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Genomic basis for RNA alterations in cancer
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Transcript alterations often result from somatic changes in cancer genomes1. Various 
forms of RNA alterations have been described in cancer, including overexpression2, 
altered splicing3 and gene fusions4; however, it is difficult to attribute these to 
underlying genomic changes owing to heterogeneity among patients and tumour 
types, and the relatively small cohorts of patients for whom samples have been 
analysed by both transcriptome and whole-genome sequencing. Here we present, to 
our knowledge, the most comprehensive catalogue of cancer-associated gene 
alterations to date, obtained by characterizing tumour transcriptomes from 1,188 
donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the 
International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA)5. Using matched whole-genome sequencing data, we associated several 
categories of RNA alterations with germline and somatic DNA alterations, and 
identified probable genetic mechanisms. Somatic copy-number alterations were the 
major drivers of variations in total gene and allele-specific expression. We identified 
649 associations of somatic single-nucleotide variants with gene expression in cis, of 
which 68.4% involved associations with flanking non-coding regions of the gene. We 
found 1,900 splicing alterations associated with somatic mutations, including the 
formation of exons within introns in proximity to Alu elements. In addition, 82% of 
gene fusions were associated with structural variants, including 75 of a new class, 
termed ‘bridged’ fusions, in which a third genomic location bridges two genes. We 
observed transcriptomic alteration signatures that differ between cancer types and 
have associations with variations in DNA mutational signatures. This compendium of 
RNA alterations in the genomic context provides a rich resource for identifying genes 
and mechanisms that are functionally implicated in cancer.

For a more extensive study of cancer genome alterations, particularly 
in non-coding regions, the PCAWG project was formed to analyse 
the large number of whole-genome samples that were contributed 
to the ICGC and TCGA projects5. Individual projects did not use the 
same methods for key analyses; therefore, a major focus for each of 
the 16 PCAWG Working Groups was the unified analysis of the PCAWG 
data. For example, the PCAWG Technical Working Group led raw 
data collection, realignment of whole-genome sequencing data and  
implemented core somatic mutation calling pipelines5. Other  
PCAWG working groups focused on unified analyses of copy- 
number variation6, structural variants7,8, germline variants5,  

mutational signatures9 and identification of driver genes8, among  
others5. Here, we report the joint analysis of available matched tran-
scriptome and genome profiling for 1,188 samples from 27 tumour 
types by the PCAWG Transcriptome Working Group5, providing the 
largest, to our knowledge, resource of RNA phenotypes and their 
underlying genetic changes in cancer so far (Extended Data Fig. 1, 
Methods, Supplementary Results, Supplementary Table 23). We dem-
onstrate the importance of transcriptomics data in understanding 
how different dimensions of specific DNA alterations contribute to 
carcinogenesis and map out the landscape of cancer-related RNA 
alterations.
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Cancer-specific germline cis-eQTLs
To investigate the underlying mechanisms of different types of RNA 
alteration, we first focused on changes in the gene expression level 
(Extended Data Fig. 2). We initially considered common germline 
variants (minor allele frequency ≥ 1%) proximal to individual genes 
(±100 kb), and mapped expression quantitative trait loci (eQTL) 
across the cohort (Extended Data Fig. 3, Supplementary Table 1). This 
pan-cancer analysis identified 3,532 genes with an eQTL (false dis-
covery rate (FDR) ≤ 5%, hereafter denoted eGenes) (Supplementary 
Table 2), enriched in proximal regions of transcription start sites (TSSs) 
(Extended Data Fig. 3).

To identify cancer-specific regulatory variants, we compared our 
eQTLs to eQTLs from the Genotype-Tissue Expression (GTEx) pro-
ject10, adopting previous strategies to assess eQTL replication11, and 
probed lead eQTL variants for marginal significance in GTEx tissues 
(P ≤ 0.01, Bonferroni-adjusted). Although most lead variants could 
be detected in GTEx samples (3,110 out of 3,532 eQTL variants), we 
identified 422 eQTLs that did not correspond to GTEx tissues, which 
suggests cancer-specific regulation (Extended Data Fig. 4, Supplemen-
tary Table 3). The corresponding eQTL lead variants were enriched 
for heterochromatic regions (Fig. 1a). Overall, this analysis revealed 
that the germline framework of gene expression regulation is largely 
conserved in cancer tissues.

Somatic cis-eQTLs in non-coding regions
Previous studies have described the landscape of non-coding mutations 
in cancer1, particularly in promoter regions, and also their regulatory 
effects on gene expression12,13. Here, we looked at possible somatic 
DNA changes, across the whole genome, that underlie alterations in 
gene expression. We estimated local mutation burdens by aggregating 
single-nucleotide variants (SNVs) in 2-kb intervals adjacent to genes 
(flanking), as well as in exons and introns (Extended Data Figs. 2, 5, 6). 
Next, we decomposed the expression variation of individual genes, 
considering common mutation burdens in cis, as well as cis germline 
variants and somatic copy-number alterations (SCNAs). This identified 
SCNAs as the major driver of expression variation (17%), followed by 
somatic SNVs in gene flanking regions (1.8%) and germline variants 
(1.3%) (Fig. 1b).

We also tested for associations between all common mutation bur-
dens and gene expression across the whole genome. We identified 
649 genes with a somatic eQTL (FDR ≤ 5%) (Supplementary Table 5). 
Of these, 11 associations were located in introns or exons of the respec-
tive eGene, including genes with known roles in the pathogenesis of 
specific cancers such as CDK12 in ovarian cancer14 and IRF4 in chronic 
lymphocytic leukaemia15 (Extended Data Figs. 7, 8). Most eQTLs (68.4%) 
involved associations with flanking non-coding mutation burdens 
(Extended Data Fig. 6e). Next, we considered eQTLs in flanking regions 
(n = 556) and tested for enrichment in cell-type-specific annotations 
from the Epigenetics Roadmap16. This identified 13 enriched anno-
tations (FDR ≤ 10%) (Extended Data Fig. 9, Supplementary Table 6), 
including poised promoters, weak and active enhancers, and hetero-
chromatin, but notably no enrichment for transcription-factor-binding 
sites (Supplementary Table 7). This enrichment in transcriptionally 
inactive regions may be due to an increased mutation rate in these 
regions (Extended Data Fig. 9), which has previously been reported 
in cancer17.

We also looked at the functional characterization of somatic eGenes 
and observed an enrichment for somatic eQTLs in bivalent promoters 
for cancer testis genes (P = 0.04, Fisher’s exact test) such as TEKT518 
(Fig. 1c, Extended Data Fig. 8h). Furthermore, we found a global enrich-
ment (FDR ≤ 10%) for Gene Ontology (GO) categories related to cell 
differentiation and developmental processes (Supplementary Table 8). 
Overall, somatic eQTL analysis identified mostly non-coding regions 

associated with changes in local gene expression and, similar to cancer-
specific germline eQTLs, showed enrichment for transcriptionally 
inactive regions such as heterochromatin.

Expression and mutational signatures
Global variations in mutational patterns can be quantified using muta-
tional signatures, which tag mutational processes specific to their 
tissue-of-origin and environmental exposures19. However, the extrac-
tion of mutational signatures is an intrinsically statistical process that 
requires a posteriori functional annotation. We performed a pan-cancer 
association analysis between genome-wide mutational signatures 
and gene expression levels to decipher the molecular processes that 
accompany the presence of mutational signatures.

We considered 28 mutational signatures derived using non-negative 
matrix factorization of context-specific mutation frequencies9. We 
tested for association between signature prevalence in donors and total 
gene expression, accounting for total mutational burden, cancer type, 
and other technical and biological confounders. This identified 1,176 
genes associated with at least one signature (FDR ≤ 10%) (Extended 
Data Fig. 10, Supplementary Table 19).

We considered 18 signatures with 20 or more associated genes for 
further annotation (Extended Data Fig. 11) and assessed enrichment 
using GO categories20 and Reactome pathways21. We found that 11 
signatures were enriched for at least one category (FDR ≤ 10%) (Sup-
plementary Table 19), revealing associations consistent with known 
and unknown aetiologies (Fig. 1d). For example, signature 38, which 
is correlated with the canonical UV signature 7 (r2 = 0.375, P = 5 × 10−40) 
(Extended Data Fig. 11c), was linked to melanin processes (Fig. 1d). The 
synthesis of melanin causes oxidative stress to melanocytes22, and we 
found signature 38 associated with the oxidative-stress-promoting 
gene TYR23 (P = 1.0 × 10−4). A hallmark of signature 38 genes are C>A 
mutations, a typical product of reactive oxygen species24. This suggests 
that signature 38 may capture DNA damage that is indirectly caused by 
UV-induced oxidative damage after direct sun exposure25, with TYR as 
a possible mediator of the effect.

Genomic basis of allelic expression
To analyse expression at the level of individual haplotypes, we tested 
for allelic expression imbalance (AEI) (FDR ≤ 5%, binomial test). We 
observed substantial differences in the fraction of genes with AEI 
between different types of cancer (Extended Data Fig. 12), and between 
cancer and the corresponding healthy tissues, with a high observed 
concordance between allelic imbalance at the DNA and RNA levels 
(Extended Data Fig. 13).

We used a logistic regression model to identify the determinants 
of AEI, accounting for known imprinting status26, the germline eQTL 
genotype, SCNAs and the weighted mutational burden of proximal 
somatic SNVs stratified into functional categories (Extended Data 
Fig. 2). In aggregate, SCNAs accounted for 84.3% of the total explained 
variation, which confirmed our findings from the somatic eQTL anal-
ysis, followed by germline eQTL lead variants (9.1%), somatic SNVs 
(4.9%) and imprinting status (1.7%) (Extended Data Fig. 14). Although 
cumulatively, non-coding variants were more relevant than coding 
variants, somatic protein-truncating variants (‘stop-gained’ variants) 
that triggered nonsense-mediated decay27 were the most predictive 
individually. SNVs within splice regions, 5′ untranslated regions (UTRs) 
and promoters were also strongly associated with the presence of AEI, 
and we observed a global trend of decreasing relevance of variants 
with increasing distance from the TSS (Fig. 1e, Extended Data Fig. 14).

Gene-centric attribution of AEI to individual sources of genetic vari-
ation (Supplementary Table 9) revealed an enrichment of somatically 
induced AEI in several known cancer-driver genes, as well as new candi-
dates, such as the mismatch-repair-related gene EXO1 that is associated 
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with survival in colorectal adenocarcinoma (log-rank P = 0.022, hazard 
ratio = 0.57) (Supplementary Results). We further observed a strong 
enrichment in the AEI score of cancer testis genes based on somatic 
SNVs only (χ2 test P = 6 × 10−3). In summary, we identify somatic and 
germline genetic variation that is associated with allele-specific dys-
regulation of genes across cancer types.

Mutations associated with promoter usage
We considered promoter activity28–30 as another molecular phenotype 
to study the effect of promoter mutations. Although cancer-specific 
alternative promoter usage has previously been shown28, the associa-
tion of underlying genomic alterations with promoter activities have 
not been broadly explored. To estimate the activity of individual gene 
promoters, we combined the expression of isoforms initiated in TSSs 
that are identical or nearby, assuming that these are transcribed from 
the same promoter (Extended Data Fig. 15a–c). We divided promoters 
into three categories: (1) inactive promoters (activity < 1 fragment per 
kilobase of transcript per million mapped reads (FPKM)), (2) major pro-
moters (most active per gene) and (3) minor (all remaining) promoters, 

and examined the rates of mutation across varying activity levels. We 
observed an increase in the number of mutations near the TSS of major 
promoters compared with minor or inactive promoters (Extended 
Data Fig. 15d). This pattern is most prominent in skin melanoma, in 
which it has been attributed to impaired nucleotide-excision repair 
(Extended Data Fig. 15e, f, k, l). The cancer type that shows the strong-
est deviation from this pattern is colorectal adenocarcinoma, which 
highlights the tissue-specificity of mutational patterns at promoters 
(Extended Data Fig. 15e, f, m, n). Only 171 promoters show mutations 
in more than 5 samples per tumour type in a 200-bp window upstream 
of the promoter (Extended Data Fig. 15g, h). Most mutations occur in 
skin melanoma and lymphoma, which is expected owing to reduced 
nucleotide-excision repair and activation-induced cytidine deaminase 
(Extended Data Fig. 15h). We did not find significant pan-cancer asso-
ciations between promoter mutational burden and promoter activity 
(Extended Data Fig. 15i, j). However, TERT has the highest number of 
promoter mutations1,5,31 (Extended Data Fig. 16a), and these mutations 
have previously been reported to be associated with TERT expression1; 
therefore, we investigated the TERT locus in more detail (Extended Data 
Fig. 16b). Although TERT does not show a significant association in the 
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Fig. 1 | Germline and somatic SNVs associated with expression. a, Epigenetics 
Roadmap enrichment analysis, showing the average fold change in Roadmap 
factors across cell lines in PCAWG-specific eQTLs of the pan-analysis as well as 
eQTLs that replicate in GTEx tissues. *P < 0.05/25, one-sided Wilcoxon rank-
sum test in PCAWG-specific eQTLs corrected for the number of Roadmap 
factors used (that is, 25). Data are mean and s.d. b, Variance component analysis 
for gene expression levels, showing the average proportion of variance 
explained by different germline and somatic factors for different sets of genes 
including the mean effect across all factors: (1) all genetic factors (germline and 
somatic); (2) SCNAs; (3) somatic variants in flanking regions; (4) population 
structure; (5) cis-germline effects; and (6) somatic intron and exon mutation 
effects. c, Manhattan plot showing nominal P values of association for TEKT5 
(highlighted in grey), considering flanking, intronic and exonic intervals.  

