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Abstract .  The adhesive and signaling functions of inte- 
grins are regulated through their cytoplasmic domains. 
We identified a novel 111 residue polypeptide, desig- 
nated 133-endonexin, that interacted with the cytoplas- 
mic tail of the ~3 integrin subunit in a yeast two-hybrid 
system. This interaction is structurally specific, since it 
was reduced by 64% by a point mutation in the 133 cyto- 
plasmic tail ($752----~P) that disrupts integrin signaling. 
Moreover, this interaction is integrin subunit specific 
since it was not observed with the cytoplasmic tails of 

the eqlb, {31, or 132 subunits. 133-Endonexin fusion pro- 
teins bound selectively to detergent-solubilized 133 from 
platelets and human umbilical vein endothelial cells, 
and 133-endonexin m R N A  and protein were detected in 
platelets and other tissues. A related m R N A  encoded a 
larger polypeptide that failed to bind to 13 integrin tails. 
The apparent specificity of 133-endonexin for the 133 in- 
tegrin subunit suggests potential mechanisms for selec- 
tive modulation of integrin functions. 

HESION receptors of the integrin superfamily are 
heterodimers composed of et and [3 type I trans- 
membrane subunits (40). Each subunit consists of 

a relatively large extracellular domain that participates in 
ligand binding, a single transmembrane domain, and a short 
cytoplasmic tail that in most cases contains 20-70 amino 
acids. The 133 integrins include O~1ib133 , which is specific for 
the megakaryocytic lineage, and etv[33, which is also ex- 
pressed on endothelial cells, vascular smooth muscle cells, 
monocytes, macrophages, osteoclasts, and certain subpop- 
ulations of lymphocytes (7, 17, 20, 57, 66). ~IIb133 and 0tv133 
recognize several Arg-Gly-Asp-containing adhesive ligands 
in a divalent cation-dependent manner and these interac- 
tions are crucial for hemostasis, wound healing and angio- 
genesis (28, 63). 

In addition to their adhesive functions, it is now appar- 
ent that integrins interact with the intracellular signaling 
machinery of cells. The affinity or avidity of many inte- 
grins for their cognate ligands is regulated by cellular ago- 
nists and antagonists in a process called inside-out signal- 
ing. For example, eqib[33 in platelets is converted to a high 
affinity state following cellular activation, and this process 
can be prevented or reversed by compounds that increase 
platelet adenylyl cyclase or guanylyl cyclase (63). Affinity 
modulation may be controlled through an interaction of 
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intracellular signaling molecules with integrin cytoplasmic 
tails, since deletions or mutations of the tails exert pro- 
found effects on receptor affinity and cell adhesion (37, 42, 
53, 65). 

Integrins also function to transduce extracellular cues 
into the cell, a process called outside-in signaling. In this 
case, adhesive ligands induce receptor clustering, activa- 
tion of protein tyrosine kinases, such as pp125 FAK, dra- 
matic rearrangements of the actin cytoskeleton, and changes 
in gene expression that affect cell growth, differentiation 
and programmed death (8, 12, 41). As is the case with in- 
side-out signaling, integrin cytoplasmic tails may play a 
significant role. For example, when human integrin sub- 
units are expressed in rodent cells, partial deletion of the 
cxii b tail (Shattil, S., L. Leong, C. Abrams, M. Cunningham, 
T. Parsons, T. O'Toole, and M. Ginsberg. 1994. Circu- 
lation. 90:1-86) or overexpression of a chimeric 131 tail (2, 
49) results in anchorage-independent phosphorylation of 
pp125 vA~ on tyrosine residues. 

Several studies have begun to identify proteins that bind 
to integrin cytoplasmic tails in vitro. For example, calre- 
ticulin binds to a-tails (48), and a-actinin, talin and 
pp125 FAK bind to 13 tails (39, 54) (Otey, C. A., Schaller, M., 
and Parsons, J. T. 1993. Mol. Biol. Cell 4:347a). The func- 
tional relevance of these interactions in vivo remains to be 
defined. Nonetheless, given the strong circumstantial evi- 
dence that 13 cytoplasmic tails modulate integrin function, 
the present study was carried out to identify direct, binary 
interactions between a prototypic 13 tail (133) and intracel- 
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lular proteins. We describe here a novel polypeptide named 
133-endonexin, initially identified using a yeast two-hybrid 
approach (18, 31), that interacts with the 133 integrin cyto- 
plasmic tail in a structurally specific manner. 

Materials and Methods 

DNA Constructions 

The cytoplasmic tails of the integrin subunits studied are shown in Table I. 
These tails were amplified from existing pCDM8 expression constructs 
(15, 53) using sense primers containing BamHI or EcoRl restriction sites 
and antisense primers containing PstI or BamHI sites. Gel-purified PCR 
products were digested with the appropriate restriction enzymes and di- 
rectionally cloned into the yeast expression vector, pGBT9 (Clontech 
Laboratories, Inc., Palo Alto, CA) (6). This resulted in the in-frame fusion 
of each cytoplasmic tail to the 3' end of the GAL4(,_147) DNA-binding do- 
main. All DNA sequences were confirmed by sequencing both strands, ei- 
ther with Sequenase Version 2.0 (7-deaza-dGTP kit; US Biochemical 
Corp., Cleveland, OH) or by automated sequencing in the Scripps Re- 
search Institute DNA Core Facility. 

Library Screening 

A human cDNA library in a lambda vector (hACT) was derived from 
EBV-transformed peripheral blood B lymphocytes and was the kind gift 
of Stephen Elledge (Baylor College of Medicine, Houston, TX). This li- 
brary, containing 3 × 106 independent clones, had been ligated into the 
vector at a XhoI site, resulting in fusion to the 3' end of the GAL4(768_883) 
activation domain (25, 27). Before use, hACT was converted from phage 
h to plasmid DNA (pACT) (27). 

