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Integration of RNA-seq and
ATAC-seq identifies
muscle-regulated hub genes in
cattle
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Chengcheng Liang1, Sayed Haidar Abbas Raza1, Yueting Pan1,

Ke Zhang1 and Linsen Zan1,2*

1College of Animal Science and Technology, Northwest A&F University, Xianyang, China, 2National

Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China

As the main product of livestock, muscle itself plays an irreplaceable role in

maintaining animal body movement and regulating metabolism. Therefore, it

is of great significance to explore its growth, development and regeneration

to improve the meat yield and quality of livestock. In this study, we

attempted to use RNA-seq and ATAC-seq techniques to identify di�erentially

expressed genes (DEGs) specifically expressed in bovine skeletal muscle

as potential candidates for studying the regulatory mechanisms of muscle

development. Microarray data from 8 tissue samples were selected from

the GEO database for analysis. First, we obtained gene modules related

to each tissue through WGCNA analysis. Through Gene Ontology (GO)

functional annotation, the module of lightyellow (MElightyellow) was closely

related to muscle development, and 213 hub genes were screened as follow-

up research targets. Further, the di�erence analysis showed that, except

for PREB, all other candidate hub genes were up-regulated (muscle group

vs. other-group). ATAC-seq analysis showed that muscle-specific accessible

chromatin regions weremainly located in promoter of genes related tomuscle

structure development (GO:0061061), muscle cell development (GO:0055001)

and muscle system process (GO:0003012), which were involved in cAMP,

CGMP-PKG, MAPK, and other signaling pathways. Next, we integrated the

results of RNA-seq and ATAC-seq analysis, and 54 of the 212 candidate hub

genes were identified as key regulatory genes in skeletal muscle development.

Finally, through motif analysis, 22 of the 54 key genes were found to be

potential target genes of transcription factor MEF2C. IncludingCAPN3, ACTN2,

MB, MYOM3, SRL, CKM, ALPK3, MAP3K20, UBE2G1, NEURL2, CAND2, DOT1L,

HRC, MAMSTR, FSD2, LRRC2, LSMEM1, SLC29A2, FHL3, KLHL41, ATXN7L2,

and PDRG1. This provides a potential reference for studying the molecular

mechanism of skeletal muscle development in mammals.
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Introduction

The focus of the adjustment of the new agricultural

industrial structure is to develop high-quality and efficient stock

husbandry. Compared with pig and poultry breeding, cattle

breeding can greatly improve the utilization of straw resources

and reduce environmental pollution, so it plays an increasingly

important role in the development of animal husbandry. As

the largest tissue of cattle organisms, the growth, development

and genetic characteristics of skeletal muscle affect and even

determine the meat production performance of cattle (1). Many

factors are closely related to muscle tenderness and affect meat

product quality, such as intramuscular fat content, muscle fiber

size, and intramuscular protein content and types (2–5). The

growth and development of skeletal muscle is an extremely

complex biological process, which is co-regulated by a variety

of regulatory factors.

Transcription factors (TFs) are critical in muscle growth

and development. Members of the myogenic regulatory

factor (MRF) family are typical inducers of skeletal muscle

development, including the early myogenic regulatory factors

(MYOD,MYF5, MYF6, MRF4, et al.) and the late differentiation

marker gene (MyoG) (6). Myocyte enhancer Factor-2 (MEF2)

family (MEF2a, MEF2b, MEF2c, and MEF2d) is a kind of

key transcription factor discovered after MyoD, which controls

the expression of myogenic genes (7). The N-terminal of

MEF2 contains a highly conserved MADS-Box domain and

its adjacent MEF2 domain. The MADS-Box domain mediates

protein dimerization, while the MEF2 domain influences its

binding affinity with DNA and its interaction with cofactors (7–

9). It has been reported that MEF2s was involved in regulating

the proliferation and differentiation of myocyte mainly through

participating in Ca2+-calmodulin-dependent protein kinases

CaMK-histone deacetylases HDACs, Calconneurin, MAPK and

other signaling pathways (10, 11). In addition, with the rise of

RNA-seq technology, a large number of genes related to muscle

development have been discovered successively, but the signal

regulatory networks between genes and genes, transcription

factors and target genes, and epistasis and genes are still poorly

understood. Moreover, we focused more on finding the few

regulators that play a dominant role in the complex regulatory

network and exploring their relevant regulatory mechanisms

in vivo.