The leading somatic burden is associated with increased TEKT5 expression 
(P = 1.61 × 10−6) and overlaps an upstream bivalent promoter (red dots; 
annotated in 81 Roadmap cell lines, including 8 embryonic stem cells, 9 
embryonic-stem-cell-derived and 5 induced pluripotent stem-cell lines). 
d, Summary of significant associations between mutational signatures (Sig) 
and gene expression. Top, the total number of associated genes per signature 
(FDR ≤ 10%). Bottom, enriched GO categories or Reactome pathways for genes 
associated with each signature (FDR ≤ 10%, significance level encoded in 
colour, −log10-transformed adjusted P value). e, Standardized effect sizes on 
the presence of AEI, taking only SCNAs, germline eQTLs, coding and non-
coding mutations into account. Data are the estimate and standard error of the 
estimate of the effect size.
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pan-cancer analysis, we found an association with increased promoter 
activity in individual types of cancer1 (Extended Data Fig. 16c).

Mutations associated with splicing
Extending the classical hallmarks of cancer, alternative splicing is 
seen as increasingly relevant to explain cancer heterogeneity32. On 
the basis of our observations of a globally changing splicing landscape 
(Extended Data Fig. 17a–c), we sought to specifically understand the 
relationship between splicing changes and somatic mutations within 
introns. Focusing on cassette exon events, we integrated the quan-
tification of splice events with somatic variants and identified 5,282 
mutations near exon–intron boundaries, 1,800 (34%) of which were 
associated with a change in splicing (|z-score| ≥ 3) (Supplementary 
Table 10). Consistent with previous findings using exome sequenc-
ing33,34, most mutations overlapping the essential dinucleotide motifs 
of the acceptor or donor site are associated with a splicing change—61% 
or 57%, respectively (Fig. 2a). Nearly one-third of all mutations (226 
out of 469) in a 5-nucleotide window downstream of the 5′ site were 
significantly enriched for splicing changes (Fig. 2a). Almost all changes 
significantly associated with somatic mutations had a negative effect 
on splicing (96%) (Extended Data Fig. 17d). For mutations in or near 
the poly-pyrimidine tract, we found a significant (permutation test, 
P < 0.05) enrichment for mutations linked to outlier splicing (Fig. 2a). 
We also found an enrichment (P < 0.05, fold change > 2) of splicing outli-
ers at branch-site adenosines (Fig. 2a middle, Extended Data Fig. 17d, 
Supplementary Table 11). Together, these results suggest that somatic 
mutations in the extended splice site region, poly-pyrimidine tract and 
branch point can affect splicing.

We also identified 1,900 rare splicing-associated variants (SAVs) that 
appear in only a small number of samples using the SAVNet approach35 
(Extended Data Fig. 17e; see ‘Data availability’ in the Methods). Notably, 
862 SAVs affected canonical splice sites, whereas the other 1,038 dis-
rupted non-canonical sites or created new splice sites. Notably, we find 
a twofold enrichment of cancer genes in SAVs (Extended Data Fig. 17f).

Although we find that those SAVs that create splice sites strongly con-
centrate near exon–intron boundaries (Extended Data Fig. 17g), 45.9% 
of SAVs are further than 100 bp away from the nearest annotated exon. 
Mutations at those sites generally changed the sequences towards the 
donor or acceptor motif consensus (Extended Data Fig. 17h). Focusing 
on novel splice sites deep in introns, we analysed the extent of exoniza-
tions—that is, the formation of new exons within an intron (Extended 

Data Fig. 17j, Supplementary Tables 13, 14). More than one-fifth of these 
new exons (9 out of 43) occur in cancer-related genes, such as the well-
known tumour-suppressor gene STK11. As expected, the exonization 
event would cause a frameshift in STK11 (Fig. 2b, Extended Data Fig. 17k).

Alu elements that are inserted in an antisense direction have sequences 
that resemble consensus splice sites that, together with activating muta-
tions, can lead to the formation of a new exon36 (Extended Data Fig. 17l). 
We found a significant enrichment of splice-site-creating SAVs within 
annotated Alu sequences (P = 2.8 × 10−9), particularly in the antisense 
direction (P = 2.6 × 10−15) (Fig. 2c). Our results indicate that the exonization 
of Alu sequences, which has been extensively studied in the context of 
primate genome evolution, is also observed in cancer genome evolution.

Patterns of gene fusions across cancer
Gene fusions are an important class of cancer-driving event with thera-
peutic and diagnostic value37. We identified a total of 925 known and 
2,372 new cancer-specific gene fusions by combining the output of two 
fusion discovery methods as well as genomic rearrangement (structural 
variants) information and excluding artefacts or fusions in non-cancer 
samples38 (Fig. 3a). For the 3,540 identified fusion events representing 
3,297 unique gene fusions, we categorized them on the basis of novelty, 
recurrence and known oncogenic gene partners (Fig. 3a).

Only 149 (approximately 5%) of the fusions occur in more than one 
sample, among which 78 are novel. Most of these (46 out of 78) were 
found across several histotypes. Of the 27 most recurrent gene fusions 
(Extended Data Fig. 18a), 8 have previously been reported (for example, 
CCDC6-RET39, FGFR3-TACC340 and PTPRK-RSPO3) or independently 
detected in the TCGA cohort41, whereas 6 were new (such as NUMB-
HEATR4, ESR1-AKAP12 and TRAF3IP2-FYN). In total, 105 fusion tran-
scripts involved the UTR region of one gene and the complete coding 
sequences of another gene, possibly resulting from structural variation 
in promoter regions.

Although most genes involved in fusions engaged with only one 
fusion partner, 35 genes had more than 5 partners. These ‘promiscu-
ous’ genes tended to be selective in being either a 5′ or a 3′ partner 
with conserved break points and positions (3′ or 5′), and were over-
represented in cancer census genes and the PCAWG cancer-driver 
genes (one-tailed Fisher’s exact test, odds ratio = 8.66, P ≤ 1.1 × 10−15, 
and odds ratio = 12.27, P ≤ 2.2 × 10−16, respectively). Network analysis 
of promiscuous genes and their partners revealed several large gene 
clusters containing at least 10 genes (Extended Data Fig. 18b), enriched 
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exonization event in the tumour-suppressor gene STK11. The RNA-seq read 
coverage for a part of the gene is shown in red for a donor carrying the 
alternative allele, and in grey for a random donor with reference allele. The 
cassette exon event is shown as a schematic below. c, Enrichment of SINE 
elements in SAVs compared to sequence background (BG). Shown for SINE 
elements overlapping in sense (middle) and antisense (right) directions.
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in cancer-related pathways (Benjamini–Hochberg corrected P ≤ 0.01) 
and in protein–protein interactions (P ≤ 1.0 × 10−7), which suggests a 
possible functional role in cancer.

Notably, a large number of fusions, including known fusions, could not 
be associated with only a single structural-variation event. For example, 
the ETV6-NTRK3 gene fusion42 was present in a head and neck thyroid 
carcinoma sample, linking exon 4 of ETV6 to exon 12 of NTRK3. We found 
three separate structural variants in the same sample: (1) a translocation 
of ETV6 to chromosome 6; (2) a translocation of NTRK3 also to chromo-
some 6; and (3) an additional copy-number loss spanning from intron 
5 of ETV6 to the exact structural variant break points, jointly bringing 
ETV6 within 45 kb upstream of NTRK3—a distance that would allow tran-
scriptional read-through43 or splicing44 to yield the ETV6-NTRK3 fusion45 
(Fig. 3b). Thus, the short chromosome-6 segment appeared to func-
tion as a bridge, which linked two genomic locations to facilitate a gene 
fusion. We term such products ‘bridged fusions’. This class of fusion is not 
uncommon. Out of a total of 436 gene fusions supported by 2 separate 
structural variants, 75 are bridged fusions (Supplementary Table 15).

On the basis of the nature of the underlying genomic rearrange-
ments, we propose a unified fusion classification system (Extended 
Data Fig. 19a). Aside from bridged fusions, 344 additional fusions are 
linked to more than one structural variant in the same sample. These 
multi- structural variant fusions are collectively termed ‘composite 
fusions’ (Extended Data Fig. 19a, b). We find 284 intercomposite fusions 
(interchromosomal translocation) and 124 intracomposite fusions 
(intrachromosomal rearrangement), exemplified by ERC1-RET1 and 
NUMB-HEATR4 fusions, respectively (Extended Data Fig. 19b). Com-
posite rearrangements bring the fusion partners significantly closer to 
each other, from the median natural distance of 6.8 Mb to the median 
of 7.9 kb (Wilcoxon rank-sum test, P ≤ 2.2 × 10−16; Extended Data Fig. 19c) 
after translocation. For 18% of fusions, no evidence of structural varia-
tion was found. Given that 340 structural-variant-independent, intra-
chromosomal fusions had significantly closer break points than those 
with structural variation (Extended Data Fig. 19d), it is possible that they 
could result from RNA read-through events. The other possibility is that 
the underlying supporting structural variants escaped detection, as 
shown by the observation that known gene fusions that are driven by 
structural variation, such as TMPRSS2-ERG46, did not have consistent 
evidence for structural variation in matching samples.

Landscape of RNA alterations in cancer
Given our comprehensive set of RNA alterations, we sought to char-
acterize the heterogeneous mechanisms of cancer genome and 

transcriptome alterations. To enable joint analyses of RNA and DNA 
alterations, we created a gene-level table, which indicates the presence 
or absence of possible functional changes to RNA or DNA for each gene 
and donor. After stringent filtering, we identified 1,523,098 alteration 
events, in which an event is a gene–sample–alteration triplet (Extended 
Data Table 1, Supplementary Table 14). It should be noted that we chose 
to include only RNA alterations with potential functional effects or 
with the strongest quantitative affect, resembling similar strategies for 
filtering DNA alterations47. Recurrence analysis across several alteration 
types helped us to further enrich for functionally relevant genes. Build-
ing on the gene-centric table, we characterized gene alterations at the 
RNA level and contrasted these with DNA alterations (non-synonymous 
SNVs or SCNAs)5. On the basis of the calculated association between 
each RNA- and DNA-level alteration across all histotypes, we found that 
half of the RNA alterations significantly correlated with DNA alterations 
(likelihood ratio test, FDR < 1 × 10−4) (Extended Data Fig. 20).

When comparing gene alteration frequencies across all histotypes 
(Fig. 4a), we note that different types of cancer contain distinct com-
binations of DNA- and RNA-level alterations (Fig. 4a, Supplementary 
Table 17). Although, as expected, skin melanoma significantly exceeds 
other cancers in the number of non-synonymous SNVs48 (Wilcoxon 
rank-sum test, P < 0.012), lymphatic cancers have low numbers of 
SNVs (Wilcoxon rank-sum test, P = 5.3 × 10−15), but high incidences of 
alternative splicing outliers (Wilcoxon rank-sum test, P = 4.9 × 10−47), 
which suggests that transcriptomic alterations can be relatively more 
pronounced in certain cancer types.

To evaluate to which extent RNA changes provide additional mecha-
nisms for cancer gene alterations, we examined DNA- and RNA-level 
alterations both in sets of genes in pathways (Extended Data Fig. 21) 
and in individual genes with known roles in cancer (Extended Data 
Fig. 22). We found that RNA alterations occur at a high proportion in 
many pathways, including the NOTCH and TGF-β pathways. In addition, 
KRAS exhibits more RNA alterations than DNA alterations in some types 
of cancer. Given the recent finding that alternative splicing of KRAS 
expanded the prognostic affect beyond mutation status in colorectal 
cancer49, our data further support several modes of alteration for KRAS 
in tumours.

Co-occurrence of RNA and DNA alterations
The diverse types of alteration in this study enabled us to investigate 
trans-associations between different genetic and expression charac-
teristics involving cancer-related genes (FDR < 5%) (Supplementary 
Table 18). By investigating whether somatic mutations of known cancer 
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genes are associated with the expression of other genes, we found IDH1 
and NFKBIE to be widely linked to the dysregulation of many genes 
(Extended Data Fig. 23a, b). Notable co-occurrences were present in 
several types of cancer. For example, B2M and EIF4G2 alterations were 
simultaneously observed in both B-cell non-Hodgkin lymphoma and 
lung squamous cell carcinoma. Pathway enrichment analysis of the top 
100 genes associated with all B2M alterations indicates that the most 
affected genes are involved in DNA repair (FDR ≤ 1%), and approximately 
two-thirds of those associations were significant in more than one 
cancer type (Fig. 4b, Extended Data Fig. 23c).

We also examined how cancer genes could be affected by other genes 
by co-occurrence analyses. Expression outliers of PCBP2 co-occurred 
with aberrant splicing of a large number of cancer-related genes, includ-
ing CTNNB1 and CDK4 (Fig. 4c). PCBP2 has been reported to enhance 
the splicing of cassette exons50. Our results thus further support the 
possible role of PCBP2 in regulating the splicing of cancer-related genes.