To screen for proteins that bind to the 133 cytoplasmic tail, the yeast 
two-hybrid system was employed as described by Fields and co-workers 
(6, 18, 30, 31). 1 x 10 s competent cells of the yeast strain Y190 (MATa, 
1eu2-3,112, ur03-52, trpl-901, his3-A200, ade2-101, gal4A, gal8OA, URA3:: 
GAL--*lacZ, L YS2::GAL---~H1S3 cyclohexamide n) were transformed with 
5 Ixg of pGBT9/133 according to Schiestl and co-workers (61). Transfor- 
mants were grown for three days at 30°C on agar plates containing SD 
synthetic media without tryptophan. Then a colony was selected and 
grown overnight in 5 ml of SD without tryptophan to seed a 1 litre culture 
in YPD medium, which was grown to a density of OD600 = 0.3. Cells were 
made competent in 30 ml of 0.1 M LiAc and TE (1 mM EDTA and 0.01 M 
Tris-Hcl, pH 7.5) and then transformed by adding 250 Ixg of pACT/B cell 
library DNA, 1 mg of denatured salmon sperm DNA (Oncor, Inc., Gaith- 
ersburg, MD), and 140 ml of LiAc/TE containing 40% PEG 4000 (Sigma 
Chemical Co., St. Louis, MO). After 30 min at 22°C, DMSO was added to 
a final concentration of 10% (vol/vol), the cells were heat-shocked for 6 
min at 42°C, and then washed and resuspended in 10 ml of TE. 100 ~1 ali- 
quots were plated in 100 × 15 mm plastic petri dishes containing SD agar 
with 25 mM 3-aminotriazole but no tryptophan, leucine or histidine. 
Transformants were grown for 8 d at 30°C. The Y190 host strain contains 
two reporter genes, HIS3 and lacZ, under the control of GALA. In princi- 
ple, these genes should be transactivated by library fusion proteins that in- 
teract with the 133 integrin cytoplasmic tail to reconstitute functional 
GALA. 

13-Galactosidase activity of individual colonies was determined qualita- 
tively in a filter-lift assay (10). Positive colonies were restreaked on SD 
plates lacking leucine and tryptophan and retested. Positives were grown 
overnight in 5 ml SD without leucine and plasmid DNA was obtained 
(38), and used to transform competent HB101 cells by heat shock accord- 

ing to the supplier's protocol (GIBCO BRL, Gaithersburg, MD). Trans- 
formants were grown at 37°C for 1-2 d on M9 minimal agar without leu- 
cine in the presence of 50 ixg/ml ampiciUin. Colonies containing library 
DNA inserts were identified by digestion with XhoI and the DNA was pu- 
rified by CsC12 ultracentrifugation (59). DNA was then re-introduced into 
yeast to confirm transactivation of HIS3 and lacZ and to exclude false 
positives. Two additional expression constructs (Clontech) were used to 
exclude false positive reactions: pLAM 5', which encodes a human lamin 
C/GAL4 DNA-binding domain hybrid in pGBT9, and pTD1, which en- 
codes an SV-40 large T-antigen/GAL4 activation domain hybrid in 
pGAD3F. As described in Results, this selection process yielded a "true 
positive" clone (No. 28) which was then characterized in detail. 

Cloning of  Full-length cDNAs 
Sequence analyses of the 719-bp clone 28 insert suggested it was a par- 
tial cDNA clone. To obtain the 5' end of the cDNA, a human testes 
5 ' -RACE-ready cDNA library (Clontech) was subjected to two-step 
5 ' -RACE PCR (26). The first reaction contained 2 p.l of template cDNA, 
an anchor sense primer (5 ' -CTGGTTCGGCCCACCTCTGAAGGTFC-  
CAGAATCGATAG-3 ' ) ,  and a clone 28-specific antisense primer (5'- 
TAGACATGCACCTGCCAACTGCTACGAG-3 ' )  in a final vol of 50 
i~1. The second reaction contained 2 O.1 of a 1:10 dilution of the primary 
PCR product, the anchor primer and a nested clone 28-specific antisense 
primer (5 ' -CATTATCTCCATGA'ITICTTCTGAC-3 ' ) .  Reactions were 
"hot started" followed by incubation for 5 min at 94°C, 30 PCR cycles 
(62°C for 1 min; 72°C for 2.5 min; 94°C for 1 min), and a final 5-rain incu- 
bation at 72°C. A 600-bp PCR product was gel-purified, subcloned into 
pCR (Invitrogen, San Diego, CA) and sequenced on both strands. 

To identify potential alternate forms of clone 28-related mRNA,  the 
B-cell cDNA library in pACT was subjected to PCR using clone 28-spe- 
cific primers (sense: 5 ' -GTAGTATACAGTGACAAAAGTG-3 ' ;  anti- 
sense: 5 ' -TAGACATGCACCTGCCAACTGCTACGAG-3 ' ) .  Hot-start 
reactions used 50 ng of cDNA, 50 pmol of each primer and 5 U of Taq 
polymerase (Boehringer-Mannheim Biochemicals, Indianapolis, IN) in 50 
~1 for 30 cycles (55°C for 1.5 min; 72°C for 2.5 min; 94°C for 1 min). After 
a final incubation for 5 min at 72°C, 5 ixl were electrophoresed on a 2.5% 
agarose gel and stained with ethidium bromide. PCR products were sub- 
cloned into pCR and sequenced. 

Comparative Binding Studies of  lntegrin 
Cytoplasmic Tails 
The two-hybrid system was also used to quantify the extent of binary in- 
teractions between clone 28-related polypeptides and the integrin cyto- 
plasmic tails shown in Table I. After simultaneous transformation of Y190 
with 5 Ixg of pGBT9/integrin tail DNA and 5 p.g of pACT/clone 28 DNA, 
transformants were grown on SD agar without tryptophan and leucine. 
After 3 d, four independent colonies from each transformation were 
picked and grown overnight at 30°C in 3 ml of SD media without tryp- 
tophan and leucine. Then 0.5 ml of each were processed for quantitation 
of 13-galactosidase activity, which was expressed in units (6). The results 
were taken as a measure of the strength of the interaction between a given 
integrin tail and clone 28-related polypeptides. 