As chromatin is the carrier of genes, the activation and

silencing of genes will inevitably cause the remodeling of

chromatin structure. ATAC-seq is a newly developed technique

to study the open regions of genomic chromatin, which helps

to elucidate the regulatory mechanisms of genes (12). In

recent years, a large number of researchers began to explore

the relationship between chromatin open region and gene

expression, including domestic animals. A study found a group

of highly functionally conserved gene regulatory elements in

different tissues by comparing the genomes of three domestic

animals (Gallus Galla, Sus Scrofa, Bos Taurus) to human and

mouse genomes (13). Furthermore, by comparing chromatin

accessibility in muscle, liver and hypothalamus of Bos indicus

cattle, learned thatMEF2 is themain regulator ofmuscle-specific

open chromatin region (14). Combined with previous studies,

we intend to further explore the key regulatory genes involved in

skeletal muscle development by comparing the sequencing data

of muscle and other tissues, and explore the transcription factors

that may be regulated, which will provide some methodological

guidance and reference value for the screening and functional

research of core genes.

Materials and methods

Data acquisition

The workflow of this study was shown in Figure 1. The

data used in this study was from GSE158430 of the GEO

database (GEO Accession viewer (nih.gov) (13). GSE158430 is

a SuperSeries and has three SubSeries (GSE158412, GSE158414,

and GSE158416). GSE158412 dataset contains RNA sequencing

data from 8 different tissues (liver, lung, spleen, skeletal

muscle, subcutaneous adipose, cerebellum, brain cortex, and

hypothalamus) of cattle, pigs, and chickens, with two biological

replicates. GSE158414 dataset includes ATAT-seq data from

different tissues of cattle and pigs with two biological replicates

(except cerebellum tissue in cattle). GSE158416 was CTCFChIP-

seq in 8 different tissues of the above livestock species, which

also has two biological replicates. We only downloaded the

SRA format data of cattle in GSE158412 and GSE158414 for

subsequent analysis (see Supplementary Table 1 for details). The

SRA format was then converted to fastq format using sratools’

fastq-dump command (15).

Expression matrix pre-processing

To obtain high-quality clean reads, Trimmomatic (v0.36)

(16) and FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) were used to filter and evaluate the quality

of sequencing reads. Clean reads were mapped to cattle (Bos

taurus) reference genome from Ensembl Genome Browser 104

(http://asia.ensembl.org/index.html) using hisat2 (v2.1.0) (17).

SAMtools (v1.7) was used to convert the sam files obtained from

mapping to bam files (18). Two important values representing

gene expression were tallied: reads count was quantified with

featureCounts (v1.6.0) (19), The FPKM (fragments per kilobase

of transcript per million fragments mapped) were calculated

using StringTie (v2.1.2) (20). Further, the genes were annotated

through Ensembl Genome Browser 104 database, and protein-

coding genes (PCGs) were screened forWGCNA andDifferently

Expression analysis (21).
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FIGURE 1

The flow chart of whole analysis.

Weighted gene coexpression network
analysis

The top 75% of PCGs with the highest median absolute

deviation (MAD) were constructed the co-expression network

with the value of log2(FPKM+1) using WGCNA package

(v1.70) from Bioconductor in RStudio (v1.2) (http://www.

rstudio.org), an integrated development environment for R

(v4.0.2). Then, the weighted adjacency matrix of 16 tissue

samples was constructed by the formula of the adjacency

matrix: amn = |cor(mn)|β (amn, adjacency between m and

n; cor(mn), Pearson’s correlation between m and n; and

β, soft-power threshold) (22). Subsequently, the adjacency

matrix was transformed into a topological overlap matrix

(TOM) to quantitatively describe the similarity in nodes

by comparing the weighted correlation between two nodes

and other nodes. Next, hierarchical clustering was used to

identify modules according to the TOM matrix with the

minModuleSize 100. Similar modules (>75%) were merged

(abline= 0.25).

Identification of sample significant
modules and hub genes

Module-sample associations were estimated according to

TOM (|cor| > 0.5, P < 0.01). The same module of genes

is generally considered to have a higher topological overlap

similarity. For each expression profile, gene significance (GS,

the correlation between expression profile and each sample) and

module membership [MM, the correlation between the module

eigengene (ME) and the gene expression profile] were used

to identify the Module-sample correlation. Finally, hub genes

screened with MM > 0.8 and GS > 0.6 with weighted P-value

(P.weighted) < 0.01.