Recurrent RNA alterations in driver genes
In our analyses of cis-acting mutations that are associated with these 
individual RNA phenotypes, the vast majority were observed rarely in 
the PCAWG cohort. Many cancer genes (such as MET51,52) are known to 
be somatically altered by heterogeneous mechanisms such as gene 
fusions, splicing mutations and non-synonymous mutations; therefore, 
examining genes that are altered by several cis-acting mechanisms 
may help to identify cancer genes in which an individual alteration 

type is rare. A total of 5,413 genes were altered by gene expression, 
allele-specific expression (ASE), splicing and/or gene fusion, and had 
an associated DNA-level mutation in cis (Supplementary Table 20). 
PCAWG-defined driver genes8 tended to have more diverse mecha-
nisms of RNA-level alterations when compared to genes that have 
not previously been identified as a cancer gene (P < 0.001) (Extended 
Data Fig. 24a). We identified, for example, a somatic eQTL, a splicing-
associated variant and fusions in the known tumour-suppressor NF1 
in the MAPK pathway (Extended Data Fig. 24b).

Owing to the fact that most somatic mutations are rare5, it is diffi-
cult to statistically distinguish functionally relevant, potential driver 
alterations from passenger alterations. Therefore, we aimed to identify 
genes that are both recurrently and heterogeneously altered, under 
the hypothesis that these genes have increased functional relevance. 
This analysis identified 731 genes with significant recurrent aberra-
tions (FDR < 5%) (Extended Data Fig. 25a), with the top-ranking genes 
carrying both RNA and DNA alterations. RNA alterations accounted 
for 0.05–99.14% (mean: 78.23%) of all identified alterations in each 
gene (Extended Data Fig. 25a, Supplementary Table 21). This rank-
ing is enriched for the union of cancer census genes53 (60 out of 603) 
and PCAWG-defined driver genes (33 out of 157, unioned: 74 out of 674 
P = 4.6 × 10−13, enrichment: 2.45) (Fig. 4d, e).

Among the top 10% of our ranked genes is CDK12 (rank 55). We find 
91 samples that have an alteration involving its protein kinase domain, 
which has been implicated in DNA repair dysregulation54. Many of these 
samples have no DNA-level alterations in CDK12 (46%) (Extended Data 
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Fig. 26a). Furthermore, splicing, alternative promoter, SNV, RNA-edit-
ing and fusion alterations in this gene are mutually exclusive (adjusted 
P = 4.8 × 10−3) (Extended Data Fig. 26b, c). Upon further investigation, we 
find that somatic eQTL mutations in CDK12 are associated with a tandem 
duplicator phenotype55. Although this association was not replicated 
with other RNA alterations, it provides evidence that somatic CDK12 
mutations may alter its function through gene expression changes. 
This example illustrates that performing a recurrence analysis over 
diverse RNA and DNA alterations can help to identify genes known to 
be important in tumorigenesis.

Discussion
Here we present a comprehensive catalogue of RNA-level alterations in 
cancer, spanning 27 different tumour types, and provide a harmonized 
resource of matched transcriptome and whole-genome sequences. We 
identified 731 genes that were recurrently altered by several mecha-
nisms, jointly enriched for known cancer census and PCAWG driver 
genes8. The list includes genes that are primarily altered at the DNA level 
(such as TP53), but also genes for which the alteration most frequently 
manifests in RNA (such as GAS7). Out of 87 samples from the PCAWG 
study that did not have a driver alteration at the DNA level5, and had 
RNA-sequencing (RNA-seq) data, every sample had an RNA-level altera-
tion identified. Although cancer is thought to be driven by changes in 
DNA primarily, some driver alterations may manifest themselves via 
changes in RNA rather than DNA sequence mutations.

We identified germline eQTLs for around 20% of expressed genes. 
The number of eGenes found is generally low compared with some 
other studies, reflecting the heterogeneity of our samples. Only 422 
genes appeared to be specific to cancer; this is likely to be an under-
estimate owing to the heterogeneity, small sample numbers and the 
rather conservative strategy chosen. We have also mapped linkages 
between genes and somatic aberrations in cis, in which 68.4% of asso-
ciations were between non-coding somatic variants and gene expres-
sion. Allelic copy-number imbalance is a major determinant of ASE 
dysregulation in cancer. We found mutations associated with splicing 
changes including novel cancer-specific exons that can be partially 
explained by mutation-driven exonization. We systematically com-
pared gene fusions with whole-genome rearrangements across many 
tumour types and found 82% of detected fusions were associated with 
specific genomic rearrangements. For the remaining fusions, it is pos-
sible that the relevant genomic rearrangements have not been detected, 
or that some fusions happen directly at the RNA level, as trans-splicing 
or read-through events. The availability of whole-genome sequences 
allowed us to develop a systematic classification of fusion events and 
to propose a new bridged fusion mechanism.

Because global differences in RNA expression phenotypes are largely 
tissue-specific, our ability to associate mutations in cis or trans are 
limited by the small and variable sample sizes within each histotype. 
Further work is needed to investigate other mechanisms of genome 
alteration that can lead to changes in RNA such as epigenetic changes56 
or enhancer hijacking57. Our work will help to prioritize further inves-
tigations.

Overall, our analyses show diverse modes of alteration of cancer 
genes and pathways at the DNA and RNA levels, and demonstrate 
that RNA analyses reveal cancer-associated pathway alterations that 
have not yet been detected via DNA-only approaches. These insights 
illustrate the power of integrated transcriptome and whole-genome 
sequencing analysis for cancer studies.
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Methods

RNA-seq alignment and quality-control analysis
Tumour and healthy ICGC RNA-seq data, included in the PCAWG 
cohort5, was aligned to the human reference genome (GRCh37.p13) 
using two read aligners: STAR58 (v.2.4.0i, two-pass), performed at 
MSKCC and ETH Zürich, and TopHat259 (v.2.0.12), performed at the 
European Bioinformatics Institute. Both tools used Gencode (release 
19)60 as the reference gene annotation. For the STAR two-pass align-
ment, an initial alignment run was performed on each sample to gen-
erate a list of splice junctions derived from the RNA-seq data. These 
junctions were then used to build an augmented index of the reference 
genome per sample. In a second pass, the augmented index was used 
for a more sensitive alignment. Alignment parameters have been fixed 
to the values reported in https://github.com/ICGC-TCGA-PanCancer/
pcawg3-rnaseq-align-star. The TopHat2 alignment strategies also 
followed the two-pass alignment principle, but was performed in 
a single alignment step with the respective parameter set. For the 
TopHat2 alignments, the irap analysis suite61 was used. The full set 
of parameters is available along with the alignment code in https://
hub.docker.com/r/nunofonseca/irap_pcawg/. For both aligners, the  
resulting files in BAM format were sorted by alignment position, 
indexed and are available for download in the GDC portal (https:// 
portal.gdc.cancer.gov/) and the ICGC Data Portal (https://dcc.icgc.
org/). The individual accession numbers and download links can be 
found in the PCAWG data release table: http://pancancer.info/data_
releases/may2016/release_may2016.v1.4.tsv. Cancer-type abbrevia-
tions are listed in Supplementary Table 23. Histology was derived 
from an older version released by the PCAWG Pathology and Clini-
cal Correlates Working Group. Assignments of donor to histology 
used in this study can be found in the file rnaseq.extended.metadata. 
aliquot_id.V4.tsv.gz at https://dcc.icgc.org/releases/PCAWG/ 
transcriptome/metadata/.

Quality control of all datasets was performed at three main levels: 
(1) assessment of initial raw data using FastQC62 (v.0.11.3) (Supplemen-
tary Fig. 4); (2) assessment of aligned data (percentage of mapped and 
unmapped reads for both alignment approaches); and (3) quantifica-
tion (by correlating the expression values produced by the STAR and 
TopHat2 based expression pipelines) (Supplementary Fig. 2). In total, 
we defined six quality-control criteria to assess the quality of the sam-
ples. We marked a sample as a candidate for exclusion if: (1) 3 out of 5 
main FastQC measures (base-wise quality, k-mer overrepresentation, 
guanine-cytosine content, content of N bases and sequence quality) 
did not pass; (2) more than 50% of reads were unmapped or fewer 
than 1 million reads could be mapped in total using the STAR pipeline;  
(3) more than 50% of reads were unmapped or fewer than 1 million reads 
could be mapped in total using the TopHat2 pipeline; (4) we measured 
a degradation score63 greater than 10; (5) the fragment count in the 
aligned sample (averaged over STAR and TopHat2) was <5 million; and 
(6) the correlation between the expression counts of both pipelines was 
<0.95. If a sample did not pass one of these six criteria it was marked 
as problematic and placed on a greylist. If more than two criteria were 
not passed, we excluded the sample.

A subset of 722 libraries from the projects ESAD-UK, OV-AU, PACA-AU 
and STAD-US were identified as technical replicates generated from  
the same sample aliquot. These libraries were integrated post- 
alignment for both the STAR and the TopHat2 pipelines using sam-
tools64 into combined alignment files. Further analysis was based on 
these files. Read counts of the individual libraries were integrated 
to a sample-level count by adding the read counts of the technical 
replicates.

Initially, a total of 2,217 RNA-seq libraries were fully processed by 
the pipeline. Quality-control filtering and integration of technical 
replicates (722 libraries) gave a final number of 1,359 fully processed 
RNA-seq sample aliquots from 1,188 donors.

GTEx data analysis
For a panel of RNA-seq data from a variety of healthy tissues, data from 
3,274 samples from GTEx (phs000424.v4.p1) were used and analysed 
with the same pipeline as PCAWG data for quantifying gene expression. 
A list of GTEx identifiers are provided at https://dcc.icgc.org/releases/
PCAWG/transcriptome/metadata.

Quantification and normalization of transcript and gene 
expression
STAR and TopHat2 alignments were used as input for HTSeq65 (v.0.6.1p1) 
to produce gene expression counts. Gencode v.1960 was used as the 
gene annotation reference. Quantification on a per-transcript level was 
performed with Kallisto66 (v.0.42.1). This implementation is available 
as a Docker container at https://hub.docker.com/r/nunofonseca/irap_
pcawg. The implementation of the STAR and TopHat2 quantification 
is available as docker containers in: https://github.com/ICGC-TCGA-
PanCancer/pcawg3-rnaseq-align-star and https://hub.docker.com/r/
nunofonseca/irap_pcawg/, respectively. Quantification of consensus 
expression was performed by taking the average expression based 
on STAR and TopHat2 alignments. Gene counts were normalized by 
adjusting the counts to FPKM67 as well as FPKM with upper quartile 
normalization (FPKM-UQ) in which the total read counts in the FPKM 
definition has been replaced by the upper quartile of the read count 
distribution multiplied by the total number of protein-coding genes.

The FPKM and FPKM-UQ calculations were as follows. 
FPKM = (C × 109)/(NL), in which N denotes the total fragment count to 
protein-coding genes, L denotes the length of the gene and C denotes 
the fragment count. FPKM-UQ = (C × 109)/(ULG), in which U denotes 
the upper quartile of fragment counts to protein-coding genes on auto-
somes unequal to zero, and G denotes the number of protein-coding 
genes on autosomes.

t-Distributed stochastic neighbour embedding analysis
The t-distributed stochastic neighbour embedding (t-SNE) plots 
in Supplementary Figs. 5 and 6 were produced using the RTsne  
package68 (with a perplexity value of 3) based on the Pearson correla-
tion of the aggregated expression (log + 1) of the 1,500 most variable 
genes. FPKM expression values per gene were aggregated (median) 
by tissue (GTEx) and study (PCAWG). Coefficient of variation for each 
gene was also computed per tissue (GTEx) and study (PCAWG) to deter-
mine the 1,500 most variable genes. Purity values were previously 
described69.

The t-SNE plot in Extended Data Fig. 17c is based on all exon-skipping 
events in protein-coding genes confirmed by SplAdder70. Each event 
was quantified in both the PCAWG and GTEx cohort. All events with 
more than 1% of missing percentage spliced in (PSI) values across the 
concatenated PCAWG and GTEx samples were removed. The remaining 
missing values were imputed as the mean over the non-missing samples. 
The centred data were then visualized using the TSNE package from 
the Scikit Learn toolkit71 with a perplexity value of 100, random state 
0 and an initialization with PCA.

Associations between genetic variation and gene expression: 
patient cohort
To associate genetic variation with gene expression, we analysed 
whole-genome sequencing (WGS) of the 1,188 donors with matched 
whitelisted RNA-seq data from the PCAWG cohort. Germline genotypes, 
SNV calls and segmented allele-specific SCNA calls were previously 
reported5. We matched 1,188 tumour RNA-seq IDs5 to WGS whitelist 
tumour IDs (synapse entry syn10389164). For patients with multiple 
WGS IDs (2 out of 1,188) or RNA-seq aliquot IDs (17 out of 1,188), we 
resolved the matching by pairing samples with the same ‘tumor_wgs_
submitter_specimen_id’ (Supplementary Table 1). The 1,188 patients 
are spread across 27 types of cancer and 29 project codes and include 
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899 carcinomas; 34 patients are metastatic and 13 recurrent with the 
remaining patients being primary tumours (Supplementary Table 1).

We used the data of these 1,188 patients for performing somatic and 
germline eQTL mapping, ASE analysis and association studies between 
gene expression and mutational signatures.

Gene expression filtering
Gene expression values (measured in FPKM; https://dcc.icgc.org/
releases/PCAWG/transcriptome/gene_expression) from consensus 
expression quantification as described above were used for this analysis.

