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The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research.
It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data
produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery
and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental
problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three
upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets
utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas
of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

1. Introduction

The concept of “big data” is not new; however the way
it is defined is constantly changing. Various attempts at
defining big data essentially characterize it as a collection
of data elements whose size, speed, type, and/or complexity
require one to seek, adopt, and invent new hardware and
software mechanisms in order to successfully store, analyze,
and visualize the data [1-3]. Healthcare is a prime example
of how the three Vs of data, velocity (speed of generation of
data), variety, and volume [4], are an innate aspect of the data
it produces. This data is spread among multiple healthcare
systems, health insurers, researchers, government entities,
and so forth. Furthermore, each of these data repositories
is siloed and inherently incapable of providing a platform
for global data transparency. To add to the three Vs, the
veracity of healthcare data is also critical for its meaningful
use towards developing translational research.

Despite the inherent complexities of healthcare data,
there is potential and benefit in developing and implementing
big data solutions within this realm. A report by McKinsey

Global Institute suggests that if US healthcare were to use big
data creatively and effectively, the sector could create more
than $300 billion in value every year. Two-thirds of the value
would be in the form of reducing US healthcare expenditure
[5]. Historical approaches to medical research have generally
focused on the investigation of disease states based on the
changes in physiology in the form of a confined view of
certain singular modality of data [6]. Although this approach
to understanding diseases is essential, research at this level
mutes the variation and interconnectedness that define the
true underlying medical mechanisms [7]. After decades of
technological laggard, the field of medicine has begun to
acclimatize to today’s digital data age. New technologies make
it possible to capture vast amounts of information about each
individual patient over a large timescale. However, despite the
advent of medical electronics, the data captured and gathered
from these patients has remained vastly underutilized and
thus wasted.

Important physiological and pathophysiological phe-
nomena are concurrently manifest as changes across multiple
clinical streams. This results from strong coupling among
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different systems within the body (e.g., interactions between
heart rate, respiration, and blood pressure) thereby producing
potential markers for clinical assessment. Thus, understand-
ing and predicting diseases require an aggregated approach
where structured and unstructured data stemming from a
myriad of clinical and nonclinical modalities are utilized for
a more comprehensive perspective of the disease states. An
aspect of healthcare research that has recently gained traction
is in addressing some of the growing pains in introducing
concepts of big data analytics to medicine. Researchers are
studying the complex nature of healthcare data in terms of
both characteristics of the data itself and the taxonomy of
analytics that can be meaningfully performed on them.

In this paper, three areas of big data analytics in medicine
are discussed. These three areas do not comprehensively
reflect the application of big data analytics in medicine;
instead they are intended to provide a perspective of broad,
popular areas of research where the concepts of big data
analytics are currently being applied.

Image Processing. Medical images are an important source
of data frequently used for diagnosis, therapy assessment
and planning [8]. Computed tomography (CT), magnetic
resonance imaging (MRI), X-ray, molecular imaging, ultra-
sound, photoacoustic imaging, fluoroscopy, positron emis-
sion tomography-computed tomography (PET-CT), and
mammography are some of the examples of imaging tech-
niques that are well established within clinical settings. Med-
ical image data can range anywhere from a few megabytes
for a single study (e.g., histology images) to hundreds of
megabytes per study (e.g., thin-slice CT studies comprising
upto 2500+ scans per study [9]). Such data requires large
storage capacities if stored for long term. It also demands fast
and accurate algorithms if any decision assisting automation
were to be performed using the data. In addition, if other
sources of data acquired for each patient are also utilized dur-
ing the diagnoses, prognosis, and treatment processes, then
the problem of providing cohesive storage and developing
efficient methods capable of encapsulating the broad range
of data becomes a challenge.

Signal Processing. Similar to medical images, medical signals
also pose volume and velocity obstacles especially during
continuous, high-resolution acquisition and storage from a
multitude of monitors connected to each patient. However,
in addition to the data size issues, physiological signals
also pose complexity of a spatiotemporal nature. Analysis
of physiological signals is often more meaningful when
presented along with situational context awareness which
needs to be embedded into the development of continuous
monitoring and predictive systems to ensure its effectiveness
and robustness.