RNA di�erential expression analysis

The expression matrix of whole genes was used for further

analysis of gene expression differences among different samples

by DEseq2 in R software (23). False Discovery Rate (FDR) was
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got by adjusting the P-value. Genes with fold change > 2 and

false discovery rate (FDR) < 0.05 were set as the threshold to

be DEGs.

ATAC-seq analysis

First, FastQC was used to detect data quality. The clean

reads were obtained by removing low-quality fragments using

Fastp (v0.19.4) (24). BWA (Burrows-Wheeler Alignment)

(v0.7.17) was used to map clean reads to cattle (Bos taurus)

reference genome. Genrich (v0.6.1) was used to calling peaks for

each sample (https://github.com/jsh58/Genrich). The different

peaks were identified using DiffBind (https://bioconductor.org/

packages/release/bioc/html/DiffBind.html) (v2.16.2) with the

default parameters (25). ChIPseeeker (v1.24.0) (26) was used

to annotate the differential peaks according to the Ensembl

Genome Browser 104 (http://asia.ensembl.org/index.html) and

org.Bt.eg.db (https://bioconductor.org/packages/release/data/

annotation/html/org.Bt.eg.db.html). During the genome-wide

annotation of peaks, the genome-wide functional regions

were divided into promoter, dowstream, exon, intron and

distal intergenic regions. The closest gene to each peak can be

obtained according to the distance of each binding site to TSS,

and their specific distribution of binding sites on the genome

can be found out. This study considered the profile of peaks at

their ± 3 kb of the transcription start site (TSS) as promoter

genes or targets. The motifs were examined using the Multiple

EM for Motif Elicitation (MEME) suite (https://meme-suite.

org/meme/doc/meme-chip.html?man_type=web). Then, the

Motif database scanning algorithm TOMTOM was used to

predict transcription factors (TFs) (27). ATACseqQC (v1.12.5)

was used for quality detection and motif footprint analysis

(28). FIMO was used to scan binding locations of TFs in the

promoter regions of DEGs (upstream 2,000 bp and downstream

100 bp) (29).

Gene ontology and kyoto encyclopedia
of genes and genomes analysis

To explore the potential biological roles of module genes,

Gene Ontology (GO) functional annotation for multiple gene

lists was analyzed using clusterProfile (30). And the GO analysis

for the Single-gene list was carried out by g:Profiler (https://

biit.cs.ut.ee/gprofiler/gost) with the default parameters (31).

KEGG pathway analyses were performed using KOBAS (32).We

used a significant threshold P-value adjusted by Benjamini and

Hochberg of 0.05 for KEGG to control the false discovery rate

(FDR) and used Fisher’s Exact Test as the statistical test method.

Real-time quantitative PCR

The total RNA from bovine tissues or cells was extracted

by Trizol reagent kit (Invitrogen, Carlsbad, CA, USA) and

then PrimeScriptTM RT reagent Kit (Takara, Dalian, China)

was used to synthesize cDNA. Real-time quantitative PCR

(qRT-PCR) was used to measure the mRNA expression levels

(Supplementary Table 2) with TB Green
R©

Premix Ex TaqTM

II (Takara, Dalian, China) and CFX Connect Real-Time PCR

Detection System. The amplification procedure was as follows:

95◦C, 30 s; followed by 40 cycles (95◦C, 5 s; 60◦C, 30 s)

and stored at 4◦. Quantitative results were analyzed by the

2−11Ct method for relative expression. All samples contained

3 biological replicates and 3 technical replicates. All data are

expressed as Mean ± SD. The unpaired two-tailed Student’s t-

test was used for statistical analysis. In this study, lowercase

letters a-g were used to indicate significance (P < 0.05).

Results

Construction of co-expression network
and identification of muscle-related
modules

GSE158412 dataset contains 16 tissue samples of cattle.

Before the analysis, we first tested the credibility of biological

repetition of the samples by principal component analysis,

and the result showed that there was clustering between 2

repeats of 8 tissues (Figure 2A). All samples could be used for

analysis. After processing raw data, the gene expression matrix

for 10,034 protein-coding genes was obtained. Among them,

7,525 genes (the top 75% of the median absolute deviation)

were used to construct the weighted co-expression network.

