correlation coefficient (ICC, discussed later) and the highly
correlated glycans (ρ>0.95). The number of glycans that have survived the screening is 249
out of total 380 glycans in our current PGA library.

To demonstrate the effect of inter-array bias among pooled sera, distributions of signal
intensities are shown in Figure 6. The distributions are presented as sorted signal intensities
for each array, across all glycans which have survived the screening. For the purpose of this
diagram the highly correlated glycans were not screened out. In order to emphasize the
differences, the diagram shows only 35 glycans associated with highest signal intensities of
bound AGAs, however similar differences can be observed with all other glycans. The first
diagram confirms the finding in Figures 4 and 5 about the inter-array bias. The second
diagram shows the distributions after intra-array normalization (A-normalization). The
dotted line in both diagrams shows mean distribution taken across all arrays, which is
equivalent to distributions after quantile normalization [28,29] (Q-normalization). As
shown, the A-normalization is not entirely effective as the Q-normalization. Other
normalization techniques, such as between-array normalization, which is essentially
equivalent to IQR-normalization, and sequential A-Q normalization were also considered,
but they performed unfavorably.

Figure 7 shows similar intensity distributions for the study data used in discriminatory
analyses.

The next step addresses the ICC of the measurements, i.e. the ratio between the biological
variability across all subjects and the total variability which includes the controlled
measurement error. The results are shown in Figure 8. The common x-axis of all diagrams in
the figure represents glycans sorted according to decreasing values of ICC (black line). The
ICC is estimated as in [30]. The upper diagram in blue color shows the robust version of
ICC obtained by appropriate replacements of means and standard deviations by medians and
median absolute deviations (MAD) respectively. The lower two diagrams (green and
magenta) represent coefficient of variation and its robust version. The relatively high ICC
values for most of the glycans, as well as the low CV values assure that the data in Nickel
Exposure Study qualify for further discriminatory analyses.
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Discriminatory samples and signature length
After having established that the data obtained from AGA immunoprofiling qualify for
further investigation it is necessary to define the subsamples which can be used in
discriminatory analysis. Our original goal was to identify glycan-based immuno-signature
that would allow identification of individuals exposed to potentially dangerous Nickel
sources, such as occupational exposure to Nickel in Nickel refinery. We have therefore first
compared three study subpopulations where one subpopulation included 30 workers of
Nickel refinery, and two other subpopulations with subjects exposed to only environmental
Nickel sources. Interestingly, this analysis did not deliver plausible “signature of hazardous
Nickel exposure”, most likely due to yet unknown factors, such as luck of adequate glycan
probes.

We have then started a search for differences in immunoprofiles of individuals based on
their Urinary Nickel content regardless of their location and assignment to a study sub-
group. A straightforward approach would be to define a simple cutoff value which separates
individuals with low from high concentration of Nickel in urine. However, this approach did
not yield satisfactory results, seemingly due to the adverse impact of cases with medium
concentrations of urinary Nickel, which produced undesired clutter. The approach that has
offered better results was to exclude the cases with medium concentrations. For example, the
cutoff value can be the number of cases in balanced subsamples with low and high
concentrations. Determination of this cutoff value is a matter of compromise: large value
increases the clutter, while the small value causes loss of discriminatory power, both
resulting in diminished statistical significance.

For the purpose of finding the optimal solution we have run a series of bootstrap tests for
various subsample sizes and for various signature lengths. The replicate statistic has been
chosen to be area under the ROC curve (AUC), which has a number of desirable properties
over discrimination accuracy, including independence from discriminant bias, good
resolution and ranking ability [31]. The AUC is computed for a combination of normalized
signals associated with a chosen glycan signature, i.e. set of features. The combination is
performed through projection determined with multivariate logistic regression (MLR). Each
bootstrap run contained 500 replications based on permutations instead of usual resampling
with replacement, the former being more conservative. The results for quantile-normalized
data are presented in Figure 9, which shows the achieved significance level (ASL) [32]. The
figure suggests the optimal subsample sizes of 18 subjects. It should be noted that the same
repeated bootstrap tests were run for other normalization approaches and for sample sizes
smaller than 16 and larger than 20, all giving inferior results. This cutoff value implies low
concentrations less than or equal to 4.44 μg/L of Urinary Nickel and high concentrations
greater than or equal to 9.98 μg/L of Urinary Nickel.

