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Abstract
Alzheimer’s disease (AD) is a common cause of dementia. We aimed to develop a computationally efficient yet accurate

feature engineering model for AD detection based on electroencephalography (EEG) signal inputs. New method: We

retrospectively analyzed the EEG records of 134 AD and 113 non-AD patients. To generate multilevel features, a

multilevel discrete wavelet transform was used to decompose the input EEG-signals. We devised a novel quantum-inspired

EEG-signal feature extraction function based on 7-distinct different subgraphs of the Goldner-Harary pattern (GHPat), and

selectively assigned a specific subgraph, using a forward-forward distance-based fitness function, to each input EEG signal

block for textural feature extraction. We extracted statistical features using standard statistical moments, which we then

merged with the extracted textural features. Other model components were iterative neighborhood component analysis

feature selection, standard shallow k-nearest neighbors, as well as iterative majority voting and greedy algorithm to

generate additional voted prediction vectors and select the best overall model results. With leave-one-subject-out cross-

validation (LOSO CV), our model attained 88.17% accuracy. Accuracy results stratified by channel lead placement and

brain regions suggested P4 and the parietal region to be the most impactful. Comparison with existing methods: The

proposed model outperforms existing methods by achieving higher accuracy with a computationally efficient quantum-

inspired approach, ensuring robustness and generalizability. Cortex maps were generated that allowed visual correlation of

channel-wise results with various brain regions, enhancing model explainability.
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Introduction

Alzheimer’s disease (AD) is a common neurodegenerative

cause of dementia; the prevalence is projected to triple in

the next five decades (Rosende-Roca et al. 2025; Westphal

Filho et al. 2025). The disease typically presents initially

with mild cognitive impairment (MCI), which encom-

passes mild symptoms like memory loss but generally does

not significantly impede daily functioning. Approximately

6–25% of individuals with MCI progress to AD annually

(Barthélemy et al. 2024). They manifest symptoms of mild

and moderate AD, with escalating cognitive deficits and

decreased independence; and ultimately severe AD, with

complete dependence on caregivers (Kwon et al. 2024).

Even as definitive treatment for AD remains to be

discovered, certain medications can delay symptom onset,

underscoring the need for early diagnosis. The latter pre-

sents challenges as early symptoms are often mistakenly

attributed to normal aging. A high index of suspicion is

obligatory: suspect AD cases should undergo neuroimaging

and laboratory examinations to exclude alternative neuro-

logical and systemic conditions, as well as neuropsycho-

logical assessment to confirm the diagnosis (Dauwels et al.

2010).

Electroencephalography (EEG), which records surface

electrical signals emanating from brain activity, is altered

in MCI and AD (Sasidharan et al. 2025). In AD, EEG brain

signals or waves may demonstrate slowdown, reduced

complexity, and disrupted synchronization (Arjmandi-Rad

et al. 2024). Moreover, there is a strong correlation

between visually-assessed EEG scores and the severity of

dementia as assessed by the Mini-Mental State
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Examination (Keresztes et al. 2024; Fan et al. 2024). Loss

of posterior dominant alpha rhythm and diffuse EEG

slowing have also been reported in patients with confirmed

AD (Chu 2024). Compared with age-matched healthy

controls, both MCI and AD are associated with EEG signal

slowing (Meghdadi et al. 2024), decreased power in the

alpha and beta frequency bands (8–30 Hz), and increased

power in the delta and theta (0.5–8 Hz) and gamma

(30–100 Hz) frequency bands (Ettenberger et al. 2024).

Expert interpretation of the EEG is the standard of care

but is time-intensive and subject to human biases (Dutta

et al. 2024). In addition, reproducible detection of AD-

induced EEC signal perturbations is confounded by sub-

stantial variability in EEG findings among AD patients.

Consequently, none of the above-mentioned AD-associated

EEG phenomena provides a reliable clinical diagnosis of

early-stage AD. Advancements in signal processing and

machine learning have spurred the development of auto-

mated EEG-based models for AD detection that may sur-

mount the limitations of manual EEG interpretation. In

parallel, EEG recording systems, including portable wear-

able ones (Rehman et al. 2024), have become available and

are relatively affordable. These trends make EEG an

accessible and promising tool for MCI/AD screening and

early detection among high-risk populations (Dauwels

et al. 2010). In the current study, we proposed an auto-

mated model for AD detection based on a novel quantum-

inspired EEG signal feature extraction function.

Literature review

There are various studies in the literature for different

disciplines (Abedinzadeh Torghabeh et al. 2023; Hakemi

et al. 2024). In recent years, several machine learning

classification models for EEG-based AD diagnosis have

been published (Table 1). Some studies focused on deep

learning techniques (Bi and Wang 2019; Fouladi et al.

2022; Lopes and Cassani 2023; Xia et al. 2023), in which

high classification performance came at a cost of high

computational complexity (Lopes and Cassani 2023).

Moreover, data augmentation was used in Xia et al. (2023).

Data augmentation can lead to unreliable results and

overfitting. Lastly, in some models, the segmentation times

were very short (Bi and Wang 2019; Rodrigues et al. 2021;

Chedid et al. 2022), which could potentially result in

overfitting.

Literature gap

From the studies in Table 1, we observed the following:

1. Fewer number of participants or EEG samples. Exist-

ing AD-related EEG signal datasets contain few

participants, which reduces the generalizability of the

study outcomes and results.

2. Suboptimal validation methodology. Machine learning

models commonly rely on random separation-based

validation approaches, which may lead to unreliable

classification results.

3. Superior performance of deep learning models. The use

of backpropagation and forward algorithms enables

deep models to select the most suitable weights for the

networks. In contrast, feature engineering models rely

on fixed feature selectors, which may not identify the

most appropriate features consistently.

4. Quantum mechanism is a very popular research area

since quantum models provide many advantages and

these advantages have been utilized in feature engi-

neering (Li et al. 2020; Safriandono et al. 2024). For

instance, lattice-based feature extractors are quantum-

inspired feature extraction functions. However, there

are limited quantum-based feature engineering models.

Motivation and our method

We were motivated to develop a computationally efficient

yet accurate feature engineering model for AD detection.