The Pearson’s correlation coefficient (PCC) was performed

to construct the sample clustering tree (Figure 2B). Then,

WGCNA’s pickSoftThreshold function was selected to estimate

the best value of power (β). In this study, the best value of power

was estimated as 9 (β = 9) (scale-free R2 = 0.85) (Figure 2C).

The scale-free topology was performed to test the reliability

of β = 9 (Figure 2D). Furthermore, the dynamic hierarchical

tree cutting algorithm was used to detect common expression

modules, and then similar modules (minimum height was set to

0.25) were combined (Figure 2E). Finally, a total of 18 modules

were identified (Figures 2E,F). The eigengenes contained in each

module was provided in Supplementary Table 3. The correlation

between modules and samples was shown in Figure 3A. We

found that four modules were highly correlated with muscle

tissue, namely MEcyan (cor = 0.74, P = 0.001), MEmidnightblue

(cor = 0.75, P = 8E-04), MEgrey60 (cor = 0.74, P = 0.001)

and MElightyellow (cor = 0.97, P = 1E-09). The adjacency

heatmap of the relationship for each model was shown in

Figure 3B. In addition, GS and MM were highly correlated (cor
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FIGURE 2

Weighted co-expression network analysis. (A) Principal component analysis of all samples. (B) Sample clustering tree. The red line represents the

outlier elimination reference line; (C) Soft-threshold powers (β) filtering analysis. The mean connectivity (y-axis) for various soft-threshold

powers (x-axis) was showed on the left, and the mean connectivity (y-axis) of di�erent soft-thresholding power (x-axis) was showed on the

right; (D) Checking the scale-free topology when β = 9. X-axis: the log10 (network connectivity), y-axis: log10 (the corresponding frequency

distribution). The distribution approximates a straight line, which is called the approximately scale-free topology; (E) The clusting of module

eigengenes. The red line represents the reference line for similar module merging; (F) The cluster dendrogram of modules.

= 0.89, P =1.8E-178), suggesting that genes that are highly

correlated with the characteristics of muscle samples are also

the most important (central) elements of modules associated

with that sample (Figure 3C). Through roughly performing GO

annotation on eigengenes of each module, we found that ME

module with the highest correlation to muscle development,

including regulation of muscle adaptation and muscle system

process, etc. (Figure 3D). Therefore, this study finally extracted
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the MElightyellow module for further analysis. In MElightyellow,

213 out of 519 genes (∼41%) met the screening conditions

of hub genes (MM > 0.8, GS > 0.6, P.weighted < 0.01) in

Supplementary Table 4.

Screening of candidate hub genes with
di�erential expression

In this section, 10,034 protein-coding genes were analyzed

to identify muscle-specific DEGs. The result showed that a total

of 4,815 DEGs were found, including 1,697 DEGs (up-regulated)

in the muscle group and 3,118 DEGs (down-regulated) in the

other-group. The analysis profile of DEGs was visualized in

Figure 4A. The top 10 up-regulated DEGs were CKM, TNNC1,

MYOT, SLN, ACTA1, MYL1, TNNC2, MYLPF, MYH2, and

MYL2, and the top 10 down-regulated DEGs were GAD2,

CLVS2, NRXN3, CELF3, ST8SIA3, GRM5, GRIN1, SCRT1,

GRIN2A, and MYT1 (Table 1; Supplementary Table 5). GO

and KEGG results are provided in the supplied materials

(Supplementary Tables 6–9). Further analysis found that 212

candidate hub genes (no include PREB) related to muscle

development were finally screened by integration difference

analysis and WGCNA analysis (Figure 4B). GO analysis was

performed on these 212 candidate hub genes with different

changes, and the result showed that these genes were also

enriched in terms related to muscle development (Figure 4C;

Supplementary Table 10), demonstrating the feasibility of

integrating differential analysis and WGCNA to obtain

muscle-related hub genes.

The landscape of genomic chromatin
accessibility

To analyze the influence of chromatin open region on the

differential expression of the candidate hub genes, the ATAC-

seq technique was applied for further analysis. The raw data

of GSE158414 were re-analyzed to obtain the open chromatin

region of each sample. Simply, clean reads were first obtained by

removing low-quality reads and adaptors, and then mapped to

the reference genome (Bos taurus). Genrich (https://github.com/

jsh58/Genrich) is a new software for analyzing ATAC-seq. It can

remove mitochondrial reads, PCR repeats, multiple mapping

reads, and multiple biological repeats with just one command.