Currently healthcare systems use numerous disparate
and continuous monitoring devices that utilize singular
physiological waveform data or discretized vital information
to provide alert mechanisms in case of overt events. However,
such uncompounded approaches towards development and
implementation of alarm systems tend to be unreliable
and their sheer numbers could cause “alarm fatigue” for
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both care givers and patients [10-12]. In this setting, the
ability to discover new medical knowledge is constrained by
prior knowledge that has typically fallen short of maximally
utilizing high-dimensional time series data. The reason that
these alarm mechanisms tend to fail is primarily because
these systems tend to rely on single sources of information
while lacking context of the patients’ true physiological con-
ditions from a broader and more comprehensive viewpoint.
Therefore, there is a need to develop improved and more
comprehensive approaches towards studying interactions
and correlations among multimodal clinical time series data.
This is important because studies continue to show that
humans are poor in reasoning about changes affecting more
than two signals [13-15].

Genomics. The cost to sequence the human genome (encom-
passing 30,000 to 35,000 genes) is rapidly decreasing with
the development of high-throughput sequencing technology
(16, 17]. With implications for current public health policies
and delivery of care [18, 19], analyzing genome-scale data for
developing actionable recommendations in a timely manner
is a significant challenge to the field of computational biology.
Cost and time to deliver recommendations are crucial in
a clinical setting. Initiatives tackling this complex problem
include tracking of 100,000 subjects over 20 to 30 years using
the predictive, preventive, participatory, and personalized
health, refered to as P4, medicine paradigm [20-22] as well
as an integrative personal omics profile [23]. The P4 initiative
is using a system approach for (i) analyzing genome-scale
datasets to determine disease states, (ii) moving towards
blood based diagnostic tools for continuous monitoring of
a subject, (iii) exploring new approaches to drug target
discovery, developing tools to deal with big data challenges
of capturing, validating, storing, mining, integrating, and
finally (iv) modeling data for each individual. The integrative
personal omics profile (iPOP) combines physiological mon-
itoring and multiple high-throughput methods for genome
sequencing to generate a detailed health and disease states of
a subject [23]. Ultimately, realizing actionable recommenda-
tions at the clinical level remains a grand challenge for this
field [24, 25]. Utilizing such high density data for exploration,
discovery, and clinical translation demands novel big data
approaches and analytics.

Despite the enormous expenditure consumed by the cur-
rent healthcare systems, clinical outcomes remain subopti-
mal, particularly in the USA, where 96 people per 100,000
die annually from conditions considered treatable [26]. A
key factor attributed to such inefficiencies is the inability
to effectively gather, share, and use information in a more
comprehensive manner within the healthcare systems [27].
This is an opportunity for big data analytics to play a
more significant role in aiding the exploration and discovery
process, improving the delivery of care, helping to design
and plan healthcare policy, providing a means for compre-
hensively measuring, and evaluating the complicated and
convoluted healthcare data. More importantly, adoption of
insights gained from big data analytics has the potential to
save lives, improve care delivery, expand access to healthcare,
align payment with performance, and help curb the vexing
growth of healthcare costs.
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2. Medical Image Processing from
Big Data Point of View

Medical imaging provides important information on anatomy
and organ function in addition to detecting diseases states.
Moreover, it is utilized for organ delineation, identifying
tumors in lungs, spinal deformity diagnosis, artery stenosis
detection, aneurysm detection, and so forth. In these appli-
cations, image processing techniques such as enhancement,
segmentation, and denoising in addition to machine learning
methods are employed. As the size and dimensionality of
data increase, understanding the dependencies among the
data and designing efficient, accurate, and computationally
effective methods demand new computer-aided techniques
and platforms. The rapid growth in the number of healthcare
organizations as well as the number of patients has resulted
in the greater use of computer-aided medical diagnostics
and decision support systems in clinical settings. Many areas
in health care such as diagnosis, prognosis, and screening
can be improved by utilizing computational intelligence [28].
The integration of computer analysis with appropriate care
has potential to help clinicians improve diagnostic accuracy
[29]. The integration of medical images with other types of
electronic health record (EHR) data and genomic data can
also improve the accuracy and reduce the time taken for a
diagnosis.

In the following, data produced by imaging techniques
are reviewed and applications of medical imaging from a big
data point of view are discussed.