To generate multilevel features akin to deep learning

models, the multilevel discrete wavelet transform (MDWT)

(Desai and Sankhe 2012) was used to decompose the input

EEG signals. Based on the concept of superposition in

quantum physics, in which a quantum system is able to

exist in multiple states at the same time until it is measured,

we devised a novel EEG signal feature extraction function

based on different subgraphs derivable from the Goldner-

Harary (GH) graph (Swain 2019; Swain et al. 2020). A

straightforward forward-forward (FF) distance-based fit-

ness function inspired by Hinton’s FF algorithm (Hinton

2022) was employed to assign a distinct subgraph (analo-

gous to ‘‘quantum state’’) to each overlapping block of

EEG signal input for the local binary pattern (LBP)-like

(Ojala et al. 2002) textural feature extraction. This FF

strategy mimicked human neural systems more realisti-

cally, and required shorter training times, compared with

the backpropagation (which is unlikely to transpire in

nature (Hinton 2022)) commonly used in deep models. In

parallel, we extracted statistical features using standard

statistical moments, which we then merged with the

extracted textural features. Other model components were

iterative neighborhood component analysis (INCA) feature

selection (Tuncer et al. 2020), standard shallow k-nearest

neighbors (kNN) classification (Peterson 2009), as well as

iterative majority voting (IMV) (Dogan et al. 2021) and

greedy algorithm to generate additional voted prediction

vectors and select the best overall model results,
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Table 1 Summary of selected machine learning-based studies developed for automated detection of AD using EEG signals

Author(s) Dataset Features Methods Acc

(%)

Limitations

Bi and

Wang

(2019)

Collected dataset, 3 classes (4 HC,

4 MCI, 4 AD), 64 channels, 0.5-s

segments

EEG image conversion with spectral

topography maps, contractive slab, and

spike convolutional deep Boltzmann

machine

95.04 High computational complexity,

and low segmentation rate

Rodrigues

et al.

(2021)

Collected dataset, 4 classes (11 HC,

8 MCI, 11 MAD and 8 AD), 19

channels, 5-s segments

Discrete wavelet transform, cepstral and

lacstral analyses, feature normalization,

and artificial neural network

95.55 Fewer subjects, small sample

size, and low segmentation rate

Safi and Safi

(2021)

Public dataset, 3 classes (35 HC, 31

MAD, 20 AD), 20 channels, 8-s

segments

Power spectral density, empirical mode

decomposition, discrete wavelet transform,

Hjorth parameters, and kNN

97.64 Fewer subjects, small sample

size, and low segmentation rate

Dogan et al.

(2022)

Public dataset, 2 classes (11 HC, 12

AD), 16 channels, 663 EEG

segments

Primate brain pattern, iterative neighborhood

component analysis, kNN, and iterative

majority voting

92.01 Fewer subjects, and a small

number of EEG segments

Pirrone

et al.

(2022)

Public dataset, 3 classes (23 HC, 37

MCI, 49 AD), 19 channels, 105

EEG records

Power spectral density, double digital filter,

and kNN

86.0 Fewer EEG records, and

relatively low accuracy

Fouladi

et al.

(2022)

Public dataset, 3 classes (61 HC, 56

MCI, 63 AD), 19 channels, 2-s

segments

Continuous wavelet transform, and CNN 92.70 High computational complexity,

and low segmentation rate

Chedid et al.

(2022)

Collected dataset, 2 classes (23 HC,

20 AD), 32 channels, 1-s

segments

Band-wise power spectral density, statistical

analysis, and logistic regression

81.11 Small number of subjects, and

low segmentation rate

Xia et al.

(2023)

Public dataset, 3 classes (14 HC, 37

MCI, 49 AD), 19 channels

Fast Fourier transform, data augmentation,

and deep pyramid CNN

97.10 Overlapping segmentation, data

augmentation, and high

computational complexity

Lopes and

Cassani

(2023)

Collected dataset, 3 classes (20 HC,

19 MAD, 15 AD), 20 channels,

8-s segments

CNN, saliency map extraction, ANOVA-F

value feature selection, and support vector

machine

90.50 Overlapping segmentation with

1-s, relatively low accuracy,

and high computational

complexity

El-Assy

et al.

(2024)

Public dataset, 5 classes (171 AD,

72 LMCI, 233 MCI, 240 EMCI,

580 CN)

CNN 99.57 High computational complexity

Abuhantash

et al.

(2024)

Public dataset (ADNI 1331

participants and AIBL 858

participants)

GNN 99.00 High computational complexity

Zarei et al.

(2024)

Public dataset, 3 classes (199 AD,

200 MCI, 200 CN)

CNN 84.4 High computational complexity

Kim et al.

(2024)

Collected dataset (Resting State

EEG, Memory Encoding EEG)

cKNN 93.10 Relatively small number of

subjects

Dogan et al.

(2024)

Public dataset, 2 classes, (12 AD,

11 HC), 59 channels, 15-s

segments

Lattice123 pattern, Multilevel discrete

wavelet transform

99.62 Small number of subjects

Ohal and

Mantri

(2024)

Public dataset, 2 classes, (11 MCI,

16 HC)

Statistical analysis 92 Relatively small number of

subjects

Siuly et al.

(2024)

Public dataset, 3 classes, (31 mild

AD, 20 moderate AD, 35 HC),

16-s non-overlapping segments

Long short-term memory 99.00 High computational complexity

Rezaee and

Zhu

(2025)

Public dataset, 2 classes, (59 AD,

56 HC), 21 channels

Discrete wavelet transform, improved

CascadeNet model

98.84 High computational complexity

Nour et al.

(2024)

Public dataset, 2 classes, (24 AD,

24 HC), 19 channels

2-dimensional CNN 97.90 High computational complexity

Cognitive Neurodynamics           (2025) 19:71 Page 3 of 19    71 

123



respectively. Adopting a leave-one-subject-out cross-vali-

dation (LOSO CV) strategy, our GH graph pattern-based

model, GHPat, was trained and validated on a large

20-channel AD EEG signal dataset. Our proposed GHPat is

a handcrafted feature extraction model by inspiring a

quantum mechanism since there are seven feature extrac-

tion functions in this method and by selecting the best

feature vector using a Hinton’s FF (Hinton 2022) method,

like a feature vector selection method.

Innovations and contributions

Novelties and contributions of our research include:

Novelties:

1. A novel quantum-inspired graph-based feature extrac-

tion function was incorporated into a computationally

efficient feature engineering model for AD detec-

tion. In this regard, this work presents an innovative

feature extractor that is quantum-inspired and by using

this quantum-inspired feature extractor, a quantum

feature engineering model has been presented.

2. A large training EEG signal dataset was collected from

AD patients and non-AD controls.

Contributions

1 Many existing machine learning EEG-based models

for AD detection are limited by relatively small

datasets. The results of the GHPat model trained on

our large EEG dataset would be more generalizable in

comparison.