Genes with FPKM ≥ 0.1 in at least 1% of the patients (12 patients) were 
retained, resulting in 47,730 genes. Only 18,898 protein-coding genes 
(according to the ‘gene_type’ biotype reported in Gencode v.1960) were 
used for the subsequent QTL analyses. The log2-transformed expres-
sion values (FPKM + 1) were subjected to peer analysis72 to account for 
hidden covariates (syn7850427; https://dcc.icgc.org/releases/PCAWG/
transcriptome/eQTL/phenotype). To balance the number of covariates, 
statistical power and available sample sizes per cancer type, we followed 
the GTEx protocol and estimated 15, 30 and 35 hidden covariates to be 
used depending on sample size73 (n < 150, 150 ≤ n < 250, n ≥ 250). Peer 
residuals were then rank-standardized across patients. The FPKM cut-off 
values and peer correction were also applied to the subset of 899 patients 
with carcinoma, yielding 18,837 protein-coding genes after filtering. 
Furthermore, we used ordinary least-squares regression to correlate 
each of the 35 peer factors with per-sample covariates, including can-
cer project codes, gender, tumour purity, somatic burden and several 
sequence metrics (Supplementary Notes), to understand the proportion 
of variance explained by known biological and technical covariates.

Covariates
In all linear models, we accounted for known confounding factors by 
modelling them as fixed effects. In all association studies, we accounted 
for sex, project code (describing cancer type and country of origin) 
and per-gene copy-number status (Supplementary Table 1 for the 
list of per patient covariates; syn7253568 and syn7253569 for sex and 
project codes; syn9661460 for per gene copy number). Per-gene copy-
number alterations were derived as the average copy number across all 
copy-number aberrations called within the annotated gene boundaries 
based on syn8042988.

The somatic eQTL, ASE and mutational signature analyses also 
accounted for total somatic mutation burden (number of SNVs and 
short insertions and deletions (indels)) and sample purity (Supplemen-
tary Table 1). Purity was estimated based on copy-number segmenta-
tion. In addition, the somatic eQTL and ASE analyses accounted for local 
SNV burden calculated in a 1-Mb window from the gene coordinates 
(https://dcc.icgc.org/api/v1/download?fn=/PCAWG/transcriptome/
eQTL/covariates/pergene.somatic.snv.cis.burden.1188.wl.donors.tsv.gz).

The germline eQTL analysis also modelled the population structure 
as random effect. The population structure was assessed by a kinship 
matrix that was calculated based on every twentieth germline vari-
ant, processed as described below (see ‘Germline eQTL variants’). The 
kinship matrix was then calculated as an empirical patient-by-patient 
covariance matrix.

Different covariates were accounted for per-analysis method (Sup-
plementary Table 1). The project code describes cancer type and 
country-of-origin. Somatic burden is the total number of SNVs and 
indels. Purity was estimated based on copy-number segmentation. 
Local somatic burden is the number of SNVs in a 1-Mb window around 
the gene coordinates. Local copy number was defined as the average 
copy-number state across all SCNAs called within the annotated gene 
boundaries.

GO and Reactome pathway enrichment
We performed GO74,75 and Reactome pathway20,21 enrichment with the 
Bioconductor packages biomaRt76,77, clusterProfiler78 and ReactomePA79 

(FDR ≤ 10%). The number of genes used as background set is described 
per analysis method.

Germline eQTL variants
PCAWG variant calls v.0.15 were downloaded from GNOS and processed 
following the PCAWG-8 protocol: (1) VCF files were indexed and merged 
using bcftools80. (2) All variants were filtered for ‘PASS’ flag. (3) All vari-
ants were filtered for quality larger than 20. (4) Only bi-allelic sites 
were considered.

HDF5 files for each 100-kb chunk of the VCF files were generated, 
assuming additivity that was numerically encoded as 0, 1 or 2 for 
homozygous reference, heterozygous or homozygous alternative state, 
respectively. For indels, we encoded the presence or absence of the vari-
ant as 0 or 1, respectively. Each variant was normalized to mean 0 and 
standard deviation 1. Missing variants were mean-imputed. To create 
our eQTL release set v.1.0, the resulting HDF5 files were subsequently 
merged into a global HDF5 file and all variants which follow any of the 
following conditions were removed: (1) minor allele frequency ≤ 1%; 
and (2) missing values ≥ 5%

Germline eQTL analysis
In the germline eQTL analyses, we used the processed gene expres-
sion dataset from 1,178 patients for which germline variant calls (eQTL 
release set v.1.0, see ‘Germline eQTL variants’) were available. Linear 
mixed models were used to model the correlation between germline 
variants (within 100 kb of gene boundaries) and gene expression val-
ues (see ‘Gene expression filtering’) using the limix package81. Known 
covariates were modelled as fixed effects and population structure as 
random effect (see ‘Covariates’).

A two-step approach was used to adjust for multiple testing. First, for 
each gene, we adjusted for the number of independent tests estimated 
based on local linkage disequilibrium82. Second, we performed a global 
correction across the lead variants, that is, the most significant SNPs, 
per eQTL. Germline eGenes were defined as genes with an eQTL with 
global FDR ≤ 5%.

GTEx comparative analysis
The GTEx comparative eQTL analysis was based on the eQTL maps 
v.6p10. We mapped the positions and alleles of our PCAWG-specific 
eQTL to the eQTL in all GTEx tissues. To determine whether a lead 
eQTL variant is replicated in a given GTEx tissue, we followed the previ-
ously described strategy10. For each eGene, we considered the eQTL 
lead variant and assessed the replicability of the signal in the GTEx 
cohort based on marginal association statistics using 42 GTEx tissues 
without cell lines (P < 0.00024 = 0.01/42, corrected for the number 
of GTEx tissues—that is, 42)). If the lead variant did not replicate or 
was not tested, we determined replication based on the variant with 
the smallest P value within the linkage disequilibrium block (r2 ≥ 0.8 
estimated based on UK10K project) of the lead variant across 25 (or 42) 
tissue-matched GTEx analyses. If neither lead nor any variant within 
the linkage disequilibrium block was tested, we determined replica-
tion based on the smallest P value of any variant within the 100-kb 
window tested within the GTEx cohort. We also derived less stringent 
sets of PCAWG-specific eGenes by allowing replication in up to 1, 5 or 
10 GTEx tissues.

Tissue sharing of germline eGenes between histotypes
Using the R package qvalue (https://github.com/StoreyLab/qvalue, 
v.2.14.0), we generated π1 statistics comparing the lead variants of one 
histotype against their P value distribution in the other histotypes. 
Because π1 statistics are known to be confounded by sample size and 
number of eQTL found, we subsampled the eQTL lead variants to a 
randomly selected set of 100 variants. After 20 rounds of subsampling, 
we derived the same π1 statistics as mentioned earlier and reported 
the average.
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Roadmap enrichment of germline eGenes
For each lead variant, we generated a matching background set of 
1,000 variants using SNPsnap83. Each variant (background and fore-
ground) was intersected with the location of 25 Roadmap factors16 in 
127 cell types. From this we derived fold change and P values. Significant 
changes of fold change between PCAWG-specific and unspecific eQTLs 
is based on a one-sided Wilcoxon rank-sum test.

Enrichment analysis
Enrichment of Reactome pathways of PCAWG-specific eGenes was 
performed using the Bioconductor package ReactomePA79.

Somatic calls and mutational burden
We used the set of consensus SNVs somatic calls provided by PCAWG 
(syn7357330) based on three core caller pipelines and MuSE84. On 
average, we counted 22,144 somatic SNVs per patient, with different 
median numbers of SNVs per cancer type, ranging from 1,139 in thy-
roid adenocarcinoma to 72,804 SNVs in skin melanoma (Extended 
Data Fig. 5a). Owing to the low frequency of somatic SNVs across the 
cohort (Extended Data Fig. 5b), we collapsed the variants by genomic 
regions defined by gene annotations (Gencode v.1960). Specifically, we 
generated a set of disjoint gene exons by collapsing overlapping exon 
annotations into single features using bedtools85. The set of disjoint 
introns was generated using bedtools by subtracting the collapsed 
exonic regions from the gene regions. To map local effects of somatic 
mutations in flanking features outside the gene body, we binned the 
surrounding regions (plus and minus 1 Mb from the gene boundaries) 
into 2-kb windows (flanking) overlapping by 1 kb.

We defined three different types of aggregated somatic burden to 
assess differences in power in detecting somatic eGenes and P value cali-
bration. The burden in a genomic region was defined as (1) a binary value 
that indicates presence or absence of SNVs; (2) the aggregated burden 
as sum of SNVs; or as (3) weighted burden, that is, sum of variant allele 
frequencies of the SNVs (Supplementary Fig. 10a) to take into account 
their clonality (https://dcc.icgc.org/releases/PCAWG/transcriptome/
eQTL/genotypes). We assessed calibration of all three analyses with Q–Q 
plots of nominal and permuted P values (permutation of the patients 
in the gene expression matrix) (Supplementary Fig. 10b–d). Moreover, 
for the linear regression analysis, genotypes were standardized across 
patients (to mean zero and standard deviation one) and standardized 
effect sizes are provided in Supplementary Table 5.

Overall, somatic burden within flanking regions was the most preva-
lent type of burden tested per gene (Extended Data Fig. 6a). We found 
similar average relative mutation density per type of genomic region 
(flanking = 0.008 mutations per kb; introns = 0.007 mutations per kb; 
exons = 0.006 mutations per kb) (Extended Data Fig. 6b) and average 
recurrence of the same mutated region across the cohort was rather 
low (flanking = 1.4%; exons = 1.7%; introns = 4%) (Extended Data Fig. 6c).

Somatic eQTL analysis
Linear models were used to model the correlation between recurrent 
somatic burden and gene expression of up to 18,898 protein-coding 
genes, using the limix package81 (see ‘Gene expression filtering’). Gene 
expression was corrected for 35 hidden Peer factors. Known covariates 
were modelled as fixed effects (see ‘Covariates’). We considered only 
somatic burdens with frequency greater than 1%, including exonic 
and intronic burdens, as well as flanking burdens, within 1 Mb from 
gene boundaries.

The somatic eQTL analysis was performed on all 1,188 patients and 
on the subset of 899 patients with carcinoma (representing 20 of the 
27 types of cancer) to replicate the analysis on a more homogeneous 
set of tumours. A cis window of 1 Mb from the gene boundaries was 
used to find mutated genomic intervals with a burden frequency ≥ 1% 
in the cohort (at least 12 patients in the full cohort and 9 patients in 

the carcinoma cohort). Together, 18,708 of the genes had at least one 
mutated interval at that frequency and were included in the analysis 
and 1,049,102 regions showed a burden frequency ≥ 1%

Bonferroni correction was applied to correct for multiple cis windows 
tested within the same gene. Then, Benjamini–Hochberg correction was 
applied to adjust the P values of the lead genomic regions across genes. 
Somatic eGenes were defined as genes with an eQTL at a FDR ≤ 5%.

Somatic cis-eQTL comparative analysis
We compared our 649 somatic eQTL set with three previous cancer 
studies86–88 to identify independent evidence of interaction between 
our eGenes and the associated cis-genomic regions with somatic bur-
den. Studies were chosen if they provided lists of cancer regulatory 
elements linked to genes or regulatory elements with somatic muta-
tions linked to gene expression deregulation in cancer. All the three 
studies examined were based on TCGA cancers. For this, we checked 
perfect overlaps with both the somatic burden location and the eGene. 
Moreover, we looked at the overlap between somatic eQTL and 72,987 
GeneHancer89 enhancers-to-genes interactions, with at least two inde-
pendent supporting methods (called ‘double-elite’), downloaded from 
the UCSC hg19 GeneHancer track90. We then compared this overlap 
with a set of nulls generated by 1,000 random permutations of the 
GeneHancer regulatory elements with nearby genes located within 
1 Mb. We then retrieved an empirical P value of enrichment by counting 
the number of random nulls (N) showing greater number of overlaps 
than those found between the somatic eQTL set and the GeneHancer 
set (P = (N + 1)/(1,000 + 1)).

Functional enrichment in somatic cis-eQTL
To identify putative regulatory sites enriched for somatic eQTL, we 
retrieved functional annotations of the lead genomic flanking inter-
vals of the somatic eQTL (556 intervals linked to 638 somatic eQTL). 
Therefore, we mapped somatic eQTL to 25 Roadmap Epigenomics 
chromatin marks of 127 different cell types16 and ENCODE transcription-
factor binding site annotations in 9 cell types (including 8 cancer and 
one embryonic stem-cell lines91) (Supplementary Tables 6 and 7). We 
compared annotations in the significant set of eQTLs with a null distri-
bution based on 1,000 random samplings of a matched set of genomic 
intervals. To define the matched sets of genomic intervals, we selected 
flanking genomic intervals from the whole set of tested genes that 
showed a similar distance from the gene start (exact distance ± 2 kb) 
and that matched the exact burden frequency of the corresponding 
interval in the significant associations. We then overlapped the 1,000 
matched sets with Roadmap Epigenomics and ENCODE annotations. To 
avoid ambiguous overlaps (with multiple annotations), we retained only 
genomic intervals showing a minimum overlap of 10% of their length.

We retrieved an empirical P value of enrichment for each annota-
tion by counting the number of randomly sampled flanking intervals 
(N) showing greater number of overlaps compared to the eQTL set 
(P = (N + 1)/(1,000 + 1)). Benjamini–Hochberg correction was applied 
to the empirical P values (over 25 marks in 127 cell lines for Roadmap 
Epigenomics annotations and over 149 transcription-factor-binding 
sites for 9 ENCODE cell lines). We then computed the fold change per 
annotation and cell line as a ratio of annotated lead flanking intervals 
and mean number of annotated matched random flanking intervals 
over the 1,000 samplings.

Furthermore, we performed GO74,75 and Reactome pathway20,21 enrich-
ment with the Bioconductor packages biomaRt76,77, clusterProfiler78 and 
ReactomePA79 (FDR ≤ 10%) and also looked at enrichment within high-
confidence cancer testis genes previously described92, using 18,708 
genes with at least one mutated interval as background.