So determined subsamples can be now used to perform a simple univariate feature selection,
for example the non-parametric Wilcoxon-Mann-Whitney rank-sum test, the results are
presented in the next section.

Once the samples of two discriminatory groups are determined, it remains to decide the
signature length, i.e. the number of top selected glycans, which minimize the likelihood of
over fitting. This can be done by multiple cross-validations performed for various sizes of
signatures, then by choosing the signature size which yields the optimal cross-validated
performance. This is shown in Figure 10, which presents the 100 times repeated 10-fold
cross-validation. For the performance measure is again used the combined AUC value. The
diagram shows that the optimal cross-validated AUC value can be achieved with three-
glycan signatures, which yields the predictive AUC value 0.836, while the training
(observed) AUC value is 0.966. In addition, the diagram in Figure 10 presents the Kuncheva
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stability index (SI) [33], which reaches the maximum at two glycans. The reason SI drops
after two glycans is that the third and fourth glycan (GID=133 and 136, Figure 11) alternate
in various cross-validation folds.

The stability of feature selection can also be illustrated by the frequency of occurrences of
each feature in total of 100×10=1000 cross-validation folds, presented in Figure 11. As seen
the glycan GID=191 has been selected 100% of times, while the glycans 264 and 133 were
selected 97% and 93% of times respectively. After the third glycan, the frequencies drop
significantly.

Results and Discussion
In the previous section we have determined the subsamples associated with low and high
level of Nickel in urine which can be now used in discriminatory analysis and in
identification of putative glycan signature. In addition, we have determined the optimal
signature size, which will least likely cause over fitting.

Discriminatory analysis
A first step in discriminatory analysis is to perform some univariate test for all glycans of
interest. Since the PGA signals depart significantly from normal distribution (they even for
the most glycans have multinomial distributions) we prefer to use some non-parametric test,
such as the Wilcoxon-Mann-Whitney two-sample rank sum test. An additional benefit of
this test is that the AUC values are directly linked with the p-values of the test. The same
test was employed in the previous section, where the statistic used for sample selection and
cross-validation was the AUC value.

The test was applied to quantile-normalized PGA signals obtained by median summarized
replicates. The result for 10 glycans with lowest p-value, or highest AUC value is shown in
Table 2.

The first column of the table represents the glycan identification numbers (GID). The
corresponding glycan structures are shown in Table 3. The signs of the z-statistic indicate
whether the PGA signals decrease (negative Z), or increase (positive Z) with the increase of
urinary Nickel levels. The relatively high AUC values suggest high discriminatory power of
the samples. Low values of the false discovery rate (FDR) imply a good confidence in the
results, especially for the first three glycans, which is in compliance with the finding in
cross-validation test.

The sixth column of the table, AUCc, shows the cumulative AUC values obtained for
combination of all glycans above each respective glycan. For example the cumulative value
for combination of three top glycans, GID=191, 264, 133, is AUCc=0.966. The combination
of glycans is performed by multivariate logistic regression.

A convenient way to visualize the performance of the training set for the selected glycan
signature can be achieved with the Immunoruler [34]. The immunoruler is a bar graph which
presents the subjects with low (left bars in blue) and the subjects with high (right bars in
magenta) urinary Nickel. The bars indicate the risk scores, which are quantified as
probability of membership to the group of high urinary Nickel. The bars are sorted
according to these probabilities for each group separately. The two shades of each color
indicate the quartile regions. The risk scores are computed by combining the quintile-
normalized signals for the signature determined above. The combination of the intensities
associated with glycans from the signature is based on MLR. This kind of visualization
makes apparent the number of false positives FP=1, false negatives FN=2, true positives
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TP=16 and true negatives TN=17, as well as specificity Sp=94.4% and sensitivity Sn=88.9%.
The training precision is 91.7% and the observed AUC value is 0.966 (Figure 12).

The individual statistical significance of each glycan from the selected signature is evident
from p-values and FDR shown in Table 2.

Now we need to establish the statistical significance of the observed AUC=0.966 obtained
for the combined three-glycan signature. This can be achieved with a bootstrap test. In order
to keep a conservative approach we have performed the unbiased permutation bootstrap with
1000 replications, rather than the bootstrap based on resampling with replacement. The
empirical probability density function under null hypothesis is presented in Figure 13.

As shown, the two-sample confidence interval is CI=[0.757, 0.947], or one-sided upper
bound CU=0.935. Consequently the achieved significant level is ASL=0.005, which gives a
very strong evidence against the null hypothesis.