2. Compared with standard validation techniques based

on random separation, the LOSO CV strategy used in

our study accounted for inter-subject differences,

which better simulate real-life diagnostic applications

in individual patients. Hence, the results of our model

were arguably more reliable.

3. The model incorporated IMV and greedy algorithm for

automatically selecting the most accurate model

results, which rendered the GHPat feature engineering

model fully self-organized.

4. The GHPat model attained a good 88.17% classifica-

tion accuracy. Further, we could correlate channel-wise

results with the underlying spatial brain cortical maps

to provide explainable results, which enhanced the

interpretability of our model.

5. To the best of my knowledge, we are the first group to

use such a huge database and propose a new feature

engineering model and report high classification accu-

racy of 88.17% with a leave- one- subject- out (LOSO)

cross-validation strategy.

Dataset

We retrospectively analyzed the EEG records of 134 AD

(mean age 78.51 ± 7.53 years; 76 male, 58 female) and 113

non-AD (mean age 74.44 ± 8.50 years; 59 male, 54 female)

patients (total number 247; age range 50 to 99 years) and

had their diagnoses confirmed by a neurologist. The retro-

spective collection and analysis of the EEG records had been

approved by the institutional review board. Each EEG

record comprised 20 channels: Channels 1 to 20 were (in

order) Fp1; Fp2; F3; F4; C3; C4; P3; P4; O1; O2; F7; F8; T3;

T4; T5; T6; A1; A2; Fz; and Cz. The letters A, F, Fp, C, T, P,

and O referred to the anterior, frontal, prefrontal, central,

temporal, parietal, and occipital positions of the scalp

electrodes that overlie the corresponding brain regions; and

z referred to mid-sagittal electrode placement. The numbers

increased with distance from the midline; even and odd

Table 1 (continued)

Author(s) Dataset Features Methods Acc

(%)

Limitations

Le and

Nguyen

(2024)

Public dataset, 3 classes, (36 AD,

23 FTD, 29 HC)

CNN 87.30

for

FD

vs.

HC

High computational complexity

Sen et al.

(2024)

Public dataset, 2 classes, (15 AD,

11 HC), 19 channels, 5-s

segments

1-dimensional CNN 94.00 High computational complexity,

and low segmentation rate

Sharma and

Meena

(2024)

Public dataset, 2 classes, (24 AD,

24 HC)

Graph Fourier transform, discrete wavelet

transform

98.9 Relatively small number of

subjects

**Acc: accuracy; AD: Alzheimer’s disease; CNN: convolutional neural network; HC: healthy control; kNN: k-nearest neighbors; MAD: mild

Alzheimer’s disease; MCI: mild cognitive impairment; EMCI: early mild cognitive impairment; LMCI: late mild cognitive impairment: GNN,

graph neural network; cKNN, correlation-based k-nearest neighbors; FD, frontotemporal dementia
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numbers represented left- and right-brain channels, respec-

tively. The EEG signals were sampled at 500 Hz and were

divided into non-overlapping 15-s segments for analysis,

i.e., segment data length of 7500. The dataset comprised

6857 EEG segments, with 2948 and 3909 segments in the

AD and control classes, respectively.

The presented quantum-inspired graph
pattern

The GH graph, the smallest non-Hamiltonian maximal pla-

nar graph, comprises 11 nodes and 27 non-directed edges

(Fig. 1a) (Swain 2019; Swain et al. 2020). Analogous to the

concept of superposition in quantum mechanics, we defined

seven distinct directed subgraphs (Fig. 1b–h) for graph

pattern-based LBP-like textural feature extraction. Each

input EEG signal segment was first partitioned into over-

lapping fixed-length signal blocks; the most optimal sub-

graph pattern for each block was chosen using a selection

function inspired by Hinton’s FF algorithm. Knowledge of

the specific dataset was imperative for making an informed

subgraph selection: this mirrors the principle of quantum

uncertainty, where the quantum state has multiple possibil-

ities that only materialize as one at the time of measurement.

The generation of seven-bit feature vectors was accom-

plished using the matrix determined by the directed edges

within each of the seven subgraphs in conjunction with the

signum function, sgnð:Þ. Matrices corresponding to Sub-

graphs 1 to 7 are encompassed in order in Eqs. (1)-(7) below.

bit11
bit12
bit13
bit14
bit15
bit16
bit17
bit18

2
66666666664

3
77777777775

¼ sgn

P1;P2

P1;P3

P1;P4

P1;P6

P1;P7

P1;P9

P1;P10

P1;P11

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð1Þ

bit21
bit22
bit23
bit24
bit25
bit26
bit27
bit28

2
66666666664

3
77777777775

¼ sgn

P11;P2

P11;P3

P11;P5

P11;P6

P11;P8

P11;P9

P11;P10

P11;P1

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð2Þ

bit31
bit32
bit33
bit34
bit35
bit36
bit37
bit38

2
66666666664

3
77777777775

¼ sgn

P3;P4

P3;P5

P4;P6

P5;P6

P6;P7

P6;P8

P7;P9

P8;P9

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð3Þ

bit41
bit42
bit43
bit44
bit45
bit46
bit47
bit48

2
66666666664

3
77777777775

¼ sgn

P1;P4

P1;P7

P4;P6

P7;P6

P6;P5

P6;P8

P5;P11

P8;P11

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð4Þ

bit51
bit52
bit53
bit54
bit55
bit56
bit57
bit58

2
66666666664

3
77777777775

¼ sgn

P2;P1

P2;P3

P2;P11

P1;P6

P11;P6

P10;P9

P10;P1

P10;P11

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð5Þ

bit61
bit62
bit63
bit64
bit65
bit66
bit67
bit68

2
66666666664

3
77777777775

¼ sgn

P6;P1

P6;P3

P6;P11

P6;P9

P6;P4

P6;P7

P6;P8

P6;P5

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð6Þ

bit71
bit72
bit73
bit74
bit75
bit76
bit77
bit78

2
66666666664

3
77777777775

¼ sgn

P1;P2

P2;P11

P11;P10

P10;P1

P1;P3

P3;P11

P11;P9

P9;P1

2
66666666664

3
77777777775

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð7Þ

To extract these bits, we have used an overlapping block

with a length of 11 and the creation of this block is

mathematically defined in Equation 8.