So, Genrich software was used to call peak in this study. The

number of peaks for each sample was counted and stored in

Supplementary Table 11. To determine whether the sequencing

fragments were the open regions of the genome, all samples

were selected for the analysis of the distribution of fragment

lengths. In all samples analyzed, the 100 bp single-nucleosome

fragments in leftmost were found, rather than single or multiple-

nucleosome fragments, which indicates that these peaks were

from open regions of the genome (Supplementary Figure 1). All

results showed the good quality of ATAC-seq. The TSS of genes

with active transcription is often open, so the signal profile

near TSS is another important factor to identify the quality

of ATAC-seq.

The correlative heatmap of tissues was shown significant

differences between muscles and other tissues (Figure 5A).

Next, through analyzing the differential accessible peaks, 8,963

different peaks were obtained (FDR < 0.05), including 4,564

muscle-affinitive peaks and 4,398 other-affinitive peaks in

muscle vs. other. MA-plot of different peaks was shown in

Figure 5B, and box-plot of binding affinity was shown in

Figure 5C. The annotation result showed that most of the peaks

were 10–100 kb away from TSS (Figure 5D). The distribution of

these binding sites tends to be at the 3 ’end of TSS, which is

consistent with the results of previous studies (33). In addition,

Figure 5E showed the peak enriched heatmap near TSS. Many

peaks enriched near the TSS (±3 kb) of genes, indicating that

transcription factors are likely to bind to these chromatin

open regions.

To further explore the functional differences between

muscle-affinitive peaks and other-affinitive peaks, we

performed gene functional region annotation, and found

that compared with other-affinitive peaks, muscle-affinitive

peaks were enriched in promoter and exon regions significantly.

Enrichment of distal intergenic was significantly reduced

(Figure 5F). Peaks located in the promoter (called promoter-

peaks) are critical to gene expression, so we extracted the

genes in the promoter region for GO and KEGG analysis.

The GO-BP analysis indicated that muscle-affinitive genes

were related to muscle structure development (GO:0061061),

muscle cell development (GO:0055001), muscle system process

(GO:0003012), and so on (Figure 6A). KEGG analysis found

muscle-affinitive genes were involved in cAMP, cGMP-PKG,

MAPK, and other related functional pathways (Figure 6B). In

addition, we found that several key TFs of muscle development

were found to be significantly enriched at these ATAC-seq

peaks (Figure 6C), suggesting muscle development may be

related to the binding of transcription factors to open regions

of chromatin.

Integration analysis of ATAC-seq and
RNA-seq

To further determine the relationship between gene

expression and open chromatin regions, we overlapped the

analysis results from RNA-seq and ATAC-seq, respectively.

Fifty-four common muscle-regulated genes were found

(Figure 7A). The expression heatmap of these muscle-regulated

genes was shown in Figure 7B, and we found these genes have

a significant difference between muscle and other tissues. The

top 20 genes with high differential expression were shown in
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FIGURE 3

The relation analysis between modules and samples. (A) Heatmap of the module-sample correlation. Significance (P-value) was marked in

parentheses. The color bar represented the magnitude of the correlation. Red: positive-correlation, blue: negative-correlation; (B) The

adjacency heatmap of eigengene, including the module clustering tree (top) and the corresponding module clustering heatmap (below). The

color bar represented the magnitude of the correlation. Red: positive-correlation, blue: negative-correlation; (C) The scatterplot of GS and MM

in MElightyellow module; (D) The top 5 significant GO-BP analysis form each module eigengenes.
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FIGURE 4

The analysis of DEGs by RNA-seq. (A) The volcano-plot of DEGs; (B) The overlap-plot of DEGs and candidate hub genes in MElightyellow; (C)

The top 6 GO terms with the high significance of 212 candidate hub genes.

Figure 7C, including MYOT, MYOM3, Mymyon (MB), Kelch

Like Family Member 41 (KLHL41), Actinin Alpha 2 (ACTN2),

and CAPN3 and other muscle-specific expression genes. Again,

TF binding analysis was performed on the open chromatin

regions corresponding to these 54 genes. The promoter-peaks of

44 of the 54 genes (∼81.48%) were enriched by MEF2C which

was the only transcription factor discovered (Figure 7D). The

motif footprint analysis of MEF2C was showed in Figure 7E.