2.1. Data Produced by Imaging Techniques. Medical imaging
encompasses a wide spectrum of different image acquisition
methodologies typically utilized for a variety of clinical
applications. For example, visualizing blood vessel structure
can be performed using magnetic resonance imaging (MRI),
computed tomography (CT), ultrasound, and photoacoustic
imaging [30]. From a data dimension point of view, medical
images might have 2, 3, and four dimensions. Positron emis-
sion tomography (PET), CT, 3D ultrasound, and functional
MRI (fMRI) are considered as multidimensional medical
data. Modern medical image technologies can produce high-
resolution images such as respiration-correlated or “four-
dimensional” computed tomography (4D CT) [31]. Higher
resolution and dimensions of these images generate large vol-
umes of data requiring high performance computing (HPC)
and advanced analytical methods. For instance, microscopic
scans of a human brain with high resolution can require
66TB of storage space [32]. Although the volume and variety
of medical data make its analysis a big challenge, advances
in medical imaging could make individualized care more
practical [33] and provide quantitative information in vari-
ety of applications such as disease stratification, predictive
modeling, and decision making systems. In the following we
refer to two medical imaging techniques and one of their
associated challenges.

Molecular imaging is a noninvasive technique of cellular
and subcellular events [34] which has the potential for clinical
diagnosis of disease states such as cancer. However, in order
to make it clinically applicable for patients, the interaction of

radiology, nuclear medicine, and biology is crucial [35] that
could complicate its automated analysis.

Microwave imaging is an emerging methodology that
could create a map of electromagnetic wave scattering arising
from the contrast in the dielectric properties of different
tissues [36]. It has both functional and physiological informa-
tion encoded in the dielectric properties which can help dif-
ferentiate and characterize different tissues and/or patholo-
gies [37]. However, microwaves have scattering behavior that
makes retrieval of information a challenging task.

The integration of images from different modalities
and/or other clinical and physiological information could
improve the accuracy of diagnosis and outcome prediction
of disease. Liebeskind and Feldmann explored advances in
neurovascular imaging and the role of multimodal CT or
MRI including angiography and perfusion imaging on eval-
uating the brain vascular disorder and achieving precision
medicine [33]. Delayed enhanced MRI has been used for
exact assessment of myocardial infarction scar [38]. For this
kind of disease, electroanatomic mapping (EAM) can help
in identifying the subendocardial extension of infarct. The
role of evaluating both MRI and CT images to increase the
accuracy of diagnosis in detecting the presence of erosions
and osteophytes in the temporomandibular joint (TM]) has
been investigated by Hussain et al. [39]. According to this
study simultaneous evaluation of all the available imaging
techniques is an unmet need.

Advanced Multimodal Image-Guided Operating (AMIGO)
suite has been designed which has angiographic X-ray
system, MRI, 3D ultrasound, and PET/CT imaging in the
operating room (OR). This system has been used for cancer
therapy and showed the improvement in localization and
targeting an individual’s diseased tissue [40].

Besides the huge space required for storing all the data
and their analysis, finding the map and dependencies among
different data types are challenges for which there is no
optimal solution yet.

2.2. Methods. The volume of medical images is growing expo-
nentially. For instance, ImageCLEF medical image dataset
contained around 66,000 images between 2005 and 2007
while just in the year of 2013 around 300,000 images were
stored everyday [41]. In addition to the growing volume
of images, they differ in modality, resolution, dimension,
and quality which introduce new challenges such as data
integration and mining specially if multiple datasets are
involved. Compared to the volume of research that exists on
single modal medical image analysis, there is considerably
lesser number of research initiatives on multimodal image
analysis.

When utilizing data at a local/institutional level, an
important aspect of a research project is on how the devel-
oped system is evaluated and validated. Having annotated
data or a structured method to annotate new data is a
real challenge. This becomes even more challenging when
large-scale data integration from multiple institutions are
taken into account. As an example, for the same applica-
tions (e.g., traumatic brain injury) and the same modality
(e.g., CT), different institutes might use different settings in



image acquisitions which makes it hard to develop unified
annotation or analytical methods for such data. In order to
benefit the multimodal images and their integration with
other medical data, new analytical methods with real-time
feasibility and scalability are required. In the following we
look at analytical methods that deal with some aspects of big
data.

2.2.1. Analytical Methods. The goal of medical image ana-
Iytics is to improve the interpretability of depicted contents
[8]. Many methods and frameworks have been developed for
medical image processing. However, these methods are not
necessarily applicable for big data applications.