Variance component analysis
Limix was used to perform variance decomposition using the 
same covariates as in the somatic variant analyses except for local 
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copy-number state (see ‘Covariates’). The random effects were based 
on the following common germline variants and somatic burden (fre-
quency > 1%) (see ‘Somatic calls and mutational burden’ for detailed 
description of burden): (1) cis-somatic intronic: weighted burden 
in introns; (2) cis-somatic exonic: weighted burden in exons; (3) cis-
somatic flanking: weighted burden in 1-kb-overlapping regions of 2 kb 
within 1 Mb from gene boundaries; (4) somatic intergenic: weighted  
burden in 1-kb-overlapping regions of 2 kb outside the 1 Mb window;  
(5) cis-germline: germline variants within 100 kb from gene boundaries; 
(6) trans-germline: genome-wide population structure (see ‘Covari-
ates’); and (7) local copy-number variation (see ‘Covariates’).

All the data was mean-centred and standardized. For each of the 
random effects, a linear kernel was computed and used as covariance 
matrix. The resulting variance components were normalized to add 
up to one.

Mutational signature associations
We obtained 39 mutational signatures from PCAWG-7 beta 2 release9 
and used linear models to associate the mutational signatures with gene 
expression of up to 18,898 protein-coding genes across 1,159 patients 
while accounting for known covariates (see ‘Covariates’) (quality con-
trol) (Extended Data Fig. 10a–e). The 1,159 patients were a subset of 
the total 1,188 patients, for whom mutational signature profiles were 
available. Gene expression was corrected for 35 hidden peer factors 
(see ‘Gene expression filtering’).

We retained 18,888 genes that showed a minimum FPKM of 0.1 in at 
least 1% of 1,159 the patients (see ‘Gene expression filtering’). Signatures 
with zero variance and a prevalence below 1% were filtered, and we 
obtained 28 signatures. We applied linear models to associate expres-
sion of these genes with the signatures across all 1,159 patients, a subset 
of 877 patients with carcinoma or a subset of 891 European patients 
to assess consistency of the associations (Extended Data Fig. 10f, g).

Across all patients, we found 1,176 significantly associated genes 
after Benjamini–Hochberg correction (we used an FDR ≤ 10% for enrich-
ment analyses, multiple testing was applied across all signature–gene 
pairs) (Supplementary Tables 19a–c). We performed gene enrichment 
analyses of the significant genes per signature (see ‘GO and Reactome 
pathway enrichment’) (here 18,831 background genes, multiple testing 
correction across all ontologies per signature FDR ≤ 10%) (Supplemen-
tary Table 19d). Whereas most signatures were associated with only few 
genes, 18 showed recurrent trans effects and affected expression of 
over 20 genes (Extended Data Fig. 11d, Supplementary Table 19e). We 
further found that the vast majority of genes (85.8%) were associated 
with only one signature (1,009 genes); 129 genes were associated with 
two, 32 with three, 5 with four and 1 with five signatures.

To assess how tissue-specific both mutational signatures and their 
associations with gene expression are, we analysed the occurrence of 
each signature in each of the types of cancer. We assessed the presence 
(at least one SNV of a signature in at least one patient with a specific can-
cer type) and mean prevalence (mean number of SNVs of a certain sig-
nature across all patients of a specific cancer type) of the signatures in 
the types of cancer (Extended Data Fig. 13c, d). We defined cancer-type-
specific signatures to occur in up to four types of cancer (signatures 4, 
7, 9, 12, 16, 38 and 39) and common signatures to be missing in up to five 
types of cancer (signatures 2, 13 and 18). For each of these signatures, 
we performed cancer-type-specific analyses, that is, we assessed the 
association between the respective signature and gene expression in 
just the patients who are of a cancer type that shows mutations of the 
respective signature (Extended Data Fig. 13c, left heat map). We then 
correlated the P values of these cancer-type-specific analyses with the 
P values of the analysis across all patients and calculated the Pearson 
correlation coefficients (Supplementary Fig. 24a–e). We show that the 
correlation between cancer-type-specific and whole-cohort P values 
is dependent on the sample size of the respective analysis (r2 = 0.671) 
(Supplementary Fig. 1f).

We further performed PCA on the signatures across both, patients 
(PCA on signature-specific SNVs per patient) and genes (PCA on 
adjusted P values of signature-gene expression associations) (Extended 
Data Fig. 11a, b).

To assess significance of the functional annotation of SNVs by muta-
tional signatures, we also associated gene expression with the total 
number of SNVs and correlated the P values (−log10(P)) of the asso-
ciations with the respective signature-specific P values. The absolute 
Pearson correlation coefficients remain below 0.1 (Supplementary 
Table 19f).

To establish causality of signature–gene expression associations, we 
included the germline eQTL into the analysis using linear mixed models; 
197 of our 1,176 signature-associated genes were also germline eGenes. 
These 197 associations involved 26 of the 28 mutational signatures. We 
associated the lead variants of these eGenes with the rank-standardized 
signature SNVs across 2,507 patients. We used the subset of the 2,818 
WGS patients for which mutational signature profiles and all known 
covariates were available. We accounted for the same fixed covariates 
as in the mutational signature–gene expression association studies and, 
in addition, for kinship as a random effect (see ‘Covariates’).

We then performed proportional colocalization analysis with Bayes-
ian model averaging using the R package coloc93 to test whether gene 
expression and mutational signatures share common causal genetic 
variants in a given gene region. A proportional colocalization analy-
sis tests the null hypothesis of colocalization by assuming that two 
phenotypes that share causal variants will have proportional regres-
sion coefficients for either phenotype with any variant selection in the 
vicinity of the causal variant. We applied the Bayesian model averag-
ing approach, with each tested model consisting of a selection of two 
variants. The P values are then averaged over all models to generate 
posterior predictive P values93. We filtered variants so that no pair of 
variants showed r2 > 0.95 and each variant’s marginal posterior prob-
ability of inclusion with one of the phenotypes was greater than 0.01. 
The nominal P values of rejecting the null hypothesis of colocalization 
are listed in Supplementary Table 19e.

We then performed mediation analysis94,95 to assess directionality 
of the effect between germline eQTL, gene expression and mutational 
signature. First, causal mediation analysis was applied to each of the 
triples of eQTL lead variant, gene and mutational signature using a 
structural equation model from the R package lavaan96. Then, we used 
the R package mediation97 to assess significance of mediation and esti-
mate the proportion of mediated effect by non-parametric bootstrap 
confidence intervals (1,000 simulations).

ASE analysis: assembling phased germline and somatic variants
To understand the precise effect of somatic variations in their genomic 
context and for subsequent allele-specific analyses, both germline and 
somatic variants were phased. For assembling phased germline geno-
types, we used the Sanger 1000G callset6, and applied IMPUTE298 for 
phasing of heterozygous germline variants. The IMPUTE2 output was 
corrected using results from the Battenberg CN calling algorithm99 to 
ascertain that no haplotype switches occur within regions of consecu-
tive copy-number gain. The resulting phased germline genotypes were 
arranged such that haplotype 1 always corresponded to the amplified 
alleles in regions with SCNAs (major allele). In cases in which both co-
occur on the same NGS read (approximately 10 million variants, 20% of 
all SNVs), we phased individual somatic variants to the nearest germline 
heterozygous site. For downstream analyses, we considered only SNVs 
that were phased by at least three reads to the respective germline 
variant (approximately 6 million out of 10 million SNVs).

All phased SNVs were aggregated into functional categories based 
on their genomic regions defined by gene annotations (upstream, 
downstream, promoter, 5′ UTR, intron, synonymous, missense, stop 
gain and 3′ UTR) and mapped to the nearest gene within a cis window 
of 100 kb using the Variant Effect Predictor (VEP) tool100. Promoter 



variants were defined as 1-kb upstream of the TSS. We included flanking 
regions by using the VEP ‘UpDownDistance’ plugin with a maximum 
range parameter of 100 kb. We divided the upstream and downstream 
variant categories into disjoint categories using 10-kb windows from 
10 to 100 kb. We integrated ‘splice donor’ and ‘splice acceptor’ vari-
ants into the general ‘splice region’ variant category and mapped ‘stop 
retained’ variants to the ‘synonymous’ variant category. We averaged 
transcript-level annotations to gene-level annotations to retrieve the 
expected functional effect of a variant for a given gene. We analysed 
the relationship between SNV variant allele frequency and SCNAs at 
the same locus to determine whether variants occurred before (‘early’) 
or after (‘late’) the corresponding SCNA (PCAWG-11). We computed a 
weighted cis-mutational burden per category by estimating the can-
cer cell fraction of each SNV and aggregating SNVs to a total localized 
burden weighted by their respective cancer cell fraction.

ASE read counts
The positional information of the heterozygous germline variants 
was used together with the RNA-seq BAM files as input to the GATK 
ASEReadCounter101 algorithms for counting ASE reads. We considered 
reads with a minimum mapping quality of 20 and a minimum base qual-
ity of 10. Only heterozygous variants with a minimum coverage of eight 
RNA-seq reads were considered for all further analyses.

The raw ASE read counts were post-processed as follows: (1) ASE sites 
were converted to BED files and aligned against the ENCODE 50-mer 
mappability track (wgEncodeCrgMapabilityAlign50mer.bigWig) to 
extract mappability scores for all sites. All sites with mappability scores 
unequal to 1 were removed. (2) All sites with allelic read counts less or 
equal to 1 were removed to prevent genotyping error to influence ASE 
quantification. (3) All sex chromosomes were dropped for further 
analysis. (4) We estimated sequencing error per patient as the sum 
of non-reference and non-alternative bases over the total number of 
bases. We assessed statistical mono-allelicity through a binomial test 
using the estimated sequencing error probabilities, corrected using the 
Benjamini–Hochberg step down procedure. All sites that appeared to 
be statistically mono-allelic were removed. (5) For each ASE site, copy-
number states were retrieved from the Sanger copy-number consensus 
callset (PCAWG-11). Purity estimates for each patients were retrieved 
from the accompanying purity tables.

To aggregate site-level ASE to a gene-level readout and to allow for 
estimation of effect directionality, we used the phased germline geno-
types. Gene mapping was performed against ENSEMBL release 75 using 
the pyEnsembl Python library. We retrieved all genes at each ASE site 
and summed up the read counts on the respective haplotypes to gene-
level haplotype-specific read counts. We further averaged haplotype-
specific copy-number states to a mean haplotype-specific copy-number 
state per gene and computed the gene-level copy-number ratio as the 
major over total ratio of those averages. To allow for a robust assess-
ment of gene-level ASE, we considered only genes with at least 15 reads 
total, yielding 4,379,378 gene–patient pairs of 1,120 patients and 17,009 
unique genes across 12,441,502 accessible sites in total. Every remain-
ing gene was tested for AEI using a binomial test against an expected 
read ratio of 0.5 to derive nominal P values, and a binomial test against 
the expected copy-number ratio modified by tumour purity to derive 
copy-number-corrected P values. Nominal and copy-number-corrected 
P values were adjusted separately for multiple testing using the Ben-
jamini–Hochberg procedure. Significant AEI was called at FDR ≤ 5%. 
We further annotated each gene with the number of ASE sites used for 
aggregation. For all downstream analyses, we considered only genes 
annotated as protein coding (ENSEMBL biotype = ‘protein_coding’).

Generalized linear models
Across all 4,379,378 gene–patient pairs, we trained multivariate linear 
models using (i) logistic regression against a binary indicator of AEI 
absence or presence in a gene, or (ii) standard linear regression against 

the phased ASE ratio of a gene to assess the directionality of the regula-
tory change. For (i), haplotype-specific mutations were summed up to 
a total burden per category, whereas for (ii) we used the difference in 
burden between the haplotypes 1 and 2. The consistency of the phas-
ing map between somatic variants and ASE sites ensured that model 
coefficients kept their directionality independent of the arbitrary 
labelling of haplotypes as 1 or 2. The full set of considered factors is as 
follows: (1) copy-number ratio at the gene locus (0.5 ≤ x ≤ 1); (2) sample 
purity (0 < x < 1); (3) natural logarithm of total gene length (x > 0); (4) 
natural logarithm of the length of the canonical transcript (x > 0); (5) 
heterozygosity of the lead eQTL variant (x = 0 if homozygous, x = 1 if not 
homozygous); (6) all mutational burden categories as determined by 
VEP annotations (upstream in 10-kb windows, downstream in 10-kb win-
dows, promoter, 5′ UTR, intron, synonymous, missense, stop gain and 
3′ UTR; x ≥ 0 for logistic model, x ∈ ℝ for directed model).

To compare global effects and different contributions of SCNA, ger-
mline eQTL, coding and non-coding SNVs, a simplified logistic model 
was trained after accumulating all coding and non-coding variants to 
separate categories and reporting standardised effect sizes (Fig. 1e).

Cancer gene enrichment
Cancer gene enrichment was conducted on the COSMIC census53 
using Fisher’s exact test and gene set enrichment analysis as previ-
ously described102. For enrichment, the average score of a gene was 
computed across the cohort and only genes with at least five replicates 
in the cohort were kept, yielding a total of 16,078 genes.

Chromosomal distribution of ASE
We calculated the recurrence of ASE genes in each tumour type. To 
examine the chromosomal distribution of ASE genes, we calculated 
the average recurrence of all genes for every 200-gene window with 
a 10-gene step, and then subtracted the average ASE occurrence in 
each tumour type to obtain the peaks of ASE surplus across all chro-
mosomes. The recurrence of copy-number genes was calculated in an 
analogous manner.