In addition, we extracted the promoter regions of the 54 genes

(upstream 2,000 bp and downstream 100 bp) using bedtools,

and analyzed whether the MEF2C promoter is binding in these

genes. Twenty-two of 54 hub genes (50%) were found to have

MEF2C binding sites (P < 0.0001) (Figure 7F). By visually

selecting the interaction between these genes and the target

genes in Melightylow with the value of weight > 0.3, MB, HRC,

KLHL41, SRL, and ALPK3 was found that occupy important

positions in the regulatory network (Figure 7G). They are

muscle-specific and muscle-regulated genes, suggesting that the

combination of ATAC-seq and RNA-seq make our screening

more accurate.

Validate the expression of hub genes

To further confirm our results, 4 high-expression hub

genes in muscle, including CAPN3 and KLHL41 targeted by

MEF2C, and dual specificity tyrosine phosphorylation regulated

kinase 1B (DYRK1B) and MLX interacting protein (MLXIP),

were randomly selected for qRT-PCR. The results showed

that the expression of these four genes in muscle tissue was

significantly higher than that in other tissues, which was

highly consistent with the results of RNA-seq (Figure 8A). In

addition, we quantified the expression of these four genes

in the process of myocyte differentiation, and found that

their expression levels increased with the increase of the

degree of differentiation of muscle cells, suggesting these

genes might also play a crucial role in the differentiation

(Figure 8B). Therefore, the screening of muscle-affinitive hub

genes through ATAC-seq and RNA-seq can be further studied in

the future on the molecular mechanism of muscle proliferation

and differentiation.
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TABLE 1 Top 10 up- and down-regulated expressed genes.

Genes Description log2FoldChange Pvalue Padj

CKM Creatine kinase, M-type 13.45451834 1.41E-209 5.72E-206

TNNC1 Troponin C1 13.45401812 3.51E-128 5.70E-125

MYOT Myotilin 13.44382896 1.09E-205 2.53E-202

SLN Sarcolipin 13.39986882 3.53E-86 2.39E-83

ACTA1 Actin alpha 1 13.37281374 1.54E-206 5.00E-203

MYL1 Myosin light chain 1 13.32452561 0 0

TNNC2 Troponin C2 13.31786432 3.10E-134 5.60E-131

MYLPF Myosin light chain, phosphorylatable 13.31718808 3.82E-80 2.30E-77

MYH2 Myosin heavy chain 2 13.3004601 5.69E-97 4.40E-94

MYL2 Myosin light chain 2 13.28565102 2.31E-110 2.51E-107

GAD2 Glutamate decarboxylase 2 −24.51019661 3.21E-15 2.56E-13

CLVS2 Clavesin 2 −24.45531689 3.28E-15 2.60E-13

NRXN3 Neurexin 3 −24.05692778 3.25E-14 2.34E-12

CELF3 Neurexin 3 −23.93374376 2.20E-14 1.61E-12

ST8SIA3 CUGBP Elav-like family member 3 −23.74276415 2.62E-15 2.11E-13

GRM5 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3 −23.70823989 1.38E-11 7.20E-10

GRIN1 Glutamate metabotropic receptor 5 −23.6503701 1.11E-10 5.15E-09

SCRT1 Glutamate ionotropic receptor NMDA type subunit 1 −23.5113897 4.87E-12 2.75E-10

GRIN2A Scratch family transcriptional repressor 1 −23.46027351 5.45E-12 3.06E-10

MYT1 Glutamate ionotropic receptor NMDA type subunit 2A −23.25118573 3.92E-15 3.09E-13

Discussion

Different from other tissues, the development of muscle, the

main product of beef cattle, directly affects the economic value

of beef. To improve beef yield from a genetic perspective, many

novel techniques have been applied to explore the mechanism

of muscle development in cattle. Among them, bulk RNA-seq

has been widely promoted as a routine bulk screening technique

for muscle-related genes (34, 35). However, the differentially

expressed genes screened by it are often in thousands, and

it is still difficult to obtain the core regulatory genes from

them. In contrast, weighted gene co-expression network analysis

(WGCNA) could be used to characterize correlation patterns

between genes and samples (21). Candidate hub genes were

identified according to the endogeneity of gene-sets and the

association between gene-sets and samples (36). Compared to

focusing only on differentially expressed genes, WGCNA is

able to use genome-wide information to obtain our gene sets

of interest, which not only narrows the screening scope but

also makes the analysis more accurate. This technique has

been applied extensively to plants, humans, mice, poultry, and

livestock (36–41).