One of the frameworks developed for analyzing and
transformation of very large datasets is Hadoop that
employs MapReduce [42, 43]. MapReduce is a programming
paradigm that provides scalability across many servers in a
Hadoop cluster with a broad variety of real-world applica-
tions [44-46]. However, it does not perform well with input-
output intensive tasks [47]. MapReduce framework has been
used in [47] to increase the speed of three large-scale medical
image processing use-cases, (i) finding optimal parameters
for lung texture classification by employing a well-known
machine learning method, support vector machines (SVM),
(ii) content-based medical image indexing, and (iii) wavelet
analysis for solid texture classification. In this framework, a
cluster of heterogeneous computing nodes with a maximum
of 42 concurrent map tasks was set up and the speedup
around 100 was achieved. In other words, total execution time
for finding optimal SVM parameters was reduced from about
1000 h to around 10h. Designing a fast method is crucial
in some applications such as trauma assessment in critical
care where the end goal is to utilize such imaging techniques
and their analysis within what is considered as a golden-
hour of care [48]. Therefore, execution time or real-time
feasibility of developed methods is of importance. Accuracy
is another factor that should be considered in designing an
analytical method. Finding dependencies among different
types of data could help improve the accuracy. For instance, a
hybrid machine learning method has been developed in [49]
that classifies schizophrenia patients and healthy controls
using fMRI images and single nucleotide polymorphism
(SNP) data [49]. The authors reported an accuracy of 87%
classification, which would not have been as high if they
had used just fMRI images or SNP alone. del Toro and
Muller have compared some organ segmentation methods
when data is considered as big data. They have proposed a
method that incorporates both local contrast of the image
and atlas probabilistic information [50]. An average of 33%
improvement has been achieved compared to using only atlas
information. Tsymbal et al. have designed a clinical decision
support system that exploits discriminative distance learning
with significantly lower computational complexity compared
to classical alternatives and hence this system is more scalable
to retrieval [51]. A computer-aided decision support system
was developed by Chen et al. [52] that could assist physicians
to provide accurate treatment planning for patients suffering
from traumatic brain injury (TBI). In this method, patient’s
demographic information, medical records, and features
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extracted from CT scans were combined to predict the
level of intracranial pressure (ICP). The accuracy, sensitivity,
and specificity were reported to be around 70.3%, 65.2%,
and 73.7%, respectively. In [53], molecular imaging and its
impact on cancer detection and cancer drug improvement
are discussed. The proposed technology is designed to aid in
early detection of cancer by integrating molecular and phys-
iological information with anatomical information. Using
this imaging technique for patients with advanced ovarian
cancer, the accuracy of the predictor of response to a special
treatment has been increased compared to other clinical or
histopathologic criteria. A hybrid digital-optical correlator
(HDOC) has been designed to speed up the correlation of
images [54]. HDOC can be employed to compare images
in the absence of coordinate matching or georegistration. In
this multichannel method, the computation is performed in
the storage medium which is a volume holographic memory
which could help HDOC to be applicable in the area of big
data analytics [54].

2.2.2. Collecting, Sharing, and Compressing Methods. In addi-
tion to developing analytical methods, efforts have been
made for collecting, compressing, sharing, and anonymizing
medical data. One example is iDASH (integrating data for
analysis, anonymization, and sharing) which is a center for
biomedical computing [55]. It focuses on algorithms and
tools for sharing data in a privacy-preserving manner. The
goal of iDASH is to bring together a multi-institutional team
of quantitative scientists to develop algorithms and tools,
services, and a biomedical cyber infrastructure to be used by
biomedical and behavioral researchers [55]. Another example
of a similar approach is Health-e-Child consortium of 14
academic, industry, and clinical partners with the aim of
developing an integrated healthcare platform for European
paediatrics [51].

Based on the Hadoop platform, a system has been
designed for exchanging, storing, and sharing electronic
medical records (EMR) among different healthcare systems
[56]. This system can also help users retrieve medical images
from a database. Medical data has been investigated from an
acquisition point of view where patients’ vital data is collected
through a network of sensors [57]. This system delivers data
to a cloud for storage, distribution, and processing. A proto-
type system has been implemented in [58] to handle standard
store/query/retrieve requests on a database of Digital Imaging
and Communications in Medicine (DICOM) images. This
system uses Microsoft Windows Azure as a cloud computing
platform.

When dealing with a very large volume of data, compres-
sion techniques can help overcome data storage and network
bandwidth limitations. Many methods have been developed
for medical image compression. However, there are a few
methods developed for big data compression. A method has
been designed to compress both high-throughput sequencing
dataset and the data generated from calculation of log-odds of
probability error for each nucleotide and the maximum com-
pression ratios of 400 and 5 have been achieved, respectively
[55]. This dataset has medical and biomedical data including
genotyping, gene expression, proteomic measurements with
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TaBLE 1: Challenges facing medical image analysis.