Estimation of alternative promoter activity
We estimated promoter activities using RNA-seq data and Gencode 
(release 19) annotations for 70,937 promoters in 20,738 genes. We 
grouped transcripts with overlapping first exons under the assumption 
that they are regulated by the same promoter103. TSSs that are located 
within internal exons, or which overlap with splice acceptor sites, were 
removed from this analysis as these promoters are difficult to estimate 
from RNA-seq data28. Promoter activity can be estimated using exon 
usage29, spliced reads28 or isoform-based estimates30. Here we used an 
isoform-based approach to quantify promoter activity. We quantified 
the expression of each transcript from the RNA-seq data using Kallisto66 
and calculated the sum of expression of the transcripts initiated at 
each promoter to obtain an estimate of promoter activity. To obtain 
the relative activity for each promoter, we normalized each promoter’s 
activity by the overall gene’s expression. We divided the promoters 
of each gene into three categories based on their average pan-cancer 
promoter activity. The promoters with <1 FPKM average activity are 
called inactive promoters, and the most active promoter of each gene 
is called the major promoter. The remaining active promoters of the 
gene are called minor promoters.

The association between promoter activities and promoter mutation 
burden was estimated using the same framework as the somatic eQTL 
analysis. We examined associations for the promoters of expressed 
multi-promoter genes with a burden frequency ≥ 1% in the cohort (at 
least 12 patients in the full cohort). The weighted burden of the region 
1-kb upstream of the TSS—that is, the sum of variant allele frequencies 
of the SNVs for each gene—was used as the genotype for the promoters 
of the respective genes. We used linear models to study the associations 
between the recurrent somatic burden and the promoter activity (both 
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for the relative activity and the log2-transformed absolute activity). 
Similar to the somatic eQTL analysis, the known covariates and the 35 
hidden peer factors were provided as cofactors to the linear models. We 
adjusted the P values using Benjamini–Hochberg correction method 
and looked for associations with FDR ≤ 5%.

Identification of alternative splicing
We used the alignments based on the STAR pipeline to collect and quan-
tify alternative splicing events with SplAdder70. The software has been 
run with its default parameters with confidence level 3. We generated 
individual splicing graphs for each RNA-seq sample for both tumour 
samples as well as matched healthy samples (when available). All graphs 
were then integrated into a merged graph to comprehensively reflect 
all splice junctions observed in all samples together. On the basis of 
this combined graph, SplAdder was used to extract alternative splicing 
events of the following types: alternative 3′ splice site, alternative 5′ 
splice site, cassette exon, intron retention, mutually exclusive exons, 
coordinated exon skip (see supplementary figure 3 in ref. 70). Each 
identified event was then quantified in all samples by counting split 
alignments for each splice junction in any previously identified event 
and the average read coverage of each exonic segment involved in the 
event was determined. We then computed a PSI value for each event 
that was then used for further analysis. We further generated different 
subsets of events, filtered at different levels of confidence, in which 
confidence is defined by the SplAdder confidence level (generally 2), 
the number of aligned reads supporting each event, the number of 
samples that were found to support the event by SplAdder, and the 
number of samples that passed the minimum aligned read threshold.

Enrichment of outlier splicing associated with splice sites and 
branchpoint motifs
We assessed the significance of mutational enrichment for 5′ and 3′ 
splice sites, and branch-point104,105 intronic regions using a permutation-
based approach. Impactful mutations were defined as mutations over-
lapping exons and introns involved in cassette exon events, in which the 
PSI-derived z-score was ≥ 3 or ≤ −3. For each intronic site, we compared 
the frequency of observed impactful mutations against frequencies of 
randomly sampled intronic regions (number of iterations = 1,000). For 
exonic sites, the null distribution was established from randomly sam-
pled exonic sites. Randomly sampled sites were within a 100-bp window 
around the 5′ and 3′ splice site. For branch-point regions, sampled sites 
were within a 50-bp window around the branch-point sequence. The 
P value was computed as the number of randomly sampled frequencies 
greater or equal to the observed frequency.

SAVNet analysis for identifying rare SAVs
The SAVNet approach35 was designed for identifying somatic vari-
ants associated with local aberrant splicing alterations from matched 
genome and transcriptome sequencing data. It uses permutations 
to calculate an FDR and by restricting to two classes of relationships 
between somatic mutations and splicing alterations to focus: (1) splice 
site disruption, in which exon skipping, alternative 5′ or 3′ splice site, 
or intron retention is associated with a mutation in a splice site motif; 
and (2) splice site creation, in which alternative 5′ or 3′ splice sites are 
associated with mutations that create a novel splice motif (FDR ≤ 10%) 
(Extended Data Fig. 17e).

Identification of RNA fusions
Gene fusions between any two genes were identified based on two gene 
fusions detection pipelines: FusionMap (v.2015-03-31) pipeline106 and 
FusionCatcher (v.0.99.6a)/STAR-Fusion (v.0.8.0) pipeline107. ChimerDB 
3.0 was used as a reference of previously reported gene fusions. The 
database contains 32,949 fusion genes split into three groups: (1) KB: 
1,067 fusion genes manually curated based on public resources of 
fusion genes with experimental evidences; (2) Pub: 2,770 fusion genes 

obtained from text mining of PubMed abstracts; and (3) Seq: archive 
with 30,001 fusion gene candidates from deep-sequencing data. This 
set includes fusions found by re-analysing the RNA-seq data of the 
TCGA project encompassing 4,569 patients from 23 types of cancer.

In brief, FusionMap was applied to all unaligned reads from the 
PCAWG aligned TopHat2 RNA-seq BAM files for each aliquot to detect 
gene fusions. In the FusionCatcher/STAR-Fusion pipeline, for each ali-
quot with paired-end RNA-seq reads FusionCatcher was applied to the 
raw reads, with the genome reference. Specifically, for each aliquot with 
paired-end RNA-seq reads FusionCatcher was applied to the raw reads. 
The ‘-U True; -V True’ runtime options were used. For each aliquot with 
single-end RNA-seq reads, STAR-Fusion was applied to the raw reads, 
with the same reference genome and gene models as FusionCatcher and 
with default settings. In parallel, FusionMap was applied to all unaligned 
reads from the PCAWG aligned TopHat2 RNA-seq BAM files for each 
aliquot to detect gene fusions with the following non-default options 
values: MinimalHit = 4; OutputFusionReads = True; RnaMode = True; 
FileFormat = BAM.

To reduce the number of false-positive fusions, the two sets of fusions 
were filtered to exclude fusions based on the number of supporting 
junction reads, sequence homology, and occurrence in normal samples 
(from the GTEx and the PCAWG cohort). To get a high-confident con-
sensus fusion call set from these two pipelines, a fusion to be included 
in the final set of fusions had to: (i) be detected by both fusion detection 
tools in at least one sample; and/or (ii) be detected by one of the meth-
ods and have a matched structural variant in at least one sample. The 
consensus WGS-based somatic structural variants (v.1.6) were obtained 
from the PCAWG repository in https://dcc.icgc.org/releases/PCAWG.

For integration with matched structural variant evidence, a fusion 
was considered to match a structural variant if the absolute distance 
between the fusion break points and structural variant break points 
did not exceed 500 kb (the distance was considered infinite when the 
chromosomes of the fusion and structural variant break point differ). 
When there was no evidence for a direct structural variant fusion, the 
search was expanded to look for composite fusions. In this case, an 
exhaustive search was performed to look for two structural variants 
with break points close to the fusion break points and with an effective 
distance smaller than 250 kb.

Finally, 3,540 fusion events were included as the consensus fusion 
call set, from these 2,268 were detected by both FusionCatcher/STAR-
Fusion and FusionMap (from these, 1,821 had matched structural variant 
evidence) and 1,112 were detected by only one method and had matched 
structural variance evidence.

In total, approximately 36% of all detected fusion transcripts were 
predicted to be in-frame, several UTR-mediated fusion transcripts pre-
serve complete coding sequences of one fusion partner. These include 
a known fusion TBL1XR1-PIK3CA in a breast tumour and a notable new 
example CTBP2-CTNNB1 in a gastric tumour.

All fusions are available in Synapse: https://dcc.icgc.org/releases/
PCAWG/transcriptome/fusion.

Identification of RNA-editing events
We used an RNA-editing events calling pipeline, which is an improved 
version of that previously published108. First, we summarized the base 
calls of pre-processed aligned RNA reads to the human reference in 
pileup format. Second, the initially identified editing sites were then 
filtered by the following quality-aware steps: (1) the depth of candidate 
editing site, base quality, mapping quality and the frequency of varia-
tion were taken into account to do a basic filter: the candidate variant 
sites should be with base-quality ≥ 20, mapping quality ≥ 50, mapped 
reads ≥ 4, variant-supporting reads ≥ 3, and mismatch frequencies 
(variant-supporting-reads/mapped-reads) ≥ 0.1. (2) Statistical tests 
based on the binomial distribution B(n, p) were used to distinguish 
true variants from sequencing errors on every mismatch site109, in 
which p denotes the background mismatch rate of each transcriptome 
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sequencing, and n denotes sequencing depth on this site. (3) Discard 
the sites present in combined DNA SNP datasets (dbSNP v.138, 1000 
Genome SNP phase 3, human Dutch populations110, and BGI in-house 
data; combined datasets deposited at: ftp://ftp.genomics.org.cn/
pub/icgc-pcawg3). (4) Estimate strand bias and filter out variants with 
strand bias based on two-tailed Fisher’s exact test. (5) Estimate and 
filter out variants with position bias, such as sites only found at the 3′ 
end or at 5′ end of a read. (6) Discard the variation site in simple repeat 
region or homopolymer region or <5 bp from splicing site. (7) To reduce 
false positives introduced by misalignment of reads to highly similar 
regions of the reference genome, we performed a realignment filter-
ing. Specifically, we extracted variant-supporting reads on candidate 
variant sites and realign them against a combination reference (hg19 
genome plus Ensembl transcript reference v.75) by bwa0.5.9-r16. We 
retain a candidate variant site if at least 90% of its variant-supporting 
reads are realigned to this site. Finally, all high confident RNA-editing 
sites were annotated by ANNOVAR111. (8) To remove the possibility of 
an RNA-editing variant being a somatic variant, the variant sites are 
positionally filtered against PCAWG WGS somatic variant calls (9). 
The final two steps of filtering are designed to enrich the number of 
functional RNA editing sites. First, we keep only events that occur 
more than two times in at least one cancer type. Second, we keep 
only events that occur in exonic regions with a predicted function 
of missense, nonsense or stop-loss. The final step of filtering within 
exonic regions with a specific predicted function induces the largest 
difference in observed frequencies of RNA-editing events between 
our analysis and the published one108. A comparative depiction of 
the frequencies of RNA-editing events identified in our analysis (Sup-
plementary Table 24) and the previously published analysis108 is seen 
in Supplementary Fig. 23.

Gene-centric table creation
To perform joint analysis across RNA and DNA alterations, each altera-
tion type was condensed into a binary gene-centric format. Because 
alterations occur at many different scales (nucleotide, exonic, gene or 
transcript), to make them comparable we projected each alteration 
type onto the gene body. We summarized each alteration type by its 
presence or absence within a single gene, yielding a binary value per 
type for each gene-sample pair.

The events we included in this analysis were: RNA editing, non-
synonymous variants, expression, splicing alterations, copy-number 
alterations, fusions and alternative promoters. Each alteration type was 
summarized differently owing to their inherent differences.

RNA-editing events and non-synonymous variants can occur several 
times within a single gene body, so these events were denoted as 1 if 
they occurred at least once within a gene–sample pair.

For copy number, to obtain a single numerical value per gene-sample 
pair, the copy-number alteration was averaged over the gene body. 
Because we do not have matched normal samples against which to 
compare, we instead consider outlying events within each histotype 
as significant. Thus, a value of 1 was given to average copy-number 
alterations larger than 6 or smaller than 1.

Similar to non-synonymous variants, multiple splice events can 
occur within a gene body. The event with the most extreme PSI value 
within the gene body is selected as the candidate event for the gene. 
The candidate’s PSI value for a gene is compared over all samples within 
a histotype and it is set to 1 (that is, significant) only if it the absolute 
value of its z-score is larger than 6 and the standard deviation is larger 
than 0.01 within that histotype.

Similar to expression outliers, we calculate a z-score using the log-
transformed upper-quartile normalized FPKM values with a pseudo-
count of 1. All genes within a histotype with a standard deviation larger 
than zero and an absolute value larger than three were identified as an 
outlier. Alternative promoter outliers were calculated based on relative 
promoter activity within each cancer type. To binarize the promoter 

activity, a z-score cut-off of two over the relative expression distribu-
tion within each cancer type was used.

For ASE outliers, only genes with significant allelic imbalance 
(FDR ≤ 5% and allelic imbalance > 0.2, binomial test) were denoted as 
1. All ASE events that were identified were further filtered to keep only 
genes that have not been identified as imprinted26.

In addition to the z-score-filtering mentioned above, we further fil-
tered non-synonymous SNVs, RNA-editing events and splicing events 
such that they either induce a frameshift or the alternative region con-
tains an HGMD variant112 of the category ‘damaging’.

It must be noted that in many cases, the z-score calculated is not 
from a Gaussian distribution, so some events may be missed or falsely 
included. Through our choice of very stringent z-score thresholds and 
functional filters, we hope that spurious outlier events are minimized.

Pathway analysis
For our pathway analysis, we used the TCGA pathway definitions to 
examine genes and pathways that have several alterations at both the 
DNA and RNA level113.