Pi ¼ signaliþj�1; i 2 1,2; . . .n� 10f g; j 2 1,2; . . .; 11f g
ð8Þ

By using the values of the overlapping block, Eqs. 1–7

and the signum function, binary features have been created

and the mathematical illustration of the signum function is

defined in Eq. 9.
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Fig. 1 Non-directed Goldner-

Harary graphs: a contains

eleven numbered nodes (P) and

27 non-directed edges. The

seven derived subgraphs (b to h)

each contain a variable number

(six, seven, or nine) of nodes

and eight directed edges

(arrows). The directions (given

by pairs of P numbers within the

initial and terminal nodes) and

order of the directed edges

determine the matrix used for

extracting textural feature bits

from each fixed-length

overlapping signal block, which

in turn had been partitioned

from the input EEG segment
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sgn P1;P2ð Þ ¼ 0;P1 � P2\0

1;P1 � P2 � 0

�
ð9Þ

In Eqs. (1)-(9), bit represents binary features; P, the

created overlapping block of length 11 (as the GH graph

has 11 nodes); signal, the one-dimensional (1D) signal; and

n, length of the signal. Using the generated bits, a feature

map signal was constructed, from the histogram of which,

the feature vector was derived (Fig. 2).

The steps of the GHPat-based feature extraction proce-

dure are detailed below.

1: Generate overlapping blocks of length 11 from the

input EEG signal segment.

2: Calculate the average value of the signal.

l ¼ 1

n

Xn

k

signalk ð10Þ

where l represents the average value of the signal.

3: Compute the average value of used values in the

subgraphs.

l1 ¼ P1 þ P2 þ P3 þ P4 þ P6 þ P7 þ P9 þ P10 þ P11

9

l2 ¼ P1 þ P2 þ P3 þ P5 þ P6 þ P8 þ P9 þ P10 þ P11

9

l3 ¼ P1 þ P2 þ P3 þ P4 þ P6 þ P7 þ P9 þ P10 þ P11

9

l4 ¼ P3 þ P4 þ P5 þ P6 þ P7 þ P8 þ P9

7

l5 ¼ P1 þ P4 þ P5 þ P6 þ P7 þ P8 þ P11

7

l6 ¼ P1 þ P2 þ P3 þ P6 þ P9 þ P10 þ P11

7

l7 ¼ P1 þ P3 þ P4 þ P5 þ P6 þ P7 þ P8 þ P9 þ P11

9

ð11Þ

where l1; l2; . . .; l7 represent the average values of the

used subgraphs.

4: Calculate distances of the computed local average

values to the average value of the signal (global average

value). Here, we used the L1-norm distance metric to

compute the distances of the average values.

disth ¼ l� lhj j; h 2 1,2; . . .; 7f g ð12Þ

where dist represents the distances of the average values.

5: Select a subgraph with the minimum distance to

generate features.

ix ¼ minðdistÞ ð13Þ

where ix represents the index of the minimum distance.

6: Use the selected subgraph to generate bits. Steps 4 to

6 constitute the feedforward algorithm for selecting a

specific subgraph for each input signal block.

7: Convert bit values to decimal values to generate

feature map values.

fmi ¼
X8

q¼1

bitixq � 2q�1 ð14Þ

where bitix represents binary features of the selected sub-

graph; and fm, feature map signal.

8: Repeat Steps 1–7 until the number of overlapping

blocks is reached and generate the feature map signal.

9: Extract the histogram of the created feature map

signal.

feature ¼ dðfmÞ ð15Þ

where feature represents feature vector; and dð:Þ, the his-

togram extraction function. In this step, we have extracted

a feature vector with length 256 (= 28), since each sub-

graph has eight edges. The above nine steps define our

proposed GHPat-based feature extraction function.

Proposed feature engineering model

Our model comprised four phases: multilevel GHPat and

statistics-based feature extraction, feature selection, clas-

sification, and post-processing/information fusion (Fig. 3).

To simulate multilevel/multilayered feature extraction in

deep learning models, we used MDWT to decompose the

EEG input signal to feed to downstream feature extractors,

thereby enabling the generation of multilevel features. We

extracted GHPat-based textural features and statistical

features in parallel, which were then merged. In the feature

selection phase, we used the INCA feature selector to find

the best feature combination to feed to the established

distance-based kNN classifier. Using LOSO CV, 20 chan-

nel-wise kNN-classified results were generated. In the post-

Fig. 2 Illustration of textural feature extraction using the GHPat
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processing phase, additional voted results were generated

using IMV; and the most accurate result was selected using

a greedy algorithm.

Feature extraction

We applied seven-level MDWT (Desai and Sankhe 2012)

to decompose the EEG signal using the symlet 4 mother

wavelet function, and a low-pass filter, to extract seven

low-pass wavelet bands. The wavelet bands generated and

the raw signal have been utilized as input for the feature

extraction functions and we have used two feature extrac-

tors. These are the proposed GHPat and the statistical

feature extractor. In parallel to textural feature extraction

(detailed in Sect. ‘‘The presented quantum-inspired graph

pattern’’ above), we extracted statistical features using 14

standard statistical moments: average, maximum, mini-

mum, median, standard deviation, kurtosis, skewness,

range (maximum-minimum), root mean square, maximum

absolute deviation, Shannon entropy, sure entropy, Tsallis

entropy, and log entropy. From each raw EEG signal or

wavelet band input, the 256 textural and 14 statistical

features extracted by GHPat and statistical moments were

merged to form a feature vector of 270 (= 256 ? 14).

Further, the eight generated feature vectors (1 from the raw

EEG signal; 7 from the wavelet bands) were again merged

Fig. 3 Proposed architecture of

the GHPat-based Alzheimer’s

disease classification model

**AD, Alzheimer’s disease; c,

channel-wise result; F, feature;

IMV, iterative majority voting;

INCA, iterative neighborhood

component analysis; kNN,

k-nearest neighbors; L, level; v,

voted result.
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to obtain a final feature vector of length 2160 (= 270 9 8).

The steps are detailed below.

Step 1: Apply MDWT to the input raw EEG signal.

low1; high1
� �

¼ wðsignalÞ ð16Þ

lowkþ1; highkþ1
� �

¼ w lowk
� �

; k 2 1,2; . . .; 6f g ð17Þ

where low represents low pass filter coefficients; high, high

pass filter coefficients; and wð:Þ, discrete wavelet transform

function.

Step 2: Generate features from low pass filter bands and

raw EEG signal.

feat1 ¼ x f signalð Þ; q signalð Þð Þ ð18Þ

feathþ1 ¼ x f lowh
� �

; q lowh
� �� �

; h 2 f1,2; . . .; 7g ð19Þ

where feat represents feature vector of length 270

(= 256 ? 14); fð:Þ, GHPat feature extraction function;

qð:Þ, defines statistical feature extraction function; and

xð:Þ, concatenation function.