Finally, the comparison of normalized, but not transformed intensities of low (diagrams at
left) and high (diagrams at the right) urinary Nickel for selected signature glycans is
presented in Figure 14. As shown, the intensities are decreasing in subjects with high level
of Urinary Ni for glycan GID=191, while the effect is opposite for glycans GID=264 and
133, which complies with the Z-values in Table 2. The bottom diagrams show the combined
intensities.

Association with other demographic factors
The focus of this study was to find association of Urinary Ni with the immune response
measured by anti-glycan antibodies (AGA). A natural question after the analysis presented
above is whether there is a possibility of association of AGA with other demographic
factors, such as age, smoking and creatinine, listed in Table 1.

Since the age of subjects is of interest we are showing the result of linear regression of the
Urinary Ni and the AGA for the most expressed glycan in signature, GID=191, with the age
(Figure 15).

In order to decrease the influence of outliers we have used in the second diagram the log-
transformed quantile normalized intensities. As shown the age does not correlate with the
Urinary Nickel and with the AGA, at least for the data at hand (ρ=0.076 and ρ=−0.093,
respectively).

Another variable of interest would be the smoking status of subjects. Unfortunately, the
number of non-smoking subjects is only 15 versus 74 smokers, which makes a proportion of
smokers 5:1. The small nonsmoking group and high sample imbalance makes it difficult to
draw any plausible conclusion.

Yet another variable from the list is creatinine. The bottom diagram of Figure 15 indicates
that the Urinary Ni and creatinine are relatively highly correlated considering the variation
in measured data (ρ=0.761), suggesting that these factors are potentially interchangeable in
our analysis. Therefore we have used Urinary Ni instead of creatinine which has offered
slightly better performance in terms of stability of feature selection and statistical
significance of combined AUC value. This however needs to be further investigated in a
future study with larger samples.
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Nickel exposure, glycosylation and AGA
The direct link between the nickel exposure, aberrant glycosylation and anti-glycan
antibodies has not yet been established. Cellular glycosylation is a highly dynamic process
carried out by a concerted action of hundreds of glycosyltransferases, glycosidases and other
proteins, and it is most likely that any nickel-related molecular damage on the nucleic acid
level that results in cellular malignant transformation will also result in aberrant
glycosylation. Salnikow and Kasprzak [35] discuss the direct effects of the chronic exposure
to nickel on altering glycosylation and assembly of the extracellular matrix components as
well as assembly and function of surfactants and complement by depleting intracellular
ascorbate. One of the mechanisms of nickel on the human innate immunity has recently been
elucidated by the elegant demonstration that nickel directly triggers human Toll-like
receptor 4 (TLR4) and Pattern Recognition Receptor (PRR) signaling which results in the
expression of multiple proinflammatory genes [36]. It is therefore likely that the expected
modifications of glycosylation on the cell surface and in the extracellular matrix participate
in the immune response that then targets molecules with the aberrant glycosylation pattern.

The putative Ni-toxicity AGA-based signature identified here brings novel, and potentially
very important, findings which reveal a significance of glycans some of which are yet
known to the field of the disease biomarkers. For example, phosphorylated LacNAc, 6-P-
Galβ1-4GlcNAcβ (GID 191), a main discriminatory glycan in the putative Nitoxicity
signature, has not been reported as a component of the glycome. This glycan has been
synthesized in the laboratory of Prof. Nicolai Bovin as an analog of 6-O-Su-
Galβ1-4GlcNAc(6′-O-Sulfate-LacNAc) to study the specificity and effect of charge versus
moiety structure in antibody recognition of Galβ1-4GlcNAcβ and Galβ1-4GlcNAcβ-
containing negatively charged carbohydrates. To our surprise, while 6-P-Galβ1-4GlcNAcβ
has shown major decrease in antibody bindings in subjects with high versus low urinary Ni,
its sulfated analog 6-O-Su-Galβ1-4GlcNAc did not show any significant differences in
antibody binding intensities between these two groups. We have also not found any
significant correlation of antibody signal binding between 6-P-Galβ1-4GlcNAcβ and other
glycans present on our PGA. Because of the well-known toxic metal-chelating properties of
phosphate, it is tempting to hypothesize that the antibodies binding on the PGA to this
phosphorylated glycan, are in fact involved in the clearance of Nichelating phosphorylated
and glycosylated macromolecules.