Challenges Description and possible solutions
Medical images suffer from different types of noise/artifacts and missing data. Noise reduction,
. artifact removal, missing data handling, contrast adjusting, and so forth could enhance the quality
Preprocessing . . . . .
of images and increase the performance of processing methods. Employing multimodal data
could be beneficial for this purpose [63-65].
. Reducing the volume of data while maintaining important data such as anatomically relevant data
Compression

(55, 61, 66].

Parallelization/real-time
realization

Developing scalable/parallel methods and frameworks to speed up the analysis/processing [61].

Registration/mapping modalities [67, 68].

Aligning consecutive slices/frames from one scan or corresponding images from different

Sharing/security/anonymization

Integrity, privacy, and confidentiality of data must be protected [55, 69-71].

Segmentation

Delineation of anatomical structure such as vessels and bones [50, 68, 72].

Finding dependencies/patterns among multimodal data and/or the data captured at different time

Data integration/mining
system [47, 49, 52, 73].

points in order to increase the accuracy of diagnosis, prediction, and overall performance of the

Validation

Assessing the performance or accuracy of the system/method. Validation can be objective or

subjective. For the former, annotated data is usually required [74-76].

demographics, laboratory values, images, therapeutic inter-
ventions, and clinical phenotypes for Kawasaki Disease (KD).
By illustrating the data with a graph model, a framework
for analyzing large-scale data has been presented [59]. For
this model, the fundamental signal processing techniques
such as filtering and Fourier transform were implemented.
In [60], the application of simplicity and power (SP) theory
of intelligence in big data has been investigated. The goal of
SP theory is to simplify and integrate concepts from multiple
fields such as artificial intelligence, mainstream computing,
mathematics, and human perception and cognition that can
be observed as a brain-like system [60]. The proposed SP
system performs lossless compression through the matching
and unification of patterns. However, this system is still in the
design stage and cannot be supported by today’s technologies.

There are some limitations in implementing the
application-specific compression methods on both general-
purpose processors and parallel processors such as graphics
processing units (GPUs) as these algorithms need highly
variable control and complex bit manipulations which are not
well suited to GPUs and pipeline architectures. To overcome
this limitation, an FPGA implementation was proposed
for LZ-factorization which decreases the computational
burden of the compression algorithm [61]. A lossy image
compression has been introduced in [62] that reshapes the
image in such a way that if the image is uniformly sampled,
sharp features have a higher sampling density than the
coarse ones. This method is claimed to be applicable for
big data compression. However, for medical applications
lossy methods are not applicable in most cases as fidelity is
important and information must be preserved.

These techniques are among a few techniques that have
been either designed as prototypes or developed with limited
applications. Developing methods for processing/analyzing a
broad range and large volume of data with acceptable accu-
racy and speed is still critical. In Table 1, we summarize the

challenges facing medical image processing. When dealing
with big data, these challenges seemed to be more serious and
on the other hand analytical methods could benefit the big
data to handle them.

3. Medical Signal Analytics

Telemetry and physiological signal monitoring devices are
ubiquitous. However, continuous data generated from these
monitors have not been typically stored for more than a brief
period of time, thereby neglecting extensive investigation into
generated data. However, in the recent past, there has been
an increase in the attempts towards utilizing telemetry and
continuous physiological time series monitoring to improve
patient care and management [77-80].

Streaming data analytics in healthcare can be defined
as a systematic use of continuous waveform (signal varying
against time) and related medical record information devel-
oped through applied analytical disciplines (e.g., statistical,
quantitative, contextual, cognitive, and predictive) to drive
decision making for patient care. The analytics workflow
of real-time streaming waveforms in clinical settings can
be broadly described using Figure 1. Firstly, a platform for
streaming data acquisition and ingestion is required which
has the bandwidth to handle multiple waveforms at different
fidelities. Integrating these dynamic waveform data with
static data from the EHR is a key component to provide
situational and contextual awareness for the analytics engine.
Enriching the data consumed by analytics not only makes
the system more robust, but also helps balance the sensitivity
and specificity of the predictive analytics. The specifics of the
signal processing will largely depend on the type of disease
cohort under investigation. A variety of signal processing
mechanisms can be utilized to extract a multitude of target
features which are then consumed by a pretrained machine
learning model to produce an actionable insight. These
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FIGURE 1: Generalized analytic workflow using streaming healthcare data.

actionable insights could either be diagnostic, predictive,
or prescriptive. These insights could further be designed to
trigger other mechanisms such as alarms and notification to
physicians.