Step 3: Merge all eight generated feature vectors into

one final feature vector.

final ¼ x feat1; feat2; . . .; feat8
� �

ð20Þ

where final represents the final feature vector of length

(= 270 9 8).

Feature selection

To select the most discriminative features from 2160

generated in the feature extraction phase, we used INCA

(Tuncer et al. 2020), a parametric feature selector with a

range of iteration is 50 to 550, i.e. 501 (= 550–50 ? 1)

features in each selected feature vector; and loss value

calculator, kNN classifier.

Step 4: Calculate sorted/qualified indexes of the final

feature vector using neighborhood component analysis.

index ¼ p final; yð Þ ð21Þ

where index represents the sorted indexes; pð:Þ, the

neighborhood component analysis feature selection func-

tion; and y, the actual output.

Step 5: Apply iterative feature vector selection.

selh d; gð Þ ¼ final d; index gð Þð Þ; d 2 1; 2; . . .; nosf g;
g 2 50; 51; . . .; 550f g; h 2 1; 2; . . .; 501f g

ð22Þ

where sel represents the selected feature vector; and nos,

the number of observations.

Step 6: Calculate the loss/misclassification rates of the

selected feature vectors using the kNN classifier.

mcr hð Þ ¼ knn selh
� �

ð23Þ

where mcr represents the misclassification rate.

Step 7: Select the best-selected feature vector with the

minimum misclassification/loss rate.

Table 2 Details of GHPat model architecture

Method Parameters Input Output

MDWT Number of levels: 7; filter: symlet 4 1D signal 7 low pass filter bands

GHPat Patterns: 7 subgraphs of the GH graph; kernel: signum; pattern selection:

differences of means-based fitness function; length of the feature: 256

1D signal 256 features

Statistical

feature

extractor

14 statistical moments 1D signal 14 features

Multilevel

feature

extraction

MDWT ? GHPat ? statistical feature extractor 1D signal and 7

wavelet bands

8 feature vectors, each of

length 270

Feature

merging

Concatenation function 1D signal Final feature vector of length

2160

INCA Loop range: 50–550; loss function calculator: kNN;

neighborhood component analysis: default setting, number of loops being

half the number of observations

Feature vector Most discriminative

n features selected for each

channel

kNN k:10; distance: Manhattan; voting: squared inverse; validation: LOSO CV Selected feature

vectors

Channel-wise results (20

results)

IMV Loop range: 3–20; sorting criteria: accuracy; majority function: mode 20 channel-wise

results

18 voted results

Greedy

algorithm

Select the most accurate result 20 channel-wise

and 18 voted

results

1 result with the maximum

accuracy

Cognitive Neurodynamics           (2025) 19:71 Page 9 of 19    71 

123



idx ¼ minðlossÞ ð24Þ

select ¼ selidx ð25Þ

where idx represents the index of the minimum loss value;

and select, the selected feature vector.

Classification

We deployed a distance-based kNN classifier (Peterson

2009) with LOSO CV to generate channel-wise results. In

contrast to random splitting of training/validation datasets,

LOSO CV accounts for patient-based data segregation and

arguably yields more reliable results. Here, we used

weighted kNN with the following parameter settings: k, 10;

distance, L1-norm (Manhattan distance); voting scheme,

squared inverse.

Step 8: Generate the channel-wise results using the kNN

classifier.

result ¼ knn selectð Þ ð26Þ

As each EEG record contained 20 channels, steps 1 to 8

were run 20 times to obtain 20 channel-wise results.

Step 9: Repeat steps 1–8 until a total number of channels

is reached.

Post-processing

We used IMV (Dogan et al. 2021), a parametric informa-

tion fusion algorithm, to generate additional voted results.

Within the IMV framework, we iterated from 3 to 20 to

generate 18 (= 20–3 ? 1) voted results using the mode

function. Merging these with the 20 kNN-classified chan-

nel-wise results, we obtained a predicted label vector

comprising 38 (= 20 ? 18) elements. Finally, the greedy

Table 3 Channel-wise results

obtained using the GHPat-based

AD detection model

No Name Accuracy (%) Geometric mean (%) No Name Accuracy (%) Geometric mean (%)

1 Fp1 72.09 71.25 11 F7 74.42 72.58

2 Fp2 69.65 69.19 12 F8 73.11 72.23

3 F3 74.73 73.24 13 T3 75.81 74.34

4 F4 74.10 72.96 14 T4 69.84 69

5 C3 78.10 76.44 15 T5 74.06 73.19

6 C4 64.65 63.29 16 T6 71.26 70.82

7 P3 77.50 76.36 17 A1 74.86 73.93

8 P4 78.15 77.46 18 A2 69.96 69.70

9 O1 76.65 75.36 19 Fz 71.24 70.71

10 O2 74.86 74.06 20 Cz 67.33 66.43

Table 4 Voted results (%) obtained using the GHPat-based AD

detection model

n Accuracy Geometric mean n Accuracy Geometric mean

3 82.67 81.30 12 87.72 86.49

4 83.67 83.63 13 86.67 84.71

5 85.07 83.43 14 87.72 86.54

6 86.04 85.70 15 87.20 85.25

7 86.31 84.59 16 88.17 86.96

8 87.57 86.85 17 87.22 85.29

9 86.19 84.11 18 88.13 86.82

10 87.34 86.32 19 87.31 85.28

11 86.57 84.71 20 87.71 86.13

**n, number of the top channels used in the iterative majority voting

Fig. 4 Confusion matrix of the developed model. **1: Alzheimer’s

disease; 2: Control

Table 5 Overall best model

performance metric values
Metric Value (%)

Accuracy 88.17

Precision 91.02

Recall 80.43

Geometric mean 86.96

F1 Score 85.40

Cohen’s Kappa 75.52

Area under curve 87.22

   71 Page 10 of 19 Cognitive Neurodynamics           (2025) 19:71 

123



algorithm was used to identify the most accurate result.

The post-processing (information fusion) steps are detailed

below.

Step 10: Create voted vectors using the IMV algorithm.

vote ¼ imv resultð Þ ð27Þ

where vote represents voted results; and (imv), IMV

function.

Step 11: Calculate classification accuracies of the single

channeled results and voted results.

cacz ¼ u resultz; yð Þ; z 2 f1,2; . . .; 20g ð28Þ

caczþr ¼ u voter; yð Þ; r 2 f1,2; . . .; 18g ð29Þ

where cac represents the calculated classification accura-

cies of the 20 kNN-classified and IMV-voted results.

