SUPPORTING INFORMATION: Higher Plant Diversity Does Not Moderate the Influence of Changing Rainfall Regimes on Plant-Soil Feedback of a Semi-Arid Grassland

Xiliang Li^{1†} | G. Kenny Png^{2†} | Zhen Zhang¹ | Fenghui Guo^{1,3} | Yuanheng Li¹ | Fang Li¹ | Shan Luo^{4,5} | Nicholas J. Ostle⁴ | John N. Quinton⁴ | Urs A. Schaffner⁶ | Xiangyang Hou^{1,7} | David A. Wardle⁸ | Richard D. Bardgett^{2,4}

¹Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China | ²Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK | ³The Industrial Crop Institute, Shanxi Agriculture University, Taiyuan, China | ⁴Lancaster Environment Centre, Lancaster University, Lancaster, UK | ⁵Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK | ⁶Centre for Agriculture and Biosciences International, Delémont, Switzerland | ⁷College of Grassland Science, Shanxi Agriculture University, Taigu, China | ⁸Department of Ecology and Environmental Science, Umeå Universitet, Umeå, Sweden

†Both authors contributed equally to this work and should be considered joint first authors

Correspondence: G. Kenny Png (gcpng.kenny@gmail.com); Fang Li (lifang_418007@163.com)

SI Tables

TABLE S1 | Results of three-factor generalized least squares (GLS) model fitted with intercept terms to test for the effects of plant assemblage type (PA; see Figure 1 for treatment details), total rainfall amount (RA), rainfall frequency (RF), and their interactions on plant-soil feedback effects. Significant p-values (p < 0.05) are presented in bold

Source of variation	GLS test statistics		
Factor(s) of model fitted with intercept terms	d.f. (n, d)	F	р
Plant assemblage (PA)	14, 180	61.22	< 0.001
Total rainfall amount over 10 days (RA)	1, 180	1.78	0.184
Rainfall frequency (RF)	1, 180	1.16	0.283
PA × RA	14, 180	1.53	0.105
PA × RF	14, 180	2.01	0.019
$RA \times RF$	1, 180	18.43	< 0.001
PA × RA × RF	14, 180	1.58	0.089

TABLE S2 | Results of three-factor generalized least squares (GLS) model fitted without intercept terms to test for the significance of each plant-soil feedback effect value (i.e., significantly different from zero) for each treatment combination of plant assemblage type (see Figure 1 for treatment details) \times rainfall frequency (RF). Main factors of the three-factor GLS model are plant assemblage type, total rainfall amount and rainfall frequency. Significant p-values (p < 0.05) are presented in bold

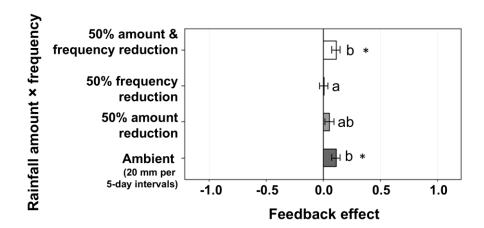
Source of variation	GLS test statistics		
	d.f. _(n, d)	t	р
<u>Groups of model fitted without intercept terms</u>			
'G1' × '50% reduction' rainfall frequency (RF)	1, 240	-1.62	0.107
'G1' × 'ambient' RF	1, 240	-2.53	0.012
'G2' × '50% reduction' RF	1, 240	-10.04	< 0.001
'G2' × 'ambient' RF	1, 240	-10.48	< 0.001
'F1' × '50% reduction' RF	1, 240	4.19	< 0.001
'F1' × 'ambient' RF	1, 240	6.92	< 0.001
'F2' × '50% reduction' RF	1, 240	-0.46	0.649
'F2' × 'ambient' RF	1, 240	-0.64	0.526
'N1' × '50% reduction' RF	1, 240	8.59	< 0.001
'N1' × 'ambient' RF	1, 240	8.39	< 0.001
'N2' × '50% reduction' RF	1, 240	1.38	0.168
'N2' × 'ambient' RF	1, 240	-0.43	0.670
'G1+G2' × '50% reduction' RF	1, 240	-0.41	0.682
'G1+G2' × 'ambient' RF	1, 240	1.24	0.216
'F1+F2' × '50% reduction' RF	1, 240	-0.99	0.321
'F1+F2' × 'ambient' RF	1, 240	-3.52	< 0.001
'N1+N2' × '50% reduction' RF	1, 240	9.33	< 0.001
'N1+N2' × 'ambient' RF	1, 240	11.50	< 0.001
'G1+F1' × '50% reduction' RF	1, 240	2.24	0.026
'G1+F1' × 'ambient' RF	1, 240	1.49	0.137
'G2+N1' × '50% reduction' RF	1, 240	1.53	0.127
'G2+N1' × 'ambient' RF	1, 240	3.79	< 0.001
'F2+N2' × '50% reduction' RF	1, 240	-1.44	0.152
'F2+N2' × 'ambient' RF	1, 240	-0.26	0.794
'G1+F1+N1' × '50% reduction' RF	1, 240	2.75	0.007
'G1+F1+N1' × 'ambient' RF	1, 240	5.12	< 0.001
'G2+F2+N2' × '50% reduction' RF	1, 240	-1.52	0.129
'G2+F2+N2' × 'ambient' RF	1, 240	-2.00	0.047
'All species' × '50% reduction' RF	1, 240	0.94	0.346
'All species' × 'ambient' RF	1, 240	0.89	0.376