In this study, we analyzed the association of genes with

different tissues using WGCNA, and obtained 4 module gene-

sets with high positive correlation with muscle tissue. Combined

with the results of GO functional annotation, we finally targeted

MElightyellow as the study target, from which we screened 213

candidate hub genes (GS > 0.6, MM > 0.8) involved in the

positive regulation of muscle development. Compared with

other tissues, 212 of 213 (99.53%) candidate hub genes were

up-regulated expression in muscle [log2(FC) > 1, FDR < 0.05],

which not only verified the robustness of WGCNA analysis, but

also provided a reliable collection for the subsequent study.

In eukaryotes, DNA and histones are tightly bound

and stored in nucleosomes (chromatin), chromatin structure,

nucleosome location and histone modifications affect DNA

transcription. Chromatin accessibility is closely related to the

binding of regulatory elements or transcription factors, which

are particularly important for gene activation and repression.

ATAC-seq, an innovative technique for detecting chromatin

accessibility, has been increasingly applied to determine the

mechanisms of gene expression regulation with RNA-seq (42).

In this study, we found that the chromatin open regions of

muscle tissue were significantly different from other tissues. The

results of functional annotation revealed that muscle-affinitive

peaks were more enriched in exons and promoter regions

compared to other tissues, suggesting that these chromatin-

open regions are associated with gene expression regulation.

In addition, we performed GO and KEGG analysis of DEGs

around promoter-peaks and found that muscle-affinitive peaks

were enriched on the hub genes specifically expressed by muscle

as expected. It was involved in the regulation of cAMP, cGMP-

PKG, and MAPK signaling pathways. Similar results were

obtained in early studies on mouse tissue-specific genes (43).
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FIGURE 5

The landscape of genomic chromatin accessibility. (A) The correlative heatmap of tissues; (B) MA plot of di�erence peaks analysis; (C) The

box-plot of binding a�nity; (D) The location distribution of di�erent peaks distance TSS; (E) The heatmap of peaks around TSS; (F) The

distribution of function regions of di�erent peaks.

Among them, MAPK signaling pathway plays a crucial role in

in the formation, regeneration, movement and injury repair of

skeletal muscle (44–46).

Combined with ATAC-seq, 54 genes with high expression

in muscle were identified as muscle-regulated hub genes. To

further analyze the regulatory mechanism of these 54 hub genes
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FIGURE 6

Genomic enrichment analysis. (A) GO-BP analysis of di�erent peaks; (B) Enrichment analysis of KEGG pathway; (C) The top 5 predicted binding

known motif in the open chromatin region.

in the development of skeletal muscle, we conducted motif

analysis of the chromatin open region fragments. Twenty-two

of the 54 genes were predicted to be regulated by MEF2C. This

is consistent with earlier tissue analysis in mice (47). MEF2C

is a member of the myocyte enhancer factor 2 family, which

itself lacks myogenic activity and was initially considered to

regulate muscle development by activating the transcriptional

activity of bHLH myogen proteins (such as MyoD and

MyoG) (48–50). Herein, we analyzed the possible MEF2C

involved in downstream target genes, we broadly classified

them into 3 major categories: 1. The muscle-specific genes,

including CAPN3, ACTN2, MB, KLHL41, Cullin associated and

neddylation dissociated 2 (CAND2), Myomesin 3 (MYOM3)

and sarcalumenin (SRL); 2. The genes of kinases and epigenetic

enzymes, including creatine kinase, M-Type (CKM), alpha

kinase 3 (ALPK3), mitogen-activated protein kinase kinase

kinase 20 (MAP3K20), ubiquitin conjugating enzyme E2 G1

(UBE2G1), Neuralized E3 Ubiquitin protein ligase 2 (NEURL2)

and DOT1 like Histone lysine methyltransferase (DOT1L); 3.

other genes with transcriptional regulation functions, including

Histidine rich calcium binding protein (HRC), MEF2 activating

motif and SAP domain containing transcriptional regulator

(MAMSTR), fibronectin type III and SPRY domain containing

2 (FSD2), leucine rich repeat containing 2 (LRRC2), leucine

rich single-pass membrane protein 1 (LSMEM1), solute carrier

family 29 member 2 (SLC29A2), four and a half LIM domains 3

(FHL3), Ataxin 7 like 2 (ATXN7L2) and p53 and DNA damage

regulated 1 (PDRG1).