To examine interactions between the polypeptide expressed by clone 
28 and a natural 133 or 131 subunit in vitro, the polypeptide was expressed as 
a GST fusion protein. PCR was used to introduce 5' BamHI and 3' XhoI 
restriction sites at either end of a 285-bp putative coding region in clone 
28. The PCR product was digested, ligated into these sites in pGEX-5X-1 
(Pharmacia Biotech, Inc., Piscataway, NJ), and then used to transform 
DH5ct. DNA sequencing confirmed that the clone 28 insert was now fused 
in-frame to GST at a factor Xa recognition site. The mass of HPLC-puri- 

Table L Amino Acid Sequences of lntegrin Cytoplasmic Tails Studied in the Yeast Two-hybrid System 

Integrin tail Residues* Sequence* 

133 716-762 KLLITIHDRKEFAKFEEERARAKWFTANNPLYKEATSTFI'NITYRGT 
133 ($752--->P) 716-762 KLLITIHDRKEFAKFEEERARAKWDTANNPLYKEAT_PTFTNITYRGT 
133/131 Chimera 131:740-775 KLLITIHDRKEFAKFEKEKMNAKWDTGENPIYKSAVTTVVNPKYEGK 
132 704-749 KALIHLSDLREYRRFEKEKLKSQWNNDNPLFKSATTTVMNPKFAES 
~tlb 989-1008 KVGFFKRNRPPLEEDDEEGE 

* The residue numbers are derived from published sequences of the full-length integrin subunits, starting at the amino terminus (4,33,43.47). 
*The amino-terminal lysine in each tail is assumed to represent the exit point from the plasma membrane (71). In 133 ($752-->P), the mutated residue is underlined. In the 133/!31 chi- 
mera, the 133 sequence is underlined. 
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fled GST/clone 28 fusion protein as determined by electrospray mass 
spectrometry was that expected for the authentic protein (observed = 
37,323 _+ 2.7 D; calculated average isotopic composition = 37,322.9 D). 
Additional bacteria were transformed with pGEX-5X-1 as a source of GST. 

Glutathione Sepharose affinity matrices, containing either GST/clone 
28 fusion protein or GST alone, were prepared as described by Frangione 
and Neel (34). Preliminary immunoblotting experiments with an anti-GST 
antiserum (Pharmacia) showed that approximately equal amounts of fu- 
sion protein or GST had bound to the matrix. Human platelets and human 
umbilical vein endothelial cells (passage 3) were used as sources of 133. 
Platelets were washed (64) and resuspended to 2 × 109 cells/ml in a lysis 
buffer containing 1% Triton X-100, 0.05 M Tris, pH 7.4, 1 mM PMSF, 0.5 
mM leupeptin, 100 U/ml aprotinin, and either 1 mM CaClz to maintain the 
alibi33 complex or 1 mM EDTA to dissociate it (9). After 30 min at 22°C, 
the detergent-soluble fraction was obtained by centrifugation at 14,000 
rpm for 30 min at 4°C. The detergent-soluble fraction of sub-confluent en- 
dothelial cells was obtained in the same manner. After pre-equilibration 
of the glutathione Sepharose affinity matrices in lysis buffer, platelet or 
endothelial cell lysates were diluted eightfold in lysis buffer with inhibitors 
and 0.5 ml aliquots were added to 100 ~1 batches of affinity matrix for 12 h 
at 4°C with gentle shaking. The matrices were then washed with 10 bed 
volumes of lysis buffer and proteins were eluted by boiling for 5 min in 30 
~L1 of SDS sample buffer under non-reducing conditions (46). 20 p.l of each 
sample were electrophoresed in 7.5% SDS-polyacrylamide gels (46), trans- 
ferred to a 0.45 ~m nitrocellulose membrane (Millipore Corp., Bedford, 
MA) (68), and immunoblotted with a monoclonal antibody specific for 133 
(SSA6, 10 Ixg/ml) (1), a goat antiserum against human 131 (1:500; a gift 
from Martin Hemler, Dana Farber Cancer Institute, Boston, MA), or a 
monoclonal antibody against P-selectin (S12, 10 ixg/ml; a gift from 
Rodger McEver, Oklahoma Medical Research Foundation, Oklahoma 
City, OK) (51). Immunoreactivity was determined using affinity-isolated, 
peroxidase-conjugated goat anti-rabbit Ig (1:3,000) (Tago, Inc., Burlin- 
game, CA) and the ECL chemiluminescence reaction (Amersham Corp., 
Arlington Heights, IL) (36). 

To examine interactions between natural 131 and 133 integrin subunits 
and 133-endonexin, the latter polypeptide was bacterially-expressed with a 
histidine (6) tag fused to the amino terminus (pET His Tag System; 
Novagen, Inc, Madison, WI). The protein was purified by HPLC and its 
mass verifed by mass spectometry. An affinity matrix was prepared by 
binding 2 mg of his-tagged 133-endonexin to 1.5 ml of His Bind metal che- 
lation resin according to the supplier's instructions (Novagen). After 
washing with platelet lysis buffer, 2 ml of platelet lysate (6.6 mg protein) 
was incubated with the matrix for 1 h at 4°C. The matrix was then loaded 
into a column and washed with lysis buffer (twice with 2 ml, and then 
thrice with 3 ml), and then eluted with 2 ml of a buffer containing 200 mM 
imidazole, 0.5 M NaCI, 20 mM Tris-HCl, pH 7.9. Samples were analyzed 
by SDS-PAGE on 4-20% gels and by immunoblotting as described in the 
legend to Fig. 7. 

Detection of  Clone 28-related mRNAs in Cells 
and Tissues 
Northern blots were performed using a Human MTN Blot II (Clontech) 
as a source of poly A ÷ RNA according to the supplier's instructions. The 
719-bp insert from clone 28 was obtained by XhoI digestion, labeled with 
(a-a2p)dATP using a commercial kit (Prime-It II Random Primer Label- 
ing Kit; Stratagene, La Jolla, CA), and used as a probe. 

Primer extension reactions were carried out to confirm the 5' ends of 
mRNAs encoding clone 28-related proteins (59). First strand cDNA syn- 
thesis was accomplished using washed platelets as a source of total RNA 
and either of two clone 28-specific antisense oligonucleotides that had 
been 5'-labeled with 32p (5'-AACCCAGCAACTTCCGAAAACAGAAA- 
ATCCGCC-3' or 5'-CAGAAAATCCGCCAAAGGAAACCACGAAT- 
TCAC-3'). Control studies showed that no PCR product was obtained 
when first strand synthesis was omitted. 