TABLE S3 | Regression analyses of one-factor linear mixed-effects (LME) models to test for the effects of (i) the number of plant functional groups (NPFG) or (ii) species (NPSP) on the absolute difference in plant-soil feedback magnitude of three respective rainfall combination treatments ($|\Delta$ feedback effect|). Plant assemblage type was treated as the random factor in the LME model

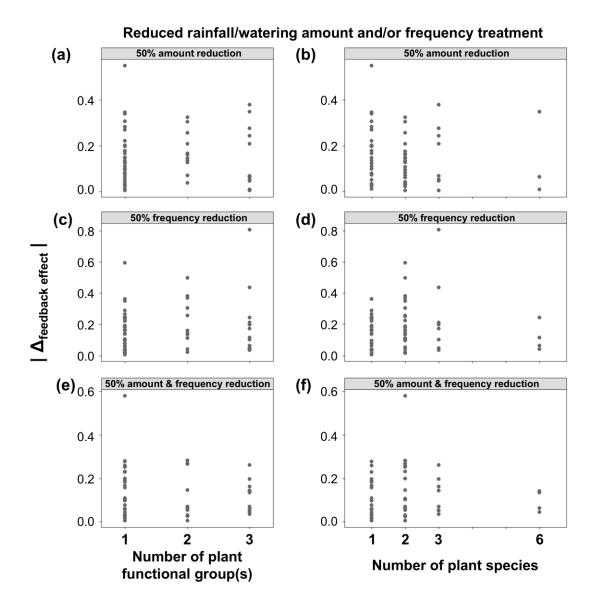
Source of variation	LME test statistics				
Rainfall combination treatment	R^2 conditional	R^2 marginal	d.f. (n, d)	F	р
50% amount reduction (10 mm rain	per 5-day int	ervals)			
a) Number of plant functional groups (NPFG)	0.198	0.002	1, 13	0.081	0.780
b) Number of plant species (NPSP)	0.197	0.012	1, 13	0.474	0.503
50% frequency reduction (40 mm rain per 10-day intervals)					
c) NPFG	0.261	0.020	1, 13	0.695	0.419
d) NPSP	0.263	0.001	1, 13	0.036	0.852
50% amount & frequency reduction (20 mm rain per 10-day intervals)					
e) NPFG	0.004	< 0.001	1, 13	0.011	0.918
f) NPSP	0.004	< 0.001	1, 13	0.032	0.860

TABLE S4 | Results of three-factor linear mixed-effects (LME) models fitted with intercept terms to compare the effects of constituent plant species within each assemblage type (SP; see Figure 1 for treatment details), total rainfall amount over 10 days (RA), rainfall frequency (RF), and their interactions on the difference in total biomass of constituent plant species in mesocosms inoculated with unsterilised soil versus the average total biomass of the same species grown in mesocosms with sterilised soil containing the same plant assemblage. Mesocosm replicate number was treated as the random factor in the LME model. Significant p-values (p < 0.05) are presented in bold

Source of variation	LME test statistics			
	d.f. (n, d) F		р	
Factor(s) of model fitted with intercept terms				
(a) $G1 + G2$				
Plant species (SP)	1, 21	0.733	0.401	
Total rainfall amount over 10 days (RA)	1, 21	0.322	0.577	
Rainfall frequency (RF)	1, 21	0.830	0.373	
$SP \times RA$	1, 21	0.188	0.669	
$SP \times RF$	1, 21	0.335	0.569	
$RA \times RF$	1, 21	0.533	0.473	
$SP \times RA \times RF$	1, 21	2.573	0.124	
(b) F1 + F2				
SP	1, 21	4.304	0.051	
RA	1, 21	2.431	0.134	
RF	1, 21	2.994	0.098	
$SP \times RA$	1, 21	1.661	0.211	
SP × RF	1, 21	2.749	0.112	
$RA \times RF$	1, 21	2.758	0.112	
$SP \times RA \times RF$	1, 21	2.005	0.171	
(c) N1 + N2				
SP	1, 21	0.004	0.951	
RA	1, 21	0.248	0.624	
RF	1, 21	3.524	0.075	
$SP \times RA$	1, 21	2.634	0.120	
$SP \times RF$	1, 21	0.307	0.586	
$RA \times RF$	1, 21	0.355	0.558	
$SP \times RA \times RF$	1, 21	0.0001	0.991	
(d) G1 + F1				
SP	1, 21	1.284	0.270	
RA	1, 21	1.350	0.258	
RF	1, 21	0.780	0.387	
$SP \times RA$	1, 21	1.384	0.253	
SP × RF	1, 21	2.467	0.131	
$RA \times RF$	1, 21	1.106	0.305	
$SP \times RA \times RF$	1, 21	0.883	0.358	
			(MORE)	