Step 12: Choose the overall most accurate result for the

model.

ind ¼ maxðaccÞ ð30Þ

ultimate ¼ resultind; ind� 20

voteind�20; ind[ 20

�
ð31Þ

where ind represents the index of maximum accuracy. The

automatically run greedy algorithm helped transformed our

model into a fully self-organized model.

Experimental results

Setup

The proposed architecture comprising the MDWT, GHPat,

statistical feature extractor, INCA, kNN, IMV, and greedy

algorithm (Table 2) is computationally lightweight, obvi-

ating the need for intensive hyperparameter tuning. We

implemented the model on a CPU computer with a 3.6

GHz processor, 64 GB memory, and Windows 11 operat-

ing system, using MATLAB version-2023a programming

environment and custom m files. The utilized functions

were stored as m files to implement the recommended

model. As the standard MATLAB classification learner

toolbox did not possess LOSO CV functionality, we coded

the kNN classifier ourselves.

Results

We used two performance evaluation metrics, classification

accuracy and geometric mean, which are calculated as

shown below.

cac ¼ TPþ TN

TPþ TN þ FN þ FP
ð32Þ

gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TPþ FN
� TN

TN þ FP

r
ð33Þ

where cac represents calculated accuracy; gm, geometric

mean; and TP, TN, FN, and FP, the numbers of true pos-

itives, true negatives, false negatives, and false positives,

respectively.

Channel-wise results

Using LOSO CV, the most and least accurate kNN-clas-

sified channel-wise results were observed in Channel 8 (P4)

and Channel 6 (C4), respectively (Table 3).

Information fusion results

With information fusion post-processing, the overall best

model results of 88.17% accuracy and 86.96% geometric

mean were observed at the 14th iteration (majority voted

Fig. 5 ROC curve for the overall best model

Fig. 6 Lengths of selected feature vectors in various individual EEG

channels

Cognitive Neurodynamics           (2025) 19:71 Page 11 of 19    71 

123



using the top 16 channel-wise results) (Table 4), which sur-

passed by large 10.02 and 9.50% margins the corresponding

best channel-wise accuracy and geometric mean results

(Table 3), respectively. The overall best model performance

is depicted as a confusion matrix in Fig. 4, which yields

precision and recall values of 91.02 and 80.43%, respectively.

Figure 4 shows the confusion matrix of the model with

the highest classification performance. The performance

metric values and ROC curve calculated using this matrix

are given in Table 5 and Fig. 5, respectively.

Discussions

Our feature engineering architecture encompasses four key

stages: (1) multilevel hybrid feature extraction, (2) feature

selection, (3) classification, and (4) post-processing. In

Stage 1, 2160 features were extracted from each of the 20

EEG channels. From these, INCA generated selected fea-

ture vectors with varying optimal lengths (in the iteration

range of 50–550). In our experiments on the study dataset,

the longest and shortest selected feature vectors were in

Fig. 7 Model accuracy obtained

and the corresponding

computed cortex maps showing

the numbers and placement sites

of scalp EEG electrodes (pink

circles) that contributed signal

inputs to the accuracy

evaluations. The cortex maps

are shown from left to right, and

top to bottom, in ascending

order of increasing numbers of

active contributing scalp EEG

electrode inputs. The highest

post-processed accuracy result

of 88.17% was obtained with 16

scalp electrodes, as depicted on

the right of the last row
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Channels F8 (length 549) and F3 (length 249), respectively

(Fig. 6).

Upon application of information fusion post-processing,

classification accuracy improved substantially via a self-

organized selection of the best overall result constituted

from the top 16 IMV-selected channel-wise results to the

exclusion of the T4, Fp2, Cz, and C4 channels. Moreover,

we generated cortex maps to facilitate visual correlation of

the overall model accuracies with the EEG channels that

had contributed EEG signal inputs to the performance

evaluations (Fig. 7). Interestingly, in the cortex maps

involving smaller numbers of the top contributing EEG

channels, the bilateral parietal leads, P3 and P4, appear to

predominate (Fig. 7, top row). While the underlying

pathological basis of this observation remains to be eluci-

dated, the cortex maps offer an element of explainability to

the model results.

To evaluate the relative contributions of various brain

regions to model performance, we grouped the channel-

wise results according to brain regions and computed the

average classification accuracies for each region (Fig. 8).

The highest and lowest contributors to model accuracy

were EEG channels placed in the parietal (average

classification accuracy 77.83%) and central (average clas-

sification accuracy 70.03%) brain regions, respectively.

Neurological discussion of the findings

Our model results suggested the parietal lobe as the most

affected region in AD, providing interesting insights into

clinicopathological correlations. The neocortex, entorhinal

cortex, and hippocampus within the temporal lobe are

traditionally considered the pathophysiological starting

points for structural and functional perturbations in AD. In

contrast, using metabolic imaging techniques such as PET,

SPECT, and functional MRI, the pathophysiology is more

likely to be originating from the temporoparietal junction,

medial parietal region, and posterior association areas,

whereas the medial temporal region appears to be less

affected (Jacobs et al. 2012). In our study, we observed that

the most affected channels were P4 and P3 (Table 3,

Fig. 7), which is consistent with metabolic imaging

observations (Jacobs et al. 2012). Another finding from our

study is that the most affected channels were P4, P3, C3,

T3, T5, O1, and O2 (Table 3). The proximity of these

channels is in line with the known behavior of AD

pathology spreading to neighboring (Braak and Braak

1996; Thal et al. 2002). Some studies have reported dif-

ferential impacts on the right and left hemispheres in AD

patients, while others have found no asymmetry between

the hemispheres (Jacobs et al. 2012; Foundas et al. 1997).

In our study, we did not observe any hemispheric domi-

nance (Table 3). We observed the temporal, parietal, and

occipital areas to exhibit more pronounced effects com-

pared to the frontal regions (Table 3, Fig. 7), which is

consistent with results obtained from metabolic imaging

(Foster et al. 1984). In light of our findings, analysis of

EEG data using appropriate methods holds promise not

only for diagnostic screening of AD but also potentially for

staging the severity of AD.

Ablation studies

We performed ablation studies to focus on individual

model elements on a simplified base model. To enhance the

sensitivity of the analysis, we evaluated the performance of

the best-performing lead, P4 (Table 3), using a tenfold CV

(which is less rigorous and more forgiving than the LOSO

CV used in our primary analysis) with a kNN classifier

across all cases. The ablation study cases are listed below.