While N-acetyllactosamies, in particular poly-N-acetyllactosamies consisting of repeated
units of Galβ1-4GlcNAc (GID 384), have been well-recognized as Tumor Associated
Carbohydrate Antigens [37-39], association of Galβ1-3GlcNAc or LewisC (a disaccharide in
GID 379) with malignant transformation is much less known. We have recently found
antibodies differentially binding several glycans containing LewisC disaccharide in sera of
patients presenting with Non-Small Cell Lung Carcinoma and Malignant Pleural
Mesothelioma as compared with sera of control subjects. The LewisC glycans appeared in
the putative signatures of these tumors, and we are currently investigating the significance of
this glycan in malignant transformation.

Highly correlated, differential antibody binding to several lactose (Galβ1-4Glc) glycans
containing glycine or two amino acids as a spacer is a novel finding, and the true antibody
target remains unknown. These molecules probably mimic aberrant molecular patterns on
malignant cell surface where glycosphingolipids (inner Lac) play a significant role [39,40].

Based on the presented results, we hypothesize that the elevated level of nickel in urine
signals a certain type of cellular and possibly systemic damage which is reflected by the
differential expression of specific anti-glycan antibodies. The biological targets that include
the glycans identified here by the antibody recognition remain unknown. Altogether, the
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findings reported here could lead to the further investigations of the mechanisms and
biomarkers of an individual’s susceptibility to the nickel toxicity.

Conclusion
The goal of this study was to investigate the evidence of immune-response in workers of a
Nickel refinery to hazardous levels of Nickel in their work place and the immune-responses
reflecting elevated levels of Urinary Ni, as measured by anti-glycan antibodies (AGA). For
this purpose we have evaluated immunoprofiles of plasma specimens from 89 subjects,
some directly exposed to high levels of airborne Nickel in a flash-smelting workshop of
nickel refinery, and some exposed to only environmental sources of Nickel. The plasma
specimens were processed using the new high-throughput platform based on printed glycan
arrays (PGA) in the form of a glycochip developed in the Tumor Glycome Laboratory of
NYU School of Medicine. The extensive quality analysis has shown that data obtained from
PGAs qualify for subsequent discriminatory analysis: the mean Pearson inter-array
concordance coefficient for test sera vas ρ=0.921 ± 0.03, proving a good platform inter-array
concordance, and the mean coefficient of variation across PGA replicates CV=19.8 ± 2%,
proving good intra-array reproducibility. Similar analysis performed on actual Nickel data
(89 arrays) has resulted in CV=21.6 ± 4.9%, and inter class correlation coefficient (ICC)
larger than 85% for 260 glycans on the chip (≥ 88.7% for glycans found in the signature).
The successful feature selection has been achieved after the entire collection of Nickel
specimens were divided into two groups, one containing subjects with low (≤ 4.44 μg/L) and
the other containing subjects with high (≥9.98 μg/L) level of urinary Nickel. The screened
and the quantile-normalized PGA signals were then used in univariate feature selection
based on non-parametric Wilcoxon-Mann-Whitney rank-sum test, which has suggested the
signature GID=191, 264 and 133. The number of glycans in the signature is limited to three
glycans to avoid over-fitting, as determined by an unbiased 100 times 10-fold cross-
validation test applied to various sizes of signatures. The signals associated with the
signature can be combined using projection based on multivariate logistic regression, thus
forming a single discriminative marker. The observed AUC value for this marker is 0.966.
The statistical significance of this result has been confirmed with the permutation bootstrap
test with 1000 repetitions which has provided a strong evidence against the null hypothesis
at achieved significance level ASL=0.005.

The work presented in this paper entails additional investigation, such as:

• Correlation (regression) of Urinary Ni concentration with the combined
discriminatory marker and other confounding factors; for example, length of
exposure and subjects’ other demographic and clinical information such as age,
smoking, inflammation, presence of other diseases, etc.

• Investigation of the impact of direct exposure to airborne Nickel on the level of
antibodies against glycans as opposed to the environmental exposure.

• Linking the urinary Nickel levels with the potential clinical presentation of disease
symptoms. A wide range of urinary Nickel levels in refinery workers with a long-
term, direct occupational exposure to Nickel suggests significant differences in
individual biological responses to this occupational carcinogen.