Several human cDNA libraries as well as reverse-transcribed platelet 
mRNA were subjected to PCR as described above to screen for the pres- 
ence of a reaction product specific for 133-endonexin. The primers are de- 
scribed in the legend to Fig. 4 B. The following libraries were examined: B 
cell in pACT, and placenta and brain in pGAD424 (the latter two from 
Clontech). 

Detection of  Proteins 

Expression of GAL4 DNA-binding domain fusion proteins containing ei- 
ther the anb, 132, or 133 tails was confirmed by immunoblotting with rabbit 
antisera (1:500) specific for these tails (53). Individual yeast transformants 
were grown overnight at 30°C in 5 ml of SD without tryptophan. Cells 
were washed, resuspended in SDS sample buffer containing I mM PMSF, 
0.5 mM leupeptin and 100 KIU/ml aprotinin, and lysed by vortexing for 
30 s × 3 in the presence of 0.5 vol of 500 I~ acid-washed glass beads 
(Sigma) and then boiling for 10 min. Supernatants were analyzed for pro- 
tein content (BCA; Pierce Chemical Co., Rockford, IL) and 35 fxg ali- 
quots were electrophoresed under non-reducing conditions and immuno- 
blotted as described above. 

133-Endonexin expression was analyzed in fresh human platelets and in 
a mononuclear fraction of peripheral blood leukocytes (5) by immuno- 
blotting. Cells were washed and lysed for 10 min in boiling SDS sample 
buffer containing 5 mM EDTA, 0.5 mM leupeptin, 4 mM Pefabloc (Boeh- 
ringer-Mannheim), 10 ixg/ml pepstatin A (Sigma), and 2 mM N-methyl 
maleimide. Platelet and mononuclear leukocyte lysates (40 ~xg/lane) were 
electrophoresed under reducing conditions, and transferred to nitrocellu- 
lose (Schleicher & Schuell, Keene, NH) as described (36), except that the 
transfer solution was buffered with CAPS, pH 11. Blots were probed with 
two different rabbit antisera (1:1000) reactive with 133-endonexin. The first 
(antiserum 0834) was obtained using a thyroglobulin-conjugated synthetic 
peptide consisting of the predicted carboxy-terminal 17 residues of 133- 
endonexin. The second (antiserum 0835) was raised against the GST/ 
clone 28 fusion protein described above. Both antisera reacted on immu- 
noblots with this fusion protein, with clone 28 polypeptide obtained by 
factor Xa cleavage of the fusion protein, and with His-tagged 133-endo- 
nexin; neither antibody reacted with GST. 

Results 

Detection of  a Polypeptide That Binds to the 
Cytoplasmic Tail of  the Integrin l]3 Subunit 

A yeast two-hybrid system was used to screen for proteins 
that interact with the 133 cytoplasmic tail. Nucleotides en- 
coding the entire 47-amino acid cytoplasmic tail of 133 (Ta- 

Figure 1. Express ion  of  the  cytoplasmic 
tails o f  the  133, etnb, and 132 integrin sub- 
units as G A L 4  fusion prote ins  in yeast. As  
descr ibed  in Materials  and Methods ,  one  
to four  i n d e p e n d e n t  colonies f rom each 
t rans format ion  were  grown in liquid cul- 
ture,  lysed, and subjec ted  to S D S - P A G E  
and immunoblo t t ing .  The  pr imary  anti- 
body  used  in each pane l  is shown.  The  
lane on the  far right in panels  A and B was 
loaded with 20 }xg of  platelet  lysate as a 
source of  full length 133 or  cqtb, respect ively 
(upper arrows). The  lower  arrows indicate  
the posi t ion of  the  G A L 4  D N A - b i n d i n g  
domain  fusion proteins.  O t h e r  bands  in 
the  yeast  samples  are  non-specific.  
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Figure 2. The fusion protein expressed by clone 28 binds to the 
cytoplasmic tail of 133 in yeast. Yeast were co-transformed as indi- 
cated with two of the following plasmids: pGBT9/133, pACT, 
pGAD3F/SV-40 large T antigen, pACT/clone 28, and pGBT9/ 
lamin C. Transformants were grown in liquid culture and assayed 
for 13-galactosidase activity as described in Materials and Meth- 
ods. Data bars represent the mean -+ SD of six separate experi- 
ments, each performed on four independent colonies. 

ble I) were fused in flame to the DNA-binding domain of 
GAL4 in the yeast plasmid, pGBT9. Western blots of 
yeast lysates transformed with pGBT9/[33 confirmed that 
the [33 tail fusion protein was being expressed (Fig. 1 A). 
However, fusion protein expression did not cause transac- 
tivation of the two GALA reporter genes present in the 
yeast host strain (HIS3 and lacZ). Therefore, the [33 tail 
was used as a ligand to screen for binding partners in an 
EBV-transformed B lymphocyte cDNA library which had 
been fused to the DNA activation domain of GAL4 (25, 27). 

Of 1.7 million co-transformants plated, 90 colonies grew 
in the absence of histidine. Seven also expressed ~-galac- 
tosidase activity in a filter-lift assay, suggesting that a li- 
brary-derived fusion protein was interacting with the [33 
cytoplasmic tail. Five of these colonies contained an iden- 
tical 719-bp library insert and were considered to be "true 
positives". Their plasmid DNA caused transactivation of 
HIS3 and lacZ when reintroduced into yeast expressing 
the [33 cytoplasmic tail, but no such activation was ob- 
served in yeast expressing an unrelated fusion protein 
(lamin C). Fig. 2 shows the results of quantitative [3-galac- 
tosidase assays for one of the positive clones (No. 28), 
which was subsequently characterized in detail. 