Harmonizing such continuous waveform data with dis-
crete data from other sources for finding necessary patient
information and conducting research towards development
of next generation diagnoses and treatments can be a
daunting task [81]. For bed-side implementation of such
systems in clinical environments, there are several technical
considerations and requirements that need to be designed
and implemented at system, analytic, and clinical levels.
The following subsections provide an overview of different
challenges and existing approaches in the development of
monitoring systems that consume both high fidelity wave-
form data and discrete data from noncontinuous sources.

3.1. Data Acquisition. Historically streaming data from con-
tinuous physiological signal acquisition devices was rarely
stored. Even if the option to store this data were available, the
length of these data captures was typically short and down-
loaded only using proprietary software and data formats
provided by the device manufacturers. Although most major
medical device manufactures are now taking steps to provide
interfaces to access live streaming data from their devices,
such data in motion very quickly poses archetypal big data
challenges. The fact that there are also governance challenges
such as lack of data protocols, lack of data standards, and
data privacy issues is adding to this. On the other side there
are many challenges within the healthcare systems such as
network bandwidth, scalability, and cost that have stalled the

widespread adoption of such streaming data collection [82-
84]. This has allowed way for system-wide projects which
especially cater to medical research communities [77, 79, 80,
85-93].

Research community has interest in consuming data cap-
tured from live monitors for developing continuous monitor-
ing technologies [94, 95]. There have been several indigenous
and off-the-shelf efforts in developing and implementing
systems that enable such data capture [85, 96-99]. There are
also products being developed in the industry that facilitate
device manufacturer agnostic data acquisition from patient
monitors across healthcare systems.

3.2. Data Storage and Retrieval. With large volumes of
streaming data and other patient information that can be
gathered from clinical settings, sophisticated storage mech-
anisms of such data are imperative. Since storing and retriev-
ing can be computational and time expensive, it is key to have
a storage infrastructure that facilitates rapid data pull and
commits based on analytic demands.

With its capability to store and compute large volumes
of data, usage of systems such as Hadoop, MapReduce, and
MongoDB [100, 101] is becoming much more common with
the healthcare research communities. MongoDB is a free
cross-platform document-oriented database which eschews
traditional table-based relational database. Typically each
health system has its own custom relational database schemas
and data models which inhibit interoperability of healthcare
data for multi-institutional data sharing or research studies.
Furthermore, given the nature of traditional databases inte-
grating data of different types such as streaming waveforms
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and static EHR data is not feasible. This is where Mon-
goDB and other document-based databases can provide high
performance, high availability, and easy scalability for the
healthcare data needs [102, 103]. Apache Hadoop is an open
source framework that allows for the distributed processing
of large datasets across clusters of computers using simple
programming models. It is a highly scalable platform which
provides a variety of computing modules such as MapReduce
and Spark. For performing analytics on continuous telemetry
waveforms, a module like Spark is especially useful since
it provides capabilities to ingest and compute on streaming
data along with machine learning and graphing tools. Such
technologies allow researchers to utilize data for both real-
time as well as retrospective analysis, with the end goal to
translate scientific discovery into applications for clinical
settings in an effective manner.

3.3. Data Aggregation. Integration of disparate sources of
data, developing consistency within the data, standardization
of data from similar sources, and improving the confidence
in the data especially towards utilizing automated analytics
are among challenges facing data aggregation in healthcare
systems [104]. Medical data can be complex in nature as
well as being interconnected and interdependent; hence
simplification of this complexity is important. Medical data
is also subject to the highest level of scrutiny for privacy
and provenance from governing bodies, therefore developing
secure storage, access, and use of the data is very important
[105].

Analysis of continuous data heavily utilizes the informa-
tion in time domain. However, static data does not always
provide true time context and, hence, when combining the
waveform data with static electronic health record data, the
temporal nature of the time context during integration can
also add significantly to the challenges. There are consid-
erable efforts in compiling waveforms and other associated
electronic medical information into one cohesive database
that are made publicly available for researchers worldwide
[106, 107]. For example, MIMIC II [108, 109] and some other
datasets included in Physionet [96] provide waveforms and
other clinical data from a wide variety of actual patient
cohorts.

3.4. Signal Analytics Using Big Data. Research in signal
processing for developing big data based clinical decision
support systems (CDSSs) is getting more prevalent [110].
In fact organizations such as the Institution of Medicine
have long advocated use of health information technology
including CDSS to improve care quality [111]. CDSSs provide
medical practitioners with knowledge and patient-specific
information, intelligently filtered and presented at appropri-
ate times, to improve the delivery of care [112].