In this study, some well-known myogenic genes have

been reported to be involved in myoblast proliferation and
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FIGURE 7

Integration of RNA-Seq and ATAC-Seq. (A) Venn plot of ATAC-seq and RNA-seq, and 54 common genes were found; (B) Heatmap plot of

common genes; (C) Radar plot of the top 20 common genes; (D) Motif enrichment analysis of common genes around open chromatin regions.

MEF2C was found to be significantly enriched; (E) The motif footprint analysis of MEF2C; (F) Motif Scanning of MEF2C in promoter region of

common gene using FIMO; (G) The subregulatory network of 22 predicted MEF2C potential target genes in the MElight module was derived from

WGCNA analysis.
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FIGURE 8

The relative expression of hub genes by qRT-PCR. (A) The bar plots represented tissue expression profiles. (B) The line charts represented

myogenic cell di�erentiation expression profiles.
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differentiation dependent on the transcriptional regulation of

MEF2, such as CAPN3, MB, Myomesin, and CKM (51–54).

More interestingly, HRC, a direct target gene of MEF2, encodes

histidine-rich calcium-binding protein (HRCBP) involved in the

regulation of muscle development mainly in the sarcoplasmic

reticulum of cardiac and skeletal muscles and in the calcium

bodies of smooth muscle (55, 56). MASTR, a coactivator of

MEF2, is involved in the regulation of myoblast proliferation

and differentiation by encoding a cofactor that stimulates

MEF2C (57, 58). These studies confirm the reliability of the

results of this study. Other genes have not been reported to

interact directly with MEF2C, but many have been reported to

be involved in the regulation of muscle. It has been reported that

ACTN2 and its family geneACTN3 encodemyosin α-actin-2 and

α-actin-3 proteins, respectively, which constitute the Z-line in

mammalian skeletal muscle fibers (59). SRL is a Ca2+-binding

protein localized in the sarcoplasmic reticulum (SR) affecting

skeletal muscle movement (60). MAP3K20 is involved in the

regulation of the JNK/MAPK signaling pathway, which plays

a role in muscle development and regeneration (61). UBE2G1

encodes an E2 ubiquitin-coupled enzyme that functions mainly

in the ubiquitin-proteasome system, which is involved in muscle

degradation and regeneration (62). NEURL2 is capable of

encoding proteins involved in the regulation of myogenic fiber

organization and ubiquitin-mediated degradation of β-linked

proteins during myogenesis (63). DOT1L is a key epigenetic

gene that mediates H3K79me2 modifications involved in

cardiomyocyte differentiation (64). LRRC2 is a member of

the LRRC family and its role in epigenetic modifications

in skeletal muscle has also been reported (65). KLHL41 is

predominantly expressed in skeletal muscle and is essential

for the maintenance of skeletal muscle integrity and myogenic

fiber formation (66, 67). FHL3 has been reported to regulate

myogenic differentiation and muscle-specific gene expression

by acting as a transcriptional co-activator or co-repressor (68).

FSD2 is highly expressed in cardiac and skeletal muscle as

a candidate gene affecting sarcomere traits in animals (69).

CAND2 and is a muscle-specific expression gene mediated by

mTORC1 that affects cardiac remodeling but not skeletal muscle

(70). ALPK3 has been reported to be closely associated with

familial cardiomyopathy, but its role in skeletal muscle has

not been reported (71). In this study, ALPK3 was located at

the core of the interaction network of candidate genes with

MB, HRC, SRL, and KLHL41, so we speculate that it also

is irreplaceable for skeletal development. LSMEM1, SLC29A2,

ATXN7L2, and PDRG1 have not been directly reported to be

associated with muscle development. In conclusion, these genes

are worthy of our attention and their potential regulatory role

with transcription factors and their epistatic modifications in

muscle development is of great interest to explore.

Notably, this study used other tissues as the background and

only contested the analysis of genes with positive regulation with

muscle. In fact, there are many more information that can be

mined to be further analyzed and verified, such as other tissue-

related genes, functional analysis of other modular genes, and

joint analysis with other epistatic data.
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