All these investigations require stratification of the already small cohort, which would
significantly reduce the operative sample sizes, thus lowering the statistical significance and
the plausibility of inference. Therefore much larger study cohorts are required. In addition,
more extensive clinical and demographic information is also needed, including the follow-
up health status information of the study subjects.
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Figure 1.
Probability density functions of Urinary Ni in subjects from three locations. The
distributions show that a significantly larger number of workers of the refinery have a
significantly higher content of Nickel in urine as compared with the subjects at the two other
locations, with no occupational exposure to Nickel.
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Figure 2.
Number of subjects with low and high content of Urinary Ni within three groups: workers of
the refinery located in Jinchang, residents of Jinchang who are not working in refinery and
residents of a remote city of Zhanghye. The subjects of the former group are directly
exposed to Nickel, while the subjects of the latter two groups are only environmentally
exposed to Nickel.
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Figure 3.
Excerpt from a scanned image of a glycochip developed with plasma of one of the study
subjects. The microarray contains 392 probes replicated 12 times and arranged into 24
subarrays. The 392 probes contain a library of 380 glycans printed in concentration of 50
μM, and 12 control probes. The glycans are distributed into two subarrays, each containing
196 probes. Each sub array contains 14 by 14 spots. The figure shows two replicated sub
grid pairs.
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Figure 4.
Concordance log-log scatter plots for Nickel Exposure Study. The plots are part of inter-
slide quality control which uses slides developed on different dates and on different PGA
print batches with benchmark sera obtained from a pool of four healthy subjects. In this
study there were 8 such slides whose development was interleaved with that of study
subjects, resulting in 28 combination pairs. The scatter plots show logarithms of raw
intensity signals. Numbers above plots are Lin’s concordance correlation coefficient (CCC,
left) and Pearson correlation coefficient (right). The latter coefficient ignores linear bias in
scale and location, while the former shows the true differences. The figure presents only 4
combinations out of 28, with patterns typical for this study; correlation coefficients for all 28
combinations are shown in Figure 5.
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Figure 5.
Platform reproducibility for the Nickel Exposure Study. The diagrams show Lin’s
concordance correlation coefficient (CCC), Pearson’s correlation coefficient (PCC), overall
Lin’s concordance correlation coefficient (OCCC), and coefficient of variation of replicates
averaged across all glycans in array (CV). The CCC and PCC are computed for 28
combination pairs of 8 slides developed with benchmark sera. The OCCC and CV are
computed independently for each array: the former is obtained by applying CCC to 66
combination pairs of 12 replicated subarrays from the same PGA. The first diagram (CCC)
suggests marginally large bias between slides (20% trimmed mean across all combinations
is 0.8), while the PCC shows that the inter-array concordance is satisfyingly good if we
ignore the inter-array bias, which can be achieved with proper normalization. The last two
slides show excellent intra-array concordance, i.e. small measurement error.
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Figure 6.
Distribution of intensities for 8 arrays of benchmark sera before and after normalization. The
distributions are presented as sorted medium summarized intensities across all glycans
which have survived the screening of low intensity and low ICC glycans. In order to
emphasize the differences, the diagram shows only 35 glycans which correspond to highest
intensities, however similar differences can be observed with all other glycans. The upper
diagram confirms the finding in figures 4 and 5 about the inter-array bias. The lower
diagram shows the distributions after intra-array normalization. The quantile normalization
as much stronger than inter-array normalization (not shown here) would make distributions
of all subjects the same and equal to the mean value (represented by the black dotted line in
both diagrams).
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Figure 7.
Distribution of intensities for subjects in the Nickel Exposure Study before and after
normalization. The diagram is similar to the diagram in Figure 6, only it contains 89 arrays
and the range of glycans is doubled. As seen, the intra-array normalization might not be
entirely effective; therefore the quantile normalization is used in further discriminatory
analysis.
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Figure 8.
Intra-class Correlation Coefficient (ICC, black line) estimated for the entire PGA library.
There are two ICC curves: the traditional (black curve) and the robust ICC (blue curve), the
latter is based on the medians and median absolute deviations as opposed to means and
standard deviations. The traditional ICC values are sorted by descending values of ICC,
while all other curves in figure are rearranged to reflect the same glycan ordering. As shown,
198 glycans have an ICC value greater than 90%. The diagram also shows the rearranged
coefficient of variations: the traditional CV (CD-std, green) and the robust version of CV
(CV-mad, magenta). The relatively high ICC values for most of the glycans, as well as the
low CV values assure that data in the Nickel Exposure Study qualify for further
discriminatory analysis as far as the technical noise is concerned.