Co-occurrence analysis
The co-occurrence analysis was also performed on the aforementioned 
binarized gene-centric table, but only including variants, expression 
outliers, alternative promoters, alternative splicing and fusions. 
SCNA and ASE are excluded owing to a large number of anticipated 
co-occurrence. In this analysis, we required at least one gene of a given 
alteration pair to be a COSMIC gene. For each alteration pair, based on 
the number of donors with both alterations, one alteration only and 
neither alterations in a set of cancer samples, we performed Fisher’s 
exact test to determine whether the alteration pair was independent 
of each other. Such tests were followed by Benjamini–Hochberg mul-
tiple testing correction to obtain the FDR (or q values). To rule out the 
potential false-positive association caused by tissue-specific altera-
tions, we performed the same analysis for each of the tumour types 
with at least 50 patients, and retained only those alteration pairs that 
were significantly associated in both the pan-cancer analysis and in at 
least one specific cancer indication. Among the significantly associ-
ated alteration pairs, the co-occurred pairs were those with odds ratio 
greater than 1. Pathway enrichment and visualization21,114 were con-
ducted using the R package ReactomePA79. The circos plots were gen-
erated using the R package circlize115. The splicing related genes were 
derived from the genes annotated as ‘REACTOME_MRNA_SPLICING’ 
or ‘REACTOME_MRNA_SPLICING_MINOR_PATHWAY’ in the Molecular 
Signatures Database (MSigDB)116.

Identifying genes with heterogeneous mechanisms of 
alterations in cis
Genes with multiple heterogeneous mechanisms of RNA alteration 
were identified from associations of cis variants with gene expression, 
ASE, fusions and splicing. For gene expression, genes associated with 
somatic eQTL with FDR < 5% were selected. For ASE, the top 5% of genes 
ranked by the predicted contribution of somatic variants on ASE. For 
fusions, all RNA fusions with structural variant support were selected. 
For splicing, genes having somatic mutations within 10 bp of an anno-
tated splice site or 3 bp of a branch point and associated splicing were 
selected. These associated splicing events also had to have a |z-score| 
greater than or equal to 3 and the difference of percent spliced in the 
outlier event was greater than or equal to 10%.

Recurrence analysis
The recurrence analysis was performed on the binarized gene-centric 
table for all nine alteration types. The recurrence analysis was per-
formed in three main steps: (1) Aggregate within each alteration type 
across all samples. This results in a sum for each gene-alteration pair.  
(2) Convert the counts to ranks within each alteration. The smallest rank 
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goes to the most frequently altered genes. Ranks are split evenly across 
ties. (3) To generate a single score for each gene, the second smallest 
rank across alterations is used as the score. To identify a score cut-off 
value for significantly altered genes, a null distribution was generated 
through permutation. The permutations were performed over the 
samples within each gene-alteration pair, this was done over all genes 
and samples 1,000 times, concatenating together all observations, 
results in 16.8 million permuted scores. P < 0.05 as derived from the 
null distribution was defined as significant, resulting in a score greater 
than or equal to 774 considered as significant.

WExT117 was used to test the significance of mutually exclusivity 
of RNA and DNA alterations. As further evidence that CDK12 altera-
tions may have a functional affect, we find evidence of the previously 
detected link55 between a large tandem duplicator phenotype (here 
defined as more than 10 tandem duplications of size greater than 100 
kb) and CDK12 somatic eQTL mutation (7 out of 18 somatic eQTL car-
riers are also among the 215 large tandem duplicator cases, P = 0.032, 
hypergeometric test).

Statistical tests
All common statistical tests are two-sided unless otherwise specified. 
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Somatic and germline variant calls, mutational signatures, subclonal 
reconstructions, and other core data generated by the ICGC and TCGA 
PCAWG Consortium are described in an accompanying Article5 and 
are available for download at https://dcc.icgc.org/releases/PCAWG. 
Additional information on accessing the data, including raw read files, 
can be found at https://docs.icgc.org/pcawg/data/. In accordance with 
the data access policies of the ICGC and TCGA projects, most molecu-
lar, clinical and specimen data are in an open tier that does not require 
access approval. To access potentially identification information, such 
as germline alleles and underlying sequencing data, researchers will 
need to apply to the TCGA data access committee via dbGaP (https://
dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA 
portion of the dataset, and to the ICGC data access compliance office 
(http://icgc.org/daco) for the ICGC portion of the dataset. In addition, 
to access somatic SNVs derived from TCGA donors, researchers will 
also need to obtain dbGaP authorization. Data derived specifically from 
RNA-seq analysis can be found at https://dcc.icgc.org/releases/PCAWG/
transcriptome. Subfolders contain identification and quantification 
of alternative promoter usage, alternative splicing, RNA fusions, gene 
expression, transcript-level expression and RNA editing. Identified eQTLs 
are in https://dcc.icgc.org/releases/PCAWG/transcriptome/eQTL and a 
binarized table indicating all RNA and DNA alterations for each gene can 
be found in the subfolder https://dcc.icgc.org/releases/PCAWG/tran-
scriptome/recurrence_analyses/. In addition, quality-control metrics and 
metadata are also included. Some datasets are denoted with synXXXXX 
accession numbers and available at Synapse (https://www.synapse.org/).

Code availability
The core computational pipelines used by the PCAWG Consortium for 
alignment, quality control and variant calling are available to the public 
at https://dockstore.org/search?search=pcawg under the GNU General 
Public License v.3.0, which allows for reuse and distribution. Further 
details on code availability are in the Supplementary Information.
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Extended Data Fig. 1 | Pan-cancer expression profiling of 1,188 PCAWG 
donors. a, Tumour and normal RNA-seq data from 27 histotypes. The total 
number of samples is shown to the right of the bars. Grey bars denote matched 

healthy samples. b, Number of female versus male donors. c, Total number of 
tumour and matched healthy samples from the PCAWG study. A subset of 
tumours (dark violet) was metastatic.



Extended Data Fig. 2 | Overview of the different sources of genetic variation 
considered in the analysis. a, For analyses of cis regulation, mono-allelic 
single-nucleotide germline variants (single nucleotide polymorphisms (SNPs), 
blue) were individually tested for association with total gene expression using 
standard eQTL approaches. Owing to their low recurrence in the cohort, 
somatic SNVs were aggregated in burden categories depending on their 
position relative to the gene tested (for example, promoter, 5′ UTR or intron). 
Local SNV burdens were then tested for association with ASE globally across all 
genes, as well as with total expression on a per-gene level using eQTL 
approaches. Trans effects were estimated by testing total gene expression for 

association with mutational and epigenetic signatures. Window sizes were 1 Mb 
for all somatic cis-eQTL analyses, and 100 kb for ASE and germline cis-eQTL.  
b, Overview of the different datasets and their contributions to the analyses 
described in a. Germline genotypes were derived from the matched healthy 
whole-genome sequencing (WGS) samples. Allele-specific SCNAs, mutational 
signatures and local SNV burdens were derived from the tumour WGS in 
comparison to the unaffected WGS samples. ASE and total expression (FPKM) 
were derived from the tumour and normal RNA-seq data. Arrows indicate 
dependencies between individual analyses carried out.
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Extended Data Fig. 3 | Germline eQTL lead variants. Left, quantile–quantile 
(Q–Q) plot of P values of germline eQTL lead variants in the pan-cancer and 
histotype-specific analysis (FDR ≤ 5%, blue) and P values of the same analysis 

after permutation (random permutation of patients, red). Middle and right, 
distributions of distance to the respective TSS of all germline eQTL lead 
variants in the pan-cancer and histotype-specific analysis.



Extended Data Fig. 4 | PCAWG-specific eGenes. a, Number of PCAWG-specific eGenes in relation to eQTL replication in various numbers of GTEx tissues.  
b, Number of eGenes of the PCAWG pan-analysis replicating in corresponding GTEx tissues.
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Extended Data Fig. 5 | Cis-mutational somatic burden. a, Total number of 
somatic mutational load per cancer type. Median numbers of SNVs range from 
1,139 in thyroid adenocarcinoma to 72,804 in skin melanoma. b, Number of 

recurrent somatic SNVs shared by increasing numbers of patients. A small 
fraction of 86 SNVs is detected in more than 1% of the cohort (12 patients).



Extended Data Fig. 6 | Somatic mutation rate and burden frequency by type 
of region tested. a, Number of mutated regions tested per gene with somatic 
burden frequency ≥ 1%. b, Mutation rate per kilobase. c, Burden frequency, 
stratified by the type of interval tested (flanking, exonic or intronic).  
d, Distribution of distances (bp) of the leading intervals (FDR ≤ 5%) to the 
closest (left and right) interval such that the association P value decreases by at 
least one order of magnitude (99% of the distribution is shown). e, Breakdown 
of all genomic regions tested (n = 1,049,102 with burden frequency ≥ 1%) and of 

the 567 genomic regions that underlie the observed somatic cis-eQTL at a FDR 
of 5% (intronic denotes eGene intron; exonic denotes eGene exon; flank. 
denotes 2-kb flanking region within 1 Mb distance to the eGene start and end; 
flank.intergenic denotes flanking region in a genomic location without gene 
annotations; flank.intronic denotes flanking region overlapping an intron of a 
nearby gene; and flank.others denotes flanking region partially overlapping 
several annotations of a nearby gene).
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Extended Data Fig. 7 | Manhattan plots of seven somatic eGenes associated 
with genic lead burden. Altogether, 11 genic somatic eQTLs showed significant 
changes in gene expression associated with somatic burdens within the gene 

boundaries (intronic or exonic). The seven genes shown here are known to be 
important in the pathogenesis of specific cancers. a, CDK12. b, PI4KA. c, IRF4. d, 
AICDA. e, C11orf73 (also known as HIKESHI). f, BCL2. g, SGK1.



Extended Data Fig. 8 | Scatter plots of eight somatic eGenes. Plots show the effect of the lead weighted burden on the gene expression residuals (obtained as 
described in the Methods) of these genes. a, CDK12. b, PI4KA. c, IRF4. d, AICDA. e, C11orf73. f, BCL2. g, SGK1. h, TEKT5.



Article

Extended Data Fig. 9 | Roadmap epigenome marks overlapping flanking 
intervals with somatic burden. a, Maximum fold enrichment of epigenetic 
marks from the Roadmap Epigenomics Project across 127 cell lines. The 
number of cell lines with significant enrichments is indicated in parentheses 
(FDR ≤ 10%); asterisks denote significant enrichments in at least one cell line.  
b, Mean percentages (over the 127 cell lines) of regions overlapping (by at least 
10% of their length) Roadmap epigenome marks, calculated using all genomic 
flanking regions (n = 1,637,638) and the subset of 556 flanking intervals 
associated with somatic eQTL (FDR ≤ 5%). c, Mutation rate per kilobase.  
d, Burden frequency (across the 127 cell lines) of the 556 flanking intervals in 

somatic eQTLs (FDR ≤ 5%), overlapping 25 Roadmap epigenome marks. DNase, 
DNase only; EnhA, active enhancer; EnhAc, enhancer acetylation only; EnhAF, 
active enhancer flank; EnhW, weak enhancer; Het, heterochromatin; PromBiv, 
bivalent promoters; PromD, promoter downstream; PromP, poised promoters; 
PromU, promoter upstream; Quies, quiescent/low; ReprPC, repressed 
PolyComb; TssA, active TSS; TxReg, transcription regulatory; ZNF/Rpts, ZNF 
genes and repeats; Tx, transcription; Tx3, transcription 3′, Tx5, transcription 5′; 
TxEnh3, transcription 3′ enhancer; TxEnh5, transcription 5′ enhancer; TxEnhW, 
transcription weak enhancer; TxWk, weak transcription.



Extended Data Fig. 10 | Quality control of the association studies between 
gene expression and mutational signatures. a–c, Q–Q plots of the P values of 
the linear model to associate expression of 18,831 genes with 28 mutational 
signatures across all 1,159 patients (a), 877 patients with carcinoma (b), or 891 
European patients (c). d, Number of significant associations (log10-
transformed) at different FDR thresholds (across all patients, patients 

with carcinoma and European patients). e, Volcano plot of directionality of 
effects in the analysis of all patients. f, g, Comparison of analyses between all 
patients and patients with carcinoma (f) and between all patients and European 
patients (g). The −log10(P values) per signature–gene pair are correlated 
(r = 0.763 (f) and r = 0.789 (g), Pearson correlation coefficient), especially above 
an FDR threshold of 10%.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Relationship between mutational signatures and 
gene expression patterns. a, b, Principal component analysis (PCA) of 
signatures across 1,159 patients (PCA on signature-specific SNVs per patient) 
(a) and signature–gene expression associations across 18,831 genes (PCA on 
adjusted P values of signature–gene expression associations) (b). The PCA on 
the SNVs recapitulates known interdependencies, for example, between 
signatures 7, whereas the PCA on the signature–gene association studies also 
emphasizes functional relatedness, for example, between signatures 2 and 13. 
c, Hierarchical clustering of signatures. The numbers at the nodes indicate the 
number of genes commonly associated with two to four respective signatures. 
The dendrogram shows genes that are associated with more than one signature 
mostly owing to similar SNV patterns of these signatures across patients.  

d, Frequency of number of significantly associated genes per signature 
(FDR ≤ 10%). Although many signatures are significantly associated with a few 
genes, 18 signatures are associated with more than 20 genes. Signature 9 is 
associated with more than 350 genes. Vice versa, 1,009 genes are associated 
with only one signature, 129 with two, 32 with three, 5 with four and 1 with five 
signatures. e, f, Mutational signature–gene associations, depicting positive 
associations between the expression of the canonical APOBEC pathway genes 
APOBEC3B (e) and APOBEC3A (f) and signature 2. The associations within the 
three cancer type with the strongest correlation between signature and gene 
expression (hepatocellular carcinoma (Liver–HCC), bone leiomyosarcoma 
(Bone–Leiomyo) and prostate adenocarcinoma (Prost–AdenoCA)) are shown.
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Extended Data Fig. 12 | ASE analysis. a, All types of cancer are ordered by the 
average AEI frequency. The numbers of genes per patient for which ASE could 
be quantified are shown, stratified according to cancer type, resulting in 
between 588 and 7,728 genes per patient. b, Distribution of the fraction of 

genes with AEI (red) and SCNAs (blue) over the number of measurable genes for 
each patient across the cohort. Cancer types with high chromosomal 
instability also exhibit highest amounts of AEI.