To determine whether the polypeptide expressed by 
clone 28 could interact with the [33 cytoplasmic tail in a 
context outside of yeast, the cloned DNA insert was se- 
quenced and a 285-bp coding region was identified. This 
sequence was used to construct and express the corre- 
sponding 95-amino acid polypeptide as a soluble GST fu- 
sion protein. When the fusion protein was attached0to a 
glutathione Sepharose matrix and incubated with a doter- 
gent extract from platelets (a source rich in OtlIb[33), the ~3 

Figure 3. Specific interaction in vitro between the polypeptide 
expressed by clone 28 as a GST fusion protein and the 133 integrin 
subunit. As described in Materials and Methods, affinity matrices 
were prepared containing either GST or GST fused to the 95- 
amino acid polypeptide expressed by clone 28. Platelet lysate was 
then incubated with the matrices for 12 h at 4°C, followed by 
SDS-PAGE and immunoblotting of bound proteins with mono- 
clonal antibodies specific for 133 (A) or P-selectin (B). As positive 
immunoblot controls, lanes 1 and 4 were loaded with 20 t~g of 
platelet lysate. Lanes 1-3 represent platelet lysate prepared in the 
presence of 1 mM EDTA, while lanes 4--6 represent lysate pre- 
pared with 1 mM CaCI2. This experiment is representative of 
three so performed. 

subunit was retained by the affinity matrix. In contrast, an- 
other highly expressed platelet protein, P-selectin, was not 
retained by this matrix, nor was [33 retained by a control 
GST matrix (Fig. 3). The retention of [33 on the clone 28 
affinity matrix was observed independent of whether 
platelets had been solubilized in the presence of 1 mM 
CaC12 to maintain the integrity of the O~iib[33 complex or in 
1 mM E D T A  to dissociate the integrin subunits (9). Al- 
though not shown, similar results were obtained with [33 
from human umbilical vein endothelial cells, while 131 from 
endothelial cells and platelets was not retained on the 
clone 28 affinity matrix. Taken together with the binding 
experiments in yeast, these data indicate that a 95-amino 
acid polypeptide encoded by clone 28 binds directly to the 
cytoplasmic tail of integrin ~3 in a specific manner. 

Alternate Forms of  Clone 28-related mRNA 
Encode Polypeptides That Bind Differentially to 
the f13 Cytoplasmic Tail 

The 719-bp library insert from clone 28 was used to probe 
Northern blots of eight human tissues. A band of reactivity 
was observed at approximately 1.1 kb in all tissues, with 
greatest reactivity in testes and colon (Fig. 4 A). In an at- 
tempt to obtain full-length cDNA clones representing this 
mRNA, 5 ' -RACE PCR was performed using a testes 
cDNA library as template. To complement this analysis, 
PCR reactions were carried out using the original B lym- 
phocyte cDNA library as a template and clone 28-specific 
oligonucleotides as primers. With this combined approach, 
the 5'-untranslated and coding regions and most of the 3'- 
untranslated region were characterized, and two closely 
related mRNAs were identified: a "shorter" form contain- 
ing 897 bp and a "longer" form containing 1041 bp (Fig. 4 
B). The apparent transcription start site for both mRNAs 
at residue 1 in Fig. 5 A was confirmed by primer extension 
analysis of platelet mRNA (not shown). A putative start 
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Figure 4. (A) Northern blot demonstrating the presence of clone 
28-related mRNA in human tissues. A 13-actin probe was used as 
a control. (B) PCR detection of 133-endonexin cDNA from vari- 
ous human tissues. As shown schematically on the top, a primer 
pair was selected that would prime 133-endonexin but not the 
longer mRNA species (clone 28 Long). The sense and antisense 
primers were 5 ' -GCAAAATTFAAGTAGTATACAGTGAC-  
3 and 5'-CTCGTAGCAGTTGGCAGGTGCATGTCTA-3',  re- 
spectively. As shown on the bottom, the predicted 265-bp 133- 
endonexin PCR product was observed when B cell, placenta and 
brain cDNA libraries and reverse-transcribed platelet mRNA 
were used as templates. As controls, this band was also observed 
when 133-endonexin in pACT was used as a template, but not 
when pACT/Clone 28 Long was used. 

codon at bases 131-133 is in a suitable envi ronment  for 
t ranslat ion init iat ion (44), and it is in-frame with down- 
s t ream sequences that  encode  the clone 28 fusion pro te in  
identif ied in the two-hybr id  screen. A n  open reading 
frame for the shor ter  m R N A  species would encode  a 111 
amino acid, 12.6-kD polypept ide .  The carboxy- terminal  90 
amino acids are identical  to corresponding amino acids in 
clone 28. The longer m R N A  species differs from the 
shorter  one due to insert ions of 93 and 50 bp, as indicated 

Figure 5. Sequences of clone 28-related cDNAs. Panel A shows 
the nucleotide sequence and deduced amino acid sequence of 
cDNA derived from the longer of the two clone 28-related 
mRNAs described in the text. A start codon is at nucleotides 131- 
133. The shaded areas show which nucleotides and amino acids 
are deleted to form the shorter mRNA and its deduced polypep- 
tide (133-endonexin). The circled alanine is encoded by a GCT in 
the longer mRNA but this is replaced by a stop codon in 133- 
endonexin. B compares these mRNAs diagrammatically. The 
coding region for 133-endonexin is represented by the shaded rect- 
angle (nucleotides 131-463), and the dark rectangle in the longer 
mRNA represents nucleotides encoding an additional 59 amino 
acids. These sequence data are available from EMBL/GenBank/ 
DDBJ under accession number U37139. 

in Fig. 5 A. In this case, the open reading frame would en- 
code a 170 amino acid, 19.2-kD polypept ide  that  differs 
from the shorter  po lypept ide  due to an addi t ional  59 
amino acids at the carboxy terminus (Fig. 5 B). 

The  capacity of these two different  clone 28-related 
m R N A s  to express polypept ides  that  bind to the 133 cyto- 
plasmic tail was tested in the two-hybr id  system. The 
shor ter  i l l - a m i n o  acid polypept ide  bound  to the 133 cyto- 
plasmic tail as well as the original clone 28 fusion pro te in  
(Fig. 6). In light of its abili ty to bind to a por t ion  of an inte- 
grin subunit  normal ly  located inside the cell, the polypep-  
tide was named [33-endonexin (from the roots,  "endon"  or  
within, and "nexus" or  connection).  In  contrast ,  the 170- 
amino acid polypept ide ,  hereaf te r  referred to simply as 
"clone 28-long", failed to bind to the 133 tail (Fig. 6). Not  
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Figure 6. Structural specificity of binding of [33-endonexin to the 
cytoplasmic tail of [33. Binary interactions between pairs of fusion 
proteins were studied in yeast using a liquid 13-galactosidase assay 
as described in Materials and Methods and in the legend to Fig. 2. 
All GAL4 DNA-binding domain fusions were in pGBT9. All 
clone 28-related fusions were in pACT. Data bars represent the 
mean _+ SD of five separate experiments, each performed on four 
independent colonies. 

shown is the fact that the longer polypeptide also failed to 
bind to the cytoplasmic tails of the 131 or 132 integrin subunits. 