Case 1: Feature extraction using only GHPat.

Case 2: Feature extraction using only statistical

moments.

Case 3: Feature extraction using both GHPat and sta-

tistical moments.

Case 4: Feature extraction using standard LBP method.

Fig. 8 Average classification accuracies obtained for various brain

regions using our proposed model. **C, central; F, frontal; O,

occipital; P, parietal; T, temporal

Fig. 9 Single-channel P4 classification accuracies obtained for var-

ious cases with tenfold cross-validation and kNN classifier
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Table 6 Comparison of the GHPat-based model with recently published machine learning models

Authors Dataset Method Classification Validation Results (%)

Rodrigues et al.

(2021)

4 classes (11 HC, 8

MCI, 11 MAD, 8

AD)

DWT, cepstral and lacstral analysis,

feature normalization, and artificial

neural network

HC vs. MCI vs. MAD vs.

AD

LOO CV Acc 95.55

Sen 90.83

Spe 97.73

AUC 94.7

Araújo et al.

(2022)

3 classes (11 HC, 8

MCI, 8 AD)

Wavelet packet decomposition,

entropy-based non-linear analysis,

F-score selection, and SVM

HC vs. MCI vs. AD LOO CV Acc 56.8

Ruiz-Gómez

et al. (2018)

3 classes (37 AD, 37

MCI, 37 HC)

MLP HC vs. AD ? MCI LOSO CV Sen 82.35

Oltu et al.

(2021)

3 classes (16 MCI, 8

AD, 11 HC)

Bagged Trees MCI vs. AD vs. HC fivefold CV Acc 96.50

Sen 96.21

Spe 97.96

Fiscon et al.

(2014)

3 classes (100

participants AD,

MCI, CT)

SVM, J48 and DMB AD vs. CT ? MCI vs.

CT ? AD vs. MCI

86-fold CV Acc 90.00

Spe 87.00

Fouladi et al.

(2022)

3 classes (63 AD, 56

MCI, 61 HC)

Modified CNN, Conv-AE AD vs. MCI vs. HC fivefold CV Acc 92.00

Ieracitano et al.

(2020)

3 classes, 189

participants (63

AD, 63 MCI, 63

HC)

MLP, SVM, AE, LR AD vs. HC ? AD vs.

MCI ? MCI vs.

HC ? AD vs. MCI vs.

HC

tenfold CV Acc 96.95

Kachare et al.

(2024)

2 classes (12 AD, 11

HC)

Lightweight CNN HC vs. AD 60:20:20 Acc: 98.50

Sen: 100.0

Spe: 97.55

Puri et al. (2024) 2 classes (12 AD, 11

HC)

Low-complexity CNN HC vs. AD 70:10:20 Acc: 99.24

Sen: 100.0

Spe: 98.18

Sharma and

Meena (2025)

2 classes (80 AD, 12

HC)

Graph wavelet transform, statistical

features

HC vs. AD 80:20 Acc: 99.75

Stefanou et al.

(2025)

3 classes (36 AD, 23

FD, 29 HC)

CNN AD ? FD vs HC LNSO Acc: 80.69

kumar Ravikanti

D, Saravanan

S, (2023)

3 classes (86 AD/

MCI, 23 HC)

Wild Geese Migration Optimization

Algorithm, CNN

AD ? MCI vs HC 75:25 Acc: 96.18

Sen: 96.33

F1: 96.17

Devi and Latha

(2025)

3 classes (13 AD, 7

MCI, 15 HC)

Gazelle Optimization Algorithm, CNN,

Improved Tuneable Q Wavelet

Transform

Unspecified Unspecified Acc: 97.25

Spe: 94.65

Puri et al.

(2025a)

2 classes (12 AD, 11

HC)

ReptileSearch Algorithm and Snake

Optimizer

AD vs. HC Unspecified Acc: 99.22

Sen: 99.68

Spe: 98.23

Joshi et al.

(2025)

3 classes (59 AD, 7

MCI, 102 HC)

Multilayer perceptron, bidirectional

LSTM

MCI vs. AD vs. HC fivefold CV Acc: 97.27

Puri et al.

(2025b)

3 classes (59 AD, 7

MCI, 102 HC)

Higuchi’s fractal dimension, Hjorth

parameters, DWT

AD vs. MCI vs. HC tenfold CV Acc: 98.65

Acharya et al.

(2025)

3 classes (36 AD, 23

FD, 29 HC)

CNN HC vs. FD vs. AD 80:20 Acc: 95.70

Bedoin et al.

(xxxx)

2 classes (46 AD, 32

SCI)

Phase-lag index, dynamic time warping AD vs. SCI tenfold CV AUC: 98.70

Chen et al.

(2025)

3 classes (100 AD,

MCI, HC)

Integrated multimodal learning AD vs. HC 80:20 Acc: 90.00

F1: 88.57

Lee et al. (2025) 3 classes (30 AD, 30

MCI, 30 HC)

Statistical analysis AD vs. MCI vs. HC Unspecified Acc: 92.00
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Case 5: Full feature engineering model.

With this analysis, our model (Case 5) attained the best

classification accuracy of 98.15% versus other cases

(Fig. 9). Of note, statistical features attained the worst

classification accuracy of 63.22%, underperforming LBP

(88.73% accuracy); and hardly improving the performance

of combined GHPat-based textural feature and statistical

feature extraction (91.69% accuracy) compared with

GHPat feature extraction alone (91.61% accuracy).

Comparative results

To compare our proposed model with published feature

engineering models for EEG-based AD detection, we per-

formed a non-systematic review. To facilitate comparison,

we also appended our results analyzed using a tenfold CV,

the more widely reported performance metric used in the

literature (Table 6). Of note, the current study used the

largest AD EEG dataset. Based on k-fold CV, our model

outperformed most of the reviewed studies for binary

classification into AD and non-AD classes. Dogan et al.

(Dogan et al. 2022) obtained a perfect tenfold CV classi-

fication accuracy in their study, but the number of subjects

used in the study was comparatively low.

Limitations

Limitations of our study:

1. The dataset used in this study is specific to a certain

population, which may limit the model’s generaliz-

ability. Testing the model on larger and more diverse

EEG datasets, including different stages of Alzhei-

mer’s disease and various demographic groups, could

improve its robustness. To achieve high classification

performances, the most of the researchers have used

deep learning architectures and these architectures are

computationally expensive. Therefore, lightweight and

accurate models should be presented for EEG signal

classification.