LME test statistics

Source of variation	LME test statistics			
	d.f. (n, d)	F	р	
Factor(s) of model fitted with intercept terms				
(e) G2 + N1				
SP	1, 21	197.096	< 0.001	
RA	1, 21	2.916	0.103	
RF	1, 21	8.608	0.008	
$SP \times RA$	1, 21	2.142	0.158	
SP × RF	1, 21	8.301	0.009	
RA × RF	1, 21	12.732	0.002	
$SP \times RA \times RF$	1, 21	12.243	0.002	
(f) F2 + N2				
SP	1, 21	1.094	0.308	
RA	1, 21	0.864	0.363	
RF	1, 21	0.495	0.490	
SP × RA	1, 21	0.303	0.588	
SP × RF	1, 21	0.042	0.840	
RA × RF	1, 21	1.856	0.188	
$SP \times RA \times RF$	1, 21	0.874	0.361	
(g) G1 + F1 + N1				
SP	2, 33	2.314	0.115	
RA	1, 33	0.089	0.767	
RF	1, 33	3.079	0.089	
SP × RA	2, 33	1.542	0.229	
SP × RF	2,33	0.701	0.503	
RA × RF	1, 33	5.417	0.026	
$SP \times RA \times RF$	2, 33	1.368	0.269	
(h) $G2 + F2 + N2$				
SP	2, 33	1.882	0.168	
RA	1, 33	0.204	0.654	
RF	1, 33	0.0001	0.992	
SP × RA	2, 33	4.346	0.021	
SP × RF	2,33	2.474	0.100	
RA × RF	1, 33	0.029	0.865	
$SP \times RA \times RF$	2, 33	4.349	0.021	
(i) All species				
SP	5, 69	5.527	< 0.001	
RA	1, 69	0.116	0.734	
RF	1, 69	0.008	0.931	
SP × RA	5, 69	2.555	0.035	
SP × RF	5, 69	0.435	0.823	
RA × RF	1, 69	1.235	0.270	
SP × RA × RF	5, 69	0.579	0.716	


TABLE S5 | Results of three-factor generalized least squares (GLS) model fitted without intercept terms to test for the significance of each plant-soil feedback effect value (i.e., significantly different from zero) for each treatment combination of total rainfall amount (RA) \times rainfall frequency (RF). Main factors of the three-factor GLS model are plant assemblage (see Figure 1 for treatments), total rainfall amount and rainfall frequency. Significant p-values (p < 0.05) are presented in bold

Source of variation	GLS test statistics		
	d.f. (n, d)	t	p
<u>Groups of models fitted without intercept terms</u>			
'50% reduction' total rainfall amount (RA) × '50% reduction' rainfall frequency (RF)	1, 240	2.567	0.011
'50% reduction' RA × 'ambient' RF	1, 240	1.240	0.216
'Ambient' RA × '50% reduction' RF	1, 240	0.167	0.868
'Ambient' RA × 'ambient' RF	1, 240	2.584	0.010

SI Figures

FIGURE S1 | Biotic plant-soil feedback effect compared across all 15 plant assemblages grown in soil previously conditioned by the same respective assemblage exposed to two different total amounts of rainfall [ambient = 40 mm, or 50% reduction from ambient = 20 mm per 10-day period] delivered at two frequencies [ambient = 5-day, or 50% reduction = 10-day intervals) (Figure 1). Feedback of each mesocosm treatment combination used for analyses was calculated as $\log_{10}(\text{total biomass of plants grown in sterile bulk soil inoculated with 7% (v/v) unsterilised treatment soil ÷ average biomass of same plant assemblage grown in fully sterilised bulk soil). Bars are means and error bars represent 95% confidence intervals from a generalized least squares model (Table S1). Different letters indicate significantly different means (post hoc Tukey's HSD test, <math>p < 0.05$), and *, **, *** indicate significant feedback value at p < 0.05, 0.01, or 0.001 (Table S5) for the 'rainfall total amount' × 'rainfall frequency' interaction.

FIGURE S2 | Relationships between the number of plant (a, c, e) functional group(s) or (b, d, f) species and the absolute magnitude difference in biotic plant-soil feedback ($|\Delta_{\text{feedback effect}}|$) between a specific reduced rainfall frequency and/or amount treatment versus ambient rainfall treatment (i.e., 20 mm rainfall per 5-day intervals). $|\Delta_{\text{feedback effect}}|$ of each mesocosm was calculated as |'feedback effect in reduced rainfall frequency and/or amount treatment' – 'average feedback effect in ambient rainfall treatment containing same plant assemblage'|. No relationship was found for any panel based on linear mixed-effects models (i.e., all p > 0.05; Table S3).