~3-Endonexin nucleotide sequences were not repre- 
sented in either GenBank or EMBL nucleotide databases 
as of May 18, 1995. Searches of these databases through 
the National Center for Biotechnology Information using 
either the BLASTN (3) or FASTN (56) algorithms failed 
to disclose complete identities. A 395-bp expressed se- 
quence tag derived from mouse testis (MUSBO48A) ex- 
hibited 78% identity over a 232-nucleotide stretch. Other 
than this, no other similarities were identified. Thus, 133- 
endonexin is a novel protein. 

The 111-amino acid 133-endonexin sequence was ana- 
lyzed with the University of Wisconsin Genetics Com- 
puter group package (23). This polypeptide has a pre- 
dicted molecular mass of 12,624 and a predicted pI of 8.3. 
Its amino acid composition is unremarkable, being com- 
prised of 31% charged and 23% hydrophobic residues. 
The presence of a single cysteine suggests that the mature 
protein could contain a free sulfhydryl group. The protein 
contains 17 Ser and 9 Thr residues suggesting that it may 
be subject to modification by phosphorylation or glycosy- 
lation. Indeed, Ser 28 is in an appropriate context for phos- 
phorylation by protein kinase A (29, 35), and Ser 6, Thr 24, 
and Thr 79 are in contexts favorable for protein kinase C 
(72). Analysis of hydrophilicity (45), averaged over a win- 
dow of seven residues, revealed no long hydrophobic 
stretches consistent with the absence of both a signal pep- 
tide and transmembrane domains. Consequently, [33-endo- 
nexin is predicted to be an intracellular protein. 

Searches of non-redundant protein sequence databases 
through the National Center for Biotechnology Informa- 
tion using BLAST (3) and FASTA (56) revealed no ho- 
mologies of obvious biological significance. Similarly, 
search of the PROSITE database with the MOTIFS pro- 
gram (23) failed to identify any rare sequence motifs 
within 133-endonexin. 

Structural Specificity of the [33-endonexin/[33 
Cytoplasmic Tail Interaction 

There are several highly conserved regions in the cytoplas- 
mic tails of most 13 integrin subunits (e.g., see Table I) (60, 
71). Despite this, the [32 cytoplasmic tail did not interact 
with 133-endonexin in the yeast two-hybrid system. More- 
over, a chimeric 133/[~1 cytoplasmic tail containing the 
membrane-proximal 11 residues of 133 and the distal 36 res- 
idues of ~1 bound minimally to 133-endonexin. Also, no in- 
teraction was observed between f33-endonexin and the cy- 
toplasmic tail of tXnb (Fig. 6). This lack of interaction with 
integrin tails other than 133 was not likely to be due to in- 
sufficient expression of these tails in yeast. Expression of 
the eqi b and 132 fusion proteins was confirmed by immuno- 
blotting with tail-specific antibodies (Fig. 1, B and C). Al- 
together, these results indicate that 133-endonexin binds 
selectively to the 133 cytoplasmic tail, probably due to rec- 
ognition of membrane-distal sequences unique to 133. 

Further support for this conclusion was obtained by 
studying a point mutant of the 133 cytoplasmic tail, $752--4P 

(Table I). In human platelets, this mutation is associated 
with a bleeding disorder due to defective agonist-induced 
activation of and fibrinogen binding to eqib~33 (14). More- 
over, CHO cells expressing this mutant exhibit markedly 
reduced spreading and focal adhesion formation following 
adhesion to fibrinogen (16). When the $752----~P cytoplasmic 
tail was tested in the two-hybrid system, it showed a 64% 
reduction in binding to [33-endonexin compared to the 
wild-type 133 tail (P < 0.001) (Fig. 6). 

To determine whether 133-endonexin exhibited a selec- 
tive interaction with the 133 integrin subunit in vitro, a histi- 
dine-tagged form of 133-endonexin was expressed in bac- 
teria and attached non-covalently to a metal chelation 
affinity resin. The 133 integrin subunit from a detergent ex- 
tract of platelets was retained and eluted from this [33- 
endonexin affinity matrix, while the f31 integrin subunit 
from the same cells was not (Fig. 7). Thus, studies in yeast 
and with recombinant 133-endonexin in vitro indicate that 
the binding of this polypeptide to the 133 integrin tail is 
structurally specific. 

Tissue and Cellular Expression of fl3-Endonexin 

In order to begin to assess the significance of 133-endonexin 
expression in cells, PCR of several cDNA libraries was 
carried out using oligonucleotides specific for 133-endo- 
nexin. A PCR product was detected in cDNA libraries 
from human brain, B lymphocytes and placenta as well as 
in cDNA obtained from platelets by RT-PCR (Fig. 4 B). 
The product from B lymphocytes was cloned and se- 
quenced and its identity to 133-endonexin was confirmed. 