A vast amount of data in short periods of time is
produced in intensive care units (ICU) where a large volume
of physiological data is acquired from each patient. Hence,
the potential for developing CDSS in an ICU environment
has been recognized by many researchers. A scalable infras-
tructure for developing a patient care management system
has been proposed which combines static data and stream

data monitored from critically ill patients in the ICU for
data mining and alerting medical staff of critical events
in real time [113]. Similarly, Bressan et al. developed an
architecture specialized for a neonatal ICU which utilized
streaming data from infusion pumps, EEG monitors, cere-
bral oxygenation monitors, and so forth to provide clinical
decision support [114]. A clinical trial is currently underway
which extracts biomarkers through signal processing from
heart and respiratory waveforms in real time to test whether
maintaining stable heart rate and respiratory rate variability
throughout the spontaneous breathing trials, administered to
patients before extubation, may predict subsequent successful
extubation [115]. An animal study shows how acquisition of
noninvasive continuous data such as tissue oxygenation, fluid
content, and blood flow can be used as indicators of soft tissue
healing in wound care [78]. Electrocardiogrpah parameters
from telemetry along with demographic information includ-
ing medical history, ejection fraction, laboratory values, and
medications have been used to develop an inhospital early
detection system for cardiac arrest [116].

A study presented by Lee and Mark uses the MIMIC II
database to prompt therapeutic intervention to hypotensive
episodes using cardiac and blood pressure time series data
[117]. Another study shows the use of physiological waveform
data along with clinical data from the MIMIC II database
for finding similarities among patients within the selected
cohorts [118]. This similarity can potentially help care givers
in the decision making process while utilizing outcomes
and treatments knowledge gathered from similar disease
cases from the past. A combination of multiple waveform
information available in the MIMIC II database is utilized
to develop early detection of cardiovascular instability in
patients [119]. Many types of physiological data captured in
the operative and preoperative care settings and how analytics
can consume these data to help continuously monitor the
status of the patients during, before and after surgery, are
described in [120]. The potential of developing data fusion
based machine learning models which utilizes biomarkers
from breathomics (metabolomics study of exhaled air) as a
diagnostic tool is demonstrated in [121].

Research in neurology has shown interest in electrophys-
iologic monitoring of patients to not only examine complex
diseases under a new light but also develop next generation
diagnostics and therapeutic devices. An article focusing on
neurocritical care explores the different physiological moni-
toring systems specifically developed for the care of patients
with disorders who require neurocritical care [122]. The
authors of this article do not make specific recommendations
about treatment, imaging, and intraoperative monitoring;
instead they examine the potentials and implications of
neuromonitoring with differeing quality of data and also
provide guidance on developing research and application
in this area. The development of multimodal monitoring
for traumatic brain injury patients and individually tailored,
patient specific care are examined in [123]. Zanatta et al.
have investigated whether multimodal brain monitoring
performed with TCD, EEG, and SEPs reduces the incidence of
major neurologic complications in patients who underwent
cardiac surgery. The authors evaluated whether the use of



multimodal brain monitoring shortened the duration of
mechanical ventilation required by patients as well as ICU
and healthcare stays. The concepts of multimodal monitoring
for secondary brain injury in neurocritical care as well as
outline initial and future approaches using informatics tools
for understanding and applying such data towards clinical
care are described in [124].

As complex physiological monitoring devices are getting
smaller, cheaper, and more portable, personal monitoring
devices are being used outside of clinical environments by
both patients and enthusiasts alike. However, similar to
clinical applications, combining information simultaneously
collected from multiple portable devices can become chal-
lenging. Pantelopoulos and Bourbakis discussed the research
and development of wearable biosensor systems and identi-
fied the advantages and shortcomings in this area of study
[125]. Similarly, portable and connected electrocardiogram,
blood pressure and body weight devices are used to set up
a network based study of telemedicine [126]. The variety of
fixed as well as mobile sensors available for data mining in
the healthcare sector and how such data can be leveraged for
developing patient care technologies are surveyed in [127].

4. Big Data Applications in Genomics

The advent of high-throughput sequencing methods has
enabled researchers to study genetic markers over a wide
range of population [22, 128], improve efliciency by more
than five orders of magnitude since sequencing of the human
genome was completed [129], and associate genetic causes of
the phenotype in disease states [130]. Genome-wide analysis
utilizing microarrays has been successful in analyzing traits
across a population and contributed successfully in treat-
ments of complex diseases such as Crohn’s disease and age-
related muscular degeneration [130].