2. The Goldner-Harary graph subpattern-based feature

extraction method introduces a new approach to EEG

signal processing. Future research could explore its

applicability to other neurological disorders and further

investigate its interpretability in clinical settings.

Highlights

Highlights of our study include:

1. We trained our model on a large EEG AD dataset

comprising data from 247 subjects, which supports the

generalizability of our results.

2. We introduced a novel feature extraction function,

GHPat, which fused feedforward networks with hand-

crafted graph-based feature extraction.

3. A self-organized architecture was developed for AD

screening that attained 88.17% and 99.85% classifica-

tion accuracies with LOSO and tenfold CV strategies,

respectively.

4. Among channel-wise results, the P4 channel in the

parietal region yielded the most accurate results.

Analysis of model performance by brain regions also

showed the parietal lobe to exert the most impact.

These observations affirm the differential importance

of various brain regions in AD pathogenesis and

diagnosis.

5. Computed cortex maps enable visualization of brain

regions affected by AD, and provide explainability to

our results.

Table 6 (continued)

Authors Dataset Method Classification Validation Results (%)

Our model 2 classes (113 non-

AD, 134 AD)

Multilevel DWT, GH graph, INCA,

kNN, and IMV

Non-AD vs. AD tenfold CV

LOSO CV

tenfold CV

Acc 99.85

Gm 99.84

LOSO CV

Acc 88.17

Gm 86.96

**Acc: accuracy; AD: Alzheimer’s disease; FD: Frontotemporal Dementia; AUC: area-under-curve; CV: cross-validation; DWT: discrete

wavelet transform; GH: Goldner-Harary; Gm: geometric mean; HC: healthy control; INCA: iterative neighborhood component analysis; IMV:

iterative majority voting; kNN: k-nearest neighbors; LOO: leave-one-out; LOSO: leave-one-subject-out; MCI: mild cognitive impairment; MAD:

mild Alzheimer’s disease; Sen, sensitivity; Spe, specificity; SVM: support vector machine; MLP: multi-layer perceptron; J48, decision tree;

DMB: data mining big; Conv-AE: convolutional autoencoder; AE: autoencoder; LR: Logistic Regression. LSTM: long short-term memory,

LNSO: Leave-N-subjects-out, SCI: Subjective Cognitive Impairment
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6. Comparative evaluations confirm the excellent classi-

fication performance of our GHPat over recently

published machine learning models for AD detection.

In future works, we plan to expand our research by

collecting a larger EEG signal dataset, with more partici-

pants in multiple categories. Additionally, we aim to

develop next-generation quantum-inspired graph patterns

using more complex graphs. Furthermore, we intend to

explore the potential of deep learning models based on

quantum patterns, such as convolutional neural networks,

to further refine our classification capabilities.

Conclusions

In this study, we present a novel feature engineering model

that combined quantum-inspired GHPat feature extraction

with a self-organized architecture for the detection of AD

using EEG signals. Our model attained high classification

accuracies of 88.17% and 99.85% with LOSO and tenfold

CV strategies, respectively, which outperformed the liter-

ature, including the widely adopted 1D LBP feature

extractor. Accuracy results stratified by channel placement

and brain regions suggest P4 and the parietal region to be

the most impactful and these channel-based results pro-

vided valuable findings into clinicopathological correla-

tions. This work contributes to the burgeoning knowledge

in AD detection utilizing EEG signals. Our proposed

GHPat model is also computationally lightweight and

accurate. Therefore, the recommended GHPat feature

engineering is ready for using physical enviroment for

EEG signal classification.
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Silva JG, Betancourt-Zapata W, Maya R, Fandiño-Vergara LA,

Valderrama M, Silva-Fajardo I, Hernández-Zambrano SM

(2024) Effect of music therapy on short-term psychological

and physiological outcomes in mechanically ventilated patients:

A randomized clinical pilot study. J Intensive Med 4:515

Fan F, Song H, Jiang J, He H, Sun D, Zhipeng X, Peng S, Zhang R, Li

T, Cao J, Juan X, Peng X, Lei M, He C, Zhang J (2024)

Development and validation of a multimodal deep learning

framework for vascular cognitive impairment diagnosis.

iScience 27(10):110945. https://doi.org/10.1016/j.isci.2024.

110945

Fiscon G, Weitschek E, Felici G, Bertolazzi P, De Salvo S, Bramanti

P, De Cola MC (2014) Alzheimer’s disease patients classifica-

tion through EEG signals processing. In: 2014 IEEE Symposium

on Computational Intelligence and Data Mining (CIDM). IEEE,

pp 105–112

Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di

Chiro G (1984) Cortical abnormalities in Alzheimer’s disease.

Annal Neurol 16(6):649–654. https://doi.org/10.1002/ana.

410160605

Fouladi S, Safaei AA, Mammone N, Ghaderi F, Ebadi MJ (2022)

Efficient deep neural networks for classification of Alzheimer’s

disease and mild cognitive impairment from scalp EEG record-

ings. Cogn Comput 14(4):1247–1268

Foundas AL, Leonard CM, Mahoney SM, Agee OF, Heilman KM

(1997) Atrophy of the hippocampus, parietal cortex, and insula

in Alzheimer’s disease: a volumetric magnetic resonance

imaging study. Cogn Behav Neurol 10(2):81–89

Hakemi S, Houshmand M, KheirKhah E, Hosseini SA (2024) A

review of recent advances in quantum-inspired metaheuristics.

Evol Intel 17(2):627–642

Hinton G (2022) The forward-forward algorithm: Some preliminary

investigations. arXiv preprint arXiv:221213345

Ieracitano C, Mammone N, Hussain A, Morabito FC (2020) A novel

multi-modal machine learning based approach for automatic

classification of EEG recordings in dementia. Neural Netw

123:176–190

Jacobs HIL, Van Boxtel MPJ, Jolles J, Verhey FRJ, Uylings HBM

(2012) Parietal cortex matters in Alzheimer’s disease: an

overview of structural, functional and metabolic findings.

Neurosci Biobehav Rev 36(1):297–309

Joshi VM, Dandavate PP, Rashmi R, Shinde GR, Kulkarni DD,

Mirajkar R (2025) DEMNET NeuroDeep: Alzheimer detection

using electroencephalogram and deep learning. Bull Electr Eng

Inf 14(1):457–465

Kachare P, Puri D, Sangle SB, Al-Shourbaji I, Jabbari A, Kirner R,

Alameen A, Migdady H, Abualigah L (2024) LCADNet: a novel

light CNN architecture for EEG-based Alzheimer disease

detection. Phys Eng Sci Med 47(3):1037–1050
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