Next, platelets and a mononuclear fraction of peripheral 
blood leukocytes were examined by immunoblotting to 
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Figure 7. Specific interaction between recombi- 
nant 133-endonexin and the 133 integrin subunit. 
As described in Materials and Methods, an affin- 
ity matrix was prepared containing histidine- 
tagged [33-endonexin bound non-covalently to a 
metal chelation resin. Platelet lysate (2 ml) was 
incubated with the affinity resin for 12 h at 4°C. 
After five washes, proteins were eluted from the 
resin in 2 ml of buffer containing 200 mM imida- 
zole. Lysates (lane 1; 12 txg protein), initial flow- 
through (lane 2; 15 p.l), first column wash (lane 3; 
15 Ixl), and resin eluate (15 Ixl) were then sub- 
jected to SDS-PAGE under non-reducing condi- 
tions and the gel was stained with Coomassie 
blue (A) or transferred to nitrocellulose and im- 

munoblotted with monoclonal antibodies specific for 133 (B) o r  131 (C).  Some proteins were present in the first wash but none were de- 
tectable in the fifth wash (not shown). Note in A that a number of proteins in the platelet lysate were depleted in the flow-through and 
eluted from the column with imidazole. Some of these proteins, one of which migrated identically with the 133 integrin subunit (upper ar- 
row), may represent proteins that bind directly or indirectly to f33-endonexin. Two faster migrating bands (double arrows) represent 
monomeric and dimeric forms of recombinant f33-endonexin. Immunoblotting demonstrated that the [33 integrin subunit was relatively 
depleted from the flow-through and eluted from the resin (B), while the 131 integrin subunit was not. This experiment is representative 
of three so performed. 

characterize 133-endonexin expression at the protein level. 
Using a rabbit anti-peptide antiserum specific for the puta- 
tive carboxy terminus of  133-endonexin, an immunoreac- 
tive band migrating at approximately 13 kD was observed 
in platelets. This band was specific because it was not ob- 
served with pre-immune serum or when the immune se- 
rum had been pre-incubated with the immunizing peptide 
(Fig. 8). The same band was observed using a different 
rabbit antiserum raised against a GST/clone 28 fusion pro- 
tein. A specific band was also detected in blood mononu-  
clear leukocytes using the anti-peptide antiserum (Fig. 8). 

D i s c u s s i o n  

In the present study, a human c D N A  has been identified 
that encodes a novel 12.6 kD, 111-amino acid polypeptide 
that binds to the cytoplasmic tail of the 133 integrin subunit. 
Designated 133-endonexin on the basis of its binding speci- 
ficity, this polypeptide was first detected in a yeast two- 
hybrid screen of a B lymphocyte library. Several observa- 
tions suggest that 133-endonexin may be relevant to integrin 
biology in mammalian cells: (a) a selective interaction could 
be demonstrated using bacterially-expressed partial or full- 
length forms of 133-endonexin and detergent-solubilized 133 
from platelets or human umbilical vein endothelial cells. 
(b) m R N A  specific for [33-endonexin could be detected in 
several human tissues, and the polypeptide was detected 
by immunoblotting in platelets and peripheral blood mono- 
nuclear leukocytes, both of which express [33 integrins. (c) 
Binding of [33-endonexin to the 133 cytoplasmic tail was 
structurally specific: A Ser --> Pro mutation at position 752 
of the 133 tail caused markedly reduced binding to 133- 
endonexin, and the cytoplasmic tails of the 131 and 132 inte- 
grin subunits failed to bind. Moreover,  a c D N A  related to 
133-endonexin was cloned from B lymphocytes that en- 
coded a larger polypeptide containing an extra 59 amino 
acids at the carboxy terminus of 133-endonexin. When ex- 
pressed in the yeast system, it failed to bind to the cyto- 
plasmic tails of [31, [32, or [33 . 

Expression o f  flz-Endonexin in Mammalian Tissues 
and Cells 

Northern blot analysis using a c D N A  probe from the orig- 
inal positive yeast clone 28 demonstrated a ~ l . l - k b  mes- 
sage in eight human tissues of diverse origin. Expression 
appeared to be greatest in testes and colon, but this type of 
study can not identify the cells of origin of the mRNA.  
Similarly, analyses of c D N A  libraries by PCR with primers 
specific for 133-endonexin found evidence for this m R N A  
in B lymphocytes, brain and placenta, again suggesting a 
wide tissue distribution. In addition, [33-endonexin m R N A  

Figure 8. Detection of 133-endonexin polypeptide in platelets and 
mononuclear leukocytes. These blood cell fractions were pro- 
cessed for immunoblotting as described in Materials and Meth- 
ods. Some cell lysates were analyzed using an anti-peptide antise- 
rum specific for the carboxy terminus of 133-endonexin. Note that 
both platelets (100 p~g protein, or 4 × 107 platelets/lane) and leu- 
kocytes (40 ~g/lane) exhibited an immunoreactive band at ap- 
proximately 13 kD (arrows) with the immune serum (Imm). In 
contrast, this band was not observed with pre-immune serum 
(Pre) or with immune serum that had been pre-incubated for 30 
min with 15 ixM of the immunizing peptide (Imm + Pep). Lysates 
from platelets (38 ~g, or 1.5 x 107 platelets/lane) and a bacteri- 
ally expressed recombinant form of 133-endonexin (3 ng/lane) 
were also analyzed using antiserum specific for the GST/[33-endo- 
nexin fusion protein described in the legend to Fig. 3 (Anti-Prot 
Ab). The mobility of the immunoreactive band from platelets was 
slightly greater than that of the recombinant protein. 
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was found in washed platelets by RT-PCR. Here again, 
however, the cellular origin of the mRNA is not entirely 
unambiguous since platelet preparations are always con- 
taminated with some leukocytes. Since [33 integrin expres- 
sion appears relatively restricted (e.g., endothelial cells, 
platelets, monocytes/macrophages, osteoclasts and certain 
lymphocyte subsets (7, 17, 20, 57, 66), the apparent wide 
tissue distribution of [33-endonexin mRNA suggests that 
the polypeptide may have some function unrelated to inte- 
grin binding. On the other hand, the presence of endothe- 
lial cells in virtually all tissues could also explain this result. 

A hydropathy plot of [33-endonexin is consistent with 
the interpretation that the polypeptide contains neither a 
signal sequence nor a transmembrane domain. Thus, it is 
probably an intracellular protein. [33-endonexin polypep- 
tide could be detected in platelets and in a mononuclear 
fraction of blood containing lymphocytes and monocytes 
by immunoblotting with two different specific polyclonal 
antisera. Based on the immunoreactivity of recombinant 
[33-endonexin and [33-endonexin from platelets (Fig. 8), we 
estimate that there are roughly 5,000-50,000 molecules of 
this polypeptide per platelet, similar to the number of [33 
integrin molecules per platelet (63). Preliminary attempts 
to examine whether [33-endonexin co-immunoprecipitates 
with [33 integrins from cellular lysates have been compli- 
cated by proteolysis of the polypeptide during various im- 
munoprecipitation protocols, with a resultant loss of reac- 
tivity to the available antibodies. Thus, additional studies 
using new antibodies and other immunochemical and ge- 
netic approaches will be required to document the extent 
to which 133-endonexin interacts with and modulates the 
functions of [33 integrins within cells. 