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Figure 9.
Unbiased bootstrap tests performed on various sizes of low and high Urinary Ni samples
ranging from 16 to 20, and various signature sizes ranging from 1 to 6. The statistic used for
bootstrapping is combined AUC. The combined AUC is based on projection of features by
multivariate logistic regression. The resampling was based on 500 permutations, as opposed
to resampling with replacement, the former being more conservative. The criterion for
selection of the best normalization method and the best sample cutoff value was the
Achieved Significance Level of the test (ASL). The experiments were performed for several
normalization methods but the diagram shows only the quantile normalization, which has
delivered the best performance. As shown, the best result was obtained for cutoff value of
18, which yielded ASL < 0.01, thus giving very strong evidence against the null hypothesis.
This cutoff value is used throughout this report.
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Figure 10.
Cross-validation of low and high urinary Nickel samples each having 18 observations. The
diagram shows cross-validated and combined training AUC values for various signature set
sizes ranging from 1 to 7. The combined AUC values were obtained by multivariate logistic
regression. The algorithm is an unbiased, 100 times repeated, 10-fold cross-validation test.
As shown, the optimal result is obtained for three glycans in the signature, resulting in cross-
validated AUC = 0.836, while the training (observed) AUC value is 0.966. The diagram also
shows the Kuncheva stability index (SI), which reaches the maximum at two glycans. The
reason SI drops after two glycans is the fact that the third and fourth glycans (GID = 133 and
136, see figure 11) alternate in various cross-validation folds.
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Figure 11.
Feature count in 1000 feature selections (100 repetitions, 10 folds each repetition). The
diagram shows that the glycan GID = 191 has been selected 100% of times, while the
glycans 264 and 133 were selected 97% and 93% times, respectively. This diagram is
another manifestation of feature selection stability.
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Figure 12.
Immunoruler diagram showing the training risk scores for 18 subjects with low (≤ 4.44 μg/
L) and 18 subjects with high (≥9.98 μg/L) urinary Nickel. The risk scores are obtained by
projecting the quantile normalized, median-summarized intensities which correspond to
glycan signature GID = 191, 264, 133, using multivariate logistic regression. The projection
bias is determined under the assumption of equal cost of false positive and false negative
rates. In order to facilitate the interpretation of data, the scores are sorted in ascending order
for each sample and colored accordingly: low Urinary Ni in blue (left bars), the high Urinary
Ni in magenta (right bars). Bars with different color shades represent quartile regions. The
bar intensities correspond to the probability of belonging to the high urinary Nickel group,
given the training data. This kind of visualization explicitly shows the number of false
positives FP = 1, false negatives FN = 2, true positives TP = 16, and true negatives TN = 17,
all obtained using the cutoff value 0.5. Consequently, specificity is Sp = 94.4% and
sensitivity Sn = 88.9%. The training precision is 91.7% and the observed AUC value is
0.966.
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Figure 13.
The bootstrap test for low and high urinary Nickel samples (each of size 18). The test claims
a strong statistical significance of the observed combined AUC value of 0.966. The
bootstrap statistic used is combined AUC value obtained by multivariate logistic regression
applied to three top selected glycans. Selection of glycans in each bootstrap iteration is
performed by Wilcoxon ranking. The test is performed with 1000 resampling by
permutation and the resulting test p-value is ASL = 0.005. The diagram shows the empirical
distribution under the null hypothesis that the observed AUC value is no larger than any
other replicated value. The null distribution has two-sided confidence interval CI = [0.757,
0.947], or one-sided upper bound CU = 0.935. As shown, the observed value is beyond both
confidence limits. The empirical data is fitted with a Generalized Extreme Value
distribution, which has offered the same p-value as the count of replications above the
observed value.
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Figure 14.
Sorted intensities for 18 subjects with low Urinary Ni (diagrams at left, blue bars) and for 18
subjects with high Urinary Ni (diagrams at right, pink bars) for three selected discriminatory
glycans. The intensities are obtained by quantile normalization of median summarized
intensities. As shown, the intensities are decreased in subjects with high level of urinary
Nickel for glycan GID = 191, while the effect is opposite for glycans GID = 264 and 133.
The bar graphs at the bottom show intensities combined with logistic regression. The
relative intensity scale factor for each diagram is 106.
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Figure 15.
Linear regression of Urinary Ni with age (top diagram), quantile-normalized and log
transformed AGA for GID = 191 with the age (middle diagram), and Urinary Ni with
creatinine (bottom diagram). The diagrams show R-squared values, regression coefficients
with their p-values and the Pearson correlation coefficient. The low Pearson correlation
coefficients in the first two diagrams indicate that there is no association of Urinary Ni or
AGA with the age of subjects in this study. The relatively high correlation between Urinary
Ni and creatinine suggests that these factors are potentially interchangeable in our analysis.
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Table 1