Extended Data Fig. 13 | SCNAs as major driver for allelic dysregulation in 
cancer. a, Absolute allelic expression imbalance closely follows allelic 
imbalance at the genomic level. Values of 0.5 (blue) denote equal number of 
reads from both alleles. Values of 1 (yellow) reflect mono-allelic expression or 

regions with loss of heterozygosity. b, Comparison between B-allele frequency 
(BAF) and ASE ratios from a single patient with lung cancer (LUAD-US) with 
profound chromosomal instability shows strong correlation between allelic 
imbalance on expression and genomic levels.
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Extended Data Fig. 14 | Determinants of AEI. a, Standardized effect sizes on 
the presence of AEI, taking only SCNAs, germline eQTLs, coding and non-
coding mutations into account. In summary, SCNAs accounted for 86.1% of the 
total effect size, followed by germline eQTLs (9.0%) and somatic SNVs (4.8%).  
b, Relevance of individual somatic mutation types (‘copy-number ht1’ and 

‘copy-number ht2’ as local allele-specific SCNAs of haplotypes 1 and 2, 
respectively), germline eQTLs and other covariates for the ASE ratio. 
Significant covariates (FDR ≤ 5%) are highlighted in bold. c, Comparison of the 
effect of protein-truncating variants (stop-gained) and synonymous variants 
on the ASE ratio.



Extended Data Fig. 15 | See next page for caption.
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Extended Data Fig. 15 | Overview of estimations of promoter activity and 
non-coding promoter mutations associations and patterns. a, b, The 
technical variation of the promoter activity estimates across varying library 
depth (a) and positional bias (b). c, The number of outlier promoters per 
tumour type according to promoter activity variance (variance larger than 1.5 × 
the interquartile range). d, Distribution of promoter mutations around 
promoters across the PCAWG cohort for major, minor and inactive promoters. 
Red lines indicate the window 200-bp upstream of a TSS, in which major 
promoters show an enrichment of mutations whereas minor and inactive 
promoters do not. e, Distribution of promoter mutations around promoters 
for the top two most mutated types of cancer (skin melanoma and colorectal 
adenocarcinoma (ColoRect–AdenoCA)). Colorectal adenocarcinoma displays 
a very different mutational pattern from other types of cancer. f, Distribution 
of promoter mutations around major, minor and inactive promoters across 
several types of cancer. Red lines indicate the window 200-bp upstream of a 

TSS, in which major promoters show an enrichment of mutations whereas 
minor and inactive promoters do not. g, Schematic of the calculation of non-
coding promoter mutational burden. h, Overview of non-coding promoter 
mutations per sample and the number of mutated promoters per tumour type 
for promoters with at least three mutated samples. i, j, Association of absolute 
(i) and relative ( j) promoter activity with promoter mutations across all 
samples. k, l, Overview of promoter mutations for skin melanoma tumours. 
 k, Most promoter mutations are C>T, which indicates UV-induced DNA 
damage. l, Distribution of promoter mutations for each mutation class reveals 
the enrichment of C>T mutations around the 200-bp window upstream.  
m, n, Overview of promoter mutations for colorectal adenocarcinoma 
tumours. m, Most promoter mutations are C>A and C>T. n, Distribution of 
promoter mutations for each mutation class does not display an enrichment of 
mutations around the 200-bp window upstream, differing from the mutation 
pattern of skin melanoma tumours.



Extended Data Fig. 16 | TERT promoter mutations. a, Promoters ranked by the 
number of mutated samples across all types of cancer in a 200-bp window. 
Asterisk indicates cancer census genes. b, The TERT locus and number of 
mutations observed at each position. The first promoter shows a highly 

recurrent non-coding mutation reported previously118,119. c, Comparison of 
TERT promoter activity for mutated and non-mutated samples per tumour 
type.
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Extended Data Fig. 17 | See next page for caption.



Extended Data Fig. 17 | Alternative splicing and association with somatic 
mutations. a, Number of exon-skipping events confirmed at different ΔPSI 
thresholds in tumour (red), matched healthy (green) and GTEx (blue) samples 
for liver tissue. Dashed lines show the subset of exon-skipping events that only 
contain annotated introns. b, Number of exon-skipping events confirmed at a 
ΔPSI level of greater than 0.3 for the individual histotypes. Transparent section 
of bars represents the fraction of novel events, containing at least one 
unannotated intron. c, Splicing landscape for exon-skipping events. t-SNE 
analysis based on exon-skipping PSI values for all ICGC tumour and healthy 
samples together with tissue-matched GTEx samples. d, Position-specific 
effect of somatic mutations on alternative splicing. Magnitude and direction of 
mutation-associated splicing alterations. e, Permutation-based FDR values for 
SAV detection based on the different types of cancer. f, Cancer gene set 
enrichment for SAV sets, shown for cancer census gene set (middle) and sets 
determined in ref. 48 (left) and ref. 120 (right). g, Positional distributions 
(logarithms of distance from the nearest exons) of somatic variant creating 
novel splicing donors and acceptors. h, Sequence motif logos around somatic 
mutation creating novel splicing motifs. i, Example splicing effect of a branch-
point mutation. UCSC genome browser RNA-seq coverage plots of cassette 
exon event in RBM28 between mutant and wild type. Mutant (bottom track) 

contains an A>G mutation 29 nucleotides upstream from the acceptor site of an 
affected exon. j, Distribution of new cassette exon events detected only within 
the PCAWG cohort. Top, number of events per histology type. Middle, events 
normalized to the total number of cassette exons detected in the histology 
types. Bottom, the number of exonization events per histotype for the subset 
with the novel cassette exons colocated to a somatic alteration near the 
acceptor or donor of the exon. k, Example of an exonization event in the 
tumour-suppressor gene STK11. RNA-seq read coverage for a part of the gene is 
shown in red for a donor carrying the alternate allele and in grey for a random 
donor with reference allele. The cassette exon event is shown as a schematic 
below, with blue (red) boxes denoting constitutive (alternative) exons and blue 
solid lines denoting introns. Magnified panels at the bottom show details from 
Integrative Genomics Viewer visualization, highlighting a somatic mutation at 
the 3′ end of the cassette exon. The associated sequencing change is illustrated 
on the bottom right corner, in which the vertical bar denotes the exon–intron 
boundary. l, Alu-based exonization mechanism. Top, the presence of an Alu 
element in an intron in antisense alone will still result in normal splicing. 
Bottom, specific mutations of the Alu sequence creates new splice sites and 
results in exonization.
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Extended Data Fig. 18 | Recurrent and promiscuous RNA fusions. a, Features 
of the 27 most recurrent in-frame or open-reading-frame-retaining fusions. 
Kinase column indicates whether one of the gene partners is a kinase gene b, 
Network with connected clusters of at least 10 genes. Genes are represented as 
nodes, and the size of a node is proportional to the number of gene-fusion 
partners. Two nodes are connected if one fusion was detected involving the 

two genes: an edge is coloured blue if the fusion has evidence for matched 
structural rearrangements and is coloured red otherwise. Nodes and 
connections are shown only between promiscuous genes. The colour intensity 
indicates whether a gene is involved more often in a fusion as a 3′ (purple) or 5′ 
(green) gene or both (white).



Extended Data Fig. 19 | Structural rearrangements associated with RNA 
fusions. a, Systematic classification scheme of all gene fusions based on 
underlying structural variants (SVs). Numbers of fusion events of different 
classes are shown to the right. b, Schematic of examples of different types of 
structural-variant-supported fusions: (1) direct fusions; (2) intercomposite 
fusions; and (3) intracomposite fusions. Bridged fusions are shown in Fig. 3b. 
Only one of the possible orders of genomic arrangement is depicted in each 
case, with break points highlighted by thunderbolts. c, Supported 
rearrangements for composite fusions bring the fused segments of two genes 

significantly closer. Natural distance indicates the native distance between two 
related structural variant break points. Effective distance indicates the 
distance between the final two break points of the intra- and intercomposite 
fusions. d, The break points of structural-variant-independent fusions are 
typically closer than those for other interchromosomal fusions, which 
indicates that at least some of the structural-variant-independent fusions may 
occur directly at the RNA level, mediated either by trans-splicing or read-
through events.
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Extended Data Fig. 20 | Correlation of the number of somatic genomic 
alterations with RNA alterations. Scatter plots of log10-transformed 
frequency of DNA alterations versus log10-transformed frequency of RNA 
alterations, in which each row is a DNA alteration in the following order: 
structural variants, copy-number aberrations and non-synonymous variants. 
Each row is an RNA alteration in the following order: expression outliers, RNA 

editing, ASE, fusions and splicing. Each point is a sample coloured by histotype, 
and its position is the log-transformed number of aberrations found in each 
sample. The Benjamini–Hochberg-adjusted P values are calculated from a 
likelihood ratio test assuming negative binomial distribution; histotype is used 
as a confounder.



Extended Data Fig. 21 | Global view of DNA and RNA alterations affecting 
cancer pathways. Composite pie charts showing the percentages of RNA 
alterations, DNA alterations or both, affecting sets of genes in well-
characterized cancer pathways and known to be functionally altered in cancer. 

The sizes of circles represent the percentages of patients affected based on the 
given gene set. The columns indicate different types of cancer. The numbers in 
parenthesis indicate the number of genes analysed for the specific pathway.
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Extended Data Fig. 22 | Breakdown of DNA and RNA alterations of cancer 
genes. a, Composite pie charts showing percentages of DNA and RNA 
alterations for top cancer-driver genes. The 20 most significant cancer-driver 
genes identified by the PCAWG group in pan-cancer level are depicted, with the 
sizes of the pie charts indicating the percentages of patients carrying 
alterations in the given driver gene. The areas represent the relative 

percentages of patients exhibiting different alterations depicted by 
corresponding colours. When several types of alteration in one pathway affect 
the same patient, only a fraction is counted towards each type of alteration.  
b, Proportional bar plots showing the distribution of gene alterations for genes 
in the TP53 and TGFB pathways.



Extended Data Fig. 23 | Trans-associations found by co-occurrence analyses. 
a, Scatter plot for association of gene expression outliers with cancer gene 
variants. Each dot represents an alteration pair. The x axis shows all COSMIC 
genes ordered alphabetically and the y axis represents the FDR-adjusted  
P values (q values) based on Fisher’s exact tests. COSMIC genes with more than 
five significant associations (FDR < 5%) are coloured in red and labelled. b, Heat 
map showing the extent of associations between COSMIC gene somatic 
mutations and expression outliers of all genes. Each row indicates one gene, 

and the colour intensity shows the significance of trans-association. COSMIC 
genes labelled to the right are ordered by the number of significant 
associations. Only the top 10 genes are shown. c, Enrichment map showing the 
significant (FDR ≤ 0.01) pathways based on the top 100 significant genes 
associated with B2M alterations. Colour intensity represents enrichment 
significance, node sizes the number of analysed genes belonging to the given 
pathway and edge sizes the degree of overlap between two gene sets. Only the 
top 10 enriched terms are shown.
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Extended Data Fig. 24 | Genes can be altered in cis by several mechanisms.  
a, Genes with at least one type of RNA alteration that also has an associated 
change at the DNA-level in cis. Genes are either classified as a PCAWG driver 

gene or not classified as a driver gene or a cancer gene from the cancer gene 
census. b, c, Examples of a known cancer gene, NF1 (b), and an unclassified 
gene, PTGFRN (c), having heterogeneous mechanisms of alterations.



Extended Data Fig. 25 | Proportion of genes with DNA or RNA alterations.  
a, Full list of 731 genes that are both frequently and heterogeneously altered 
across both RNA- and DNA-level alterations. Yellow bars to the left indicate the 
proportion of samples that had DNA-level alterations, whereas green bars to 
the right indicate the proportion of samples with RNA-level alterations. Middle 

column is a heat map corresponding to the −log10(P value). Asterisks indicate a 
COSMIC Cancer Gene Census (CGC) gene or PCAWG driver genes.  
b, Distribution of alteration types among all significant genes or just CGC or 
PCAWG driver genes.
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Extended Data Fig. 26 | Outlier events in CDK12. a, Fusion, splicing and 
alternative promoter outlier events of the RNA alterations that lead to either 
partial or full removal of the kinase domain in CDK12. b, All outlier events in 
CDK12, including those not contained directly within the kinase domain, across 
all 1,188 samples. Each column is a sample and each row is the alteration type. 

Although not directly searching for mutually exclusive events across all genes, 
we find that CDK12 is marginally mutually exclusive in RNA editing, splicing 
outliers, alternative promoters, non-synonymous variants and fusions (4.810−3, 
unweighted WExT). c, All alteration events that occur within CDK12 across all 
1,188 samples, which is not mutually exclusive.



Extended Data Table 1 | RNA alteration data
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