Structural Specificity o f  the Interaction between 
fl3-Endonexin and the ~3 Cytoplasmic Tail 

Divalent cations are essential for adhesive ligand binding 
to [33 integrins and for et[3 subunit association (9, 21). In 
the present study, a GST/[33-endonexin-derived fusion 
protein bound specifically to detergent-solubilized [33 from 
platelets, whether or not CaC12 was present to maintain 
the O[iib[33 complex or EDTA was present to dissociate it. 
Thus, unlike extracellular integrin ligands, the binding of 
[33-endonexin is independent of divalent cations and may 
not require a complex between et and [3 subunits. The 
binding studies in yeast further suggest that the interaction 
between [33-endonexin and the [33 tail is binary, although 
they do not formally exclude the possibility that one or 
more additional yeast proteins participate in or modulate 
the interaction. 

Integrins exhibit an intimate but poorly understood re- 
lationship with the signaling machinery of cells. In many 
cases, their affinity for adhesive ligands can be influenced 
by the state of cellular activation (24, 40). Furthermore, in- 
tegrin ligation and clustering can trigger biochemical reac- 
tions that affect the growth, differentiation and death pro- 
grams of cells (8, 41, 52). Implicit in these observations is a 
requirement for regulated interactions between integrins, 
cytoskeletal and cytoplasmic proteins. Accordingly, there 
is currently intense interest in identifying the components 
of integrin signaling pathways as well signaling elements 
that link these pathways to others that transfer informa- 

tion from the cell surface to the nucleus (22, 69). Recent 
studies of a variety of cell types have begun to define such 
interactions (13, 19, 48, 55, 60, 62). In one such study in fi- 
broblasts (70), immunoprecipitation was used to demon- 
strate that insulin stimulation promotes an association of 
av[33 and insulin receptor substrate-1, a protein that medi- 
ates insulin signaling by specifically binding to several in- 
tracellular targets. This interaction required the [33 subunit 
but not av- 

Other studies have begun to map sites within the [3 cyto- 
plasmic tails that are involved in interactions with specific 
intracellular proteins. For example, using synthetic pep- 
tides derived from integrin tails, Otey and co-workers 
have identified two discontinuous sequences within the [31 
tail that bind c~-actinin (54) and another membrane-proxi- 
mal linear sequence in [331 and [33 that binds pp125 FAK 
(Otey, C. A., M. Schaller, and J. T. Parsons. 1993. Mol. 
Biol. Cell 4:347a). This latter finding is supported by ob- 
servations in CHO cells that have been transfected with 
ctnb[33. Cells expressing wild-type etnb[33 adhered to fibrino- 
gen, exhibited tyrosine phosphorylation of pp125 FAK and 
underwent spreading. Cells expressing a truncated form 
of ~3 missing 35-carboxy-terminal residues still exhibited 
FAK phosphorylation during adhesion to fibrinogen, but 
they did not spread (Shattil, S., L. Leong, C. Abrams, M. 
Cunningham, T. Parsons, T. O'Toole, and M. Ginsberg. 
1994. Circulation. 90:I-86). Other studies have identified 
an NPXY sequence in the [31 or [33 cytoplasmic tails as nec- 
essary for cellular regulation of affinity modulation or for 
assembly of focal adhesions (53, 58). 

In contrast to the above studies, where more than one 
type of [3 subunit is involved in interactions with ot-actinin 
or FAK, we found that [33-endonexin bound only to the cy- 
toplasmic tail of [33. The specificity of this interaction is un- 
derscored by the inability of the larger clone 28-related 
polypeptide to interact with the 133 tail (Fig. 6). Neither the 
[32 tail nor a chimeric tail made up of the membrane-prox- 
imal 11 residues of [33 and the distal 36 residues of [31 inter- 
acted with [33-endonexin. Since the sequences of the mem- 
brane-proximal portions of the three [3 subunits are very 
similar (Table I), residues unique to the distal portion of 
the [33 tail must be responsible for binding. This notion is 
supported by two other observations. First, interaction of 
the 133 tail with [33-endonexin in the yeast system was 
markedly reduced when proline was substituted for serine 
at [33 residue 752 (Fig. 6). Second, recent studies have dem- 
onstrated that the human [33 integrin subunit expressed as 
an Otlib[33 complex in CHO cells binds to a [33-endonexin af- 
finity column. In contrast, a [33 subunit lacking the COOH- 
terminal 39 residues does not bind (Eigenthaler, M., S. J. 
Shattil, and M. H. Ginsberg, unpublished observations). 

Both Otllb[33 and t~v[33 are involved in integrin-mediated 
signaling (63). Of note in this context, [33 $752 appears criti- 
cal for this process in both integrins. Platelets from indi- 
viduals homozygous for the $752---~P mutation do not bind 
soluble fibrinogen due to defective agonist-induced con- 
version of Ctllb[33 to  a high affinity state (14). This same 
mutation abolishes Cqib[33-mediated spreading of CHO 
cells on fibrinogen (16) and etv[33-mediated clot retraction 
by melanoma cells (Chen, Y., and M. Ginsberg, unpub- 
lished observations). It is intriguing, therefore, that [33- 
endonexin binds at or near a region of the [33 tail that regu- 
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lates both the adhesive and signaling functions of these 
integrins. Thus, this novel interaction or others like it 
could provide a structural context to explain how a cell 
might be able to regulate the function of one integrin de- 
spite the presence of multiple integrins. Furthermore, the 
~3 integrins have been implicated in several pathological 
processes, including thrombosis, coronary restenosis after 
angioplasty, osteoporosis and tumor angiogenesis (11, 32, 
50, 67). The present studies suggest that it might be possi- 
ble to develop therapeutic strategies that target a specific 
integrin tail or proteins that bind differentially to that tail. 
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