Demographic Characteristics of Participating Subjects*.

Zhangye
Residents

Jinchang
Residents

Ni Refinery
Workers P value**

N 29 30 30

Age (years) 43.4 ± 4.9 41.6 ± 6.3 43.3 ± 4.9 > 0.05

Smokers [n (%)] 25 (86.2) 25 (83.3) 25 (83.3) > 0.05

Urinary Ni
μg/L 6.83 ± 3.53 6.55 ± 3.51 8.43 ± 3.22 0.0246

μg/g creatinine 4.15 ± 1.52 4.13 ± 2.05 5.79 ± 2.08 0.0002

*
all participating subjects were male

**
comparison between Ni refinery workers and control subjects (residents in Zhangye and Jinchang)
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Table 2

Wilcoxon-Mann-Whitney two-sample rank sum test applied to screened, quantile-normalized median
summarized data from the Nickel Exposure Study. The samples contain 18 subjects with high (≥ 9.98 μg/L)
and 18 subjects with low (≤4.44 μg/L) level of urinary Nickel. The meaning of columns are as follows: GID –
glycan identification number, Z – z-statistic, p – p-value of the test, FDR – false discovery rate, AUC – area
under the ROC curve, AUCC – cumulative AUC value obtained by combining the above glycans through
multivariate logistic regression, ICC – corresponding Intra-class Correlation Coefficient computed for raw
data. The sign of the z-statistic indicates downregulation (negative sign) or upregulation (positive sign) of
normalized signals. The low values of FDR, at least for top three glycans, imply a good confidence in the
results. The glycans in the table are sorted by ascending order of the p-value. The sixth column suggests that
combining several glycans can considerably increase the AUC value. For example, combining three top
glycans: GID = 191, 264, 133, gives AUCC = 0.966. Figure 13 shows a solid statistical significance for this
AUC value.

GID Z p FDR AUC AUCc ICC

191 3.797 0.00015 0.0181 0.8704 0.8704 93.3

264 −3.497 0.00047 0.0353 0.8457 0.9167 89.1

133 −3.149 0.00164 0.0584 0.8148 0.9660 88.7

136 −3.058 0.00223 0.0602 0.8117 0.9722 82.2

135 −2.959 0.00309 0.0756 0.7932 0.9784 93.3

384 −2.927 0.00342 0.1490 0.7901 0.9815 94.5

134 −2.897 0.00377 0.0668 0.7901 1.0000 81.7

93 −2.864 0.00418 0.0629 0.7840 1.0000 91.5

379 −2.864 0.00419 0.1186 0.7840 1.0000 94.5

137 −2.792 0.00524 0.0807 0.7932 1.0000 88.9
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Table 3

Structures of glycans from Table 2.

GID Glycan Structure Generic Name

191 6-O-P-Galβ1-4GlcNAcβ 6′P-LacNAc

264 Galβ1-4Galβ1-4GlcNAcβ Galβ4LacNAc

133 Galβ1-4Glcβ-NH←Gly←Ala Lactose-Gly-Ala

136 Galβ1-4Glcβ-NH←Gly←Ile Lactose-Gly-Ile

135 Galβ1-4Glcβ-NH←Gly←Asn Lactose-Gly-Asn

384 Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ LacNAcβ3LacNAc

134 Galβ1-4Glcβ-NH←Gly←Arg Lactose-Gly-Arg

93 Galβ1-4Glcβ-NH←Gly Lactose-Gly

379 Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ LewisCβ3LacNAc

137 Galβ1-4Glcβ-NH←Gly←Nle Lactose-Gly-Nle

6′P-LacNAc: 6-phospate N-acetyllactosamine

Galβ4LacNAc: Galactoseβ1-4N-acetyllactosamine

sp4: glycine

aa: aminoacid

LacNAcβ3LacNAc: N-acetyllactosamineβ1-3N-acetyllactosamine

LewisCβ3LacNAc:LewisCβ1−3N-acetyllactosamine

J Proteomics Bioinform. Author manuscript; available in PMC 2014 April 13.