Analytics of high-throughput sequencing techniques in
genomics is an inherently big data problem as the human
genome consists of 30,000 to 35,000 genes [16, 17]. Initiatives
are currently being pursued over the timescale of years
to integrate clinical data from the genomic level to the
physiological level of a human being [22, 23]. These initiatives
will help in delivering personalized care to each patient.
Delivering recommendations in a clinical setting requires fast
analysis of genome-scale big data in a reliable manner. This
field is still in a nascent stage with applications in specific
focus areas, such as cancer [131-134], because of cost, time,
and labor intensive nature of analyzing this big data problem.

Big data applications in genomics cover a wide variety
of topics. Here we focus on pathway analysis, in which
functional effects of genes differentially expressed in an
experiment or gene set of particular interest are analyzed,
and the reconstruction of networks, where the signals mea-
sured using high-throughput techniques are analyzed to
reconstruct underlying regulatory networks. These networks
influence numerous cellular processes which affect the phys-
iological state of a human being [135].

4.1. Pathway Analysis. Resources for inferring functional
effects for “-omics” big data are largely based on statistical
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associations between observed gene expression changes and
predicted functional effects. Experiment and analytical prac-
tices lead to error as well as batch effects [136, 137]. Inter-
pretation of functional effects has to incorporate continuous
increases in available genomic data and corresponding anno-
tation of genes [25]. There are variety of tools, but no “gold
standard” for functional pathway analysis of high-throughput
genome-scale data [138]. Three generations of methods used
for pathway analysis [25] are described as follows.

The first generation encompasses overrepresentation
analysis approaches that determine the fraction of genes
in a particular pathway found among the genes which are
differentially expressed [25]. Examples of the first genera-
tion tools are Onto-Express [139, 140], GoMiner [142], and
ClueGo [144]. The second generation includes functional
class scoring approaches which incorporate expression level
changes in individual genes as well as functionally similar
genes [25]. GSEA [146] is a popular tool that belongs
to the second generation of pathway analysis. The third
generation includes pathway topology based tools which are
publicly available pathway knowledge databases with detailed
information of gene products interactions: how specific gene
products interact with each other and the location where they
interact [25]. Pathway-Express [148] is an example of a third
generation tool that combines the knowledge of differentially
expressed genes with biologically meaningful changes on a
given pathway to perform pathway analysis.

4.2. Reconstruction of Regulatory Networks. Pathway analysis
approaches do not attempt to make sense of high-throughput
big data in biology as arising from the integrated operation
of a dynamical system [25]. There are multiple approaches
to analyzing genome-scale data using a dynamical system
framework [135, 152, 159]. Due to the breadth of the field, in
this section we mainly focus on techniques to infer network
models from biological big data. Applications developed for
network inference in systems biology for big data applica-
tions can be split into two broad categories consisting of
reconstruction of metabolic networks and gene regulatory
networks [135]. Various approaches of network inference
vary in performance, and combining different approaches has
shown to produce superior predictions [152, 160].

Reconstruction of metabolic networks has advanced in
last two decades. One objective is to develop an understand-
ing of organism-specific metabolism through reconstruction
of metabolic networks by integrating genomics, transcrip-
tomics, and proteomics high-throughput sequencing tech-
niques [150, 161-167]. Constraint-based methods are widely
applied to probe the genotype-phenotype relationship and
attempt to overcome the limited availability of kinetic con-
stants [168, 169]. There are multitude of challenges in terms
of analyzing genome-scale data including the experiment and
inherent biological noise, differences among experimental
platforms, and connecting gene expression to reaction flux
used in constraint-based methods [170, 171].

Available reconstructed metabolic networks include
Recon 1 [161], Recon 2 [150], SEED [163], IOMA [165], and
MADE [172]. Recon 2 (an improvement over Recon 1) is
a model to represent human metabolism and incorporates
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TABLE 2: Summary of popular methods and toolkits with their applications.

Toolkit name Category Selected applications
Onto-Express [139, 140] Pathway analysis Breast cancer [141]
GoMiner [142] Pathway analysis Pancreatic cancer [143]
ClueGo [144] Pathway analysis Colorectal tumors [145]
GSEA [146] Pathway analysis Diabetes [147]
Pathway-Express [148] Pathway analysis Leukemia [149]

Recon 2 [150] Reconstruction of metabolic networks Drug target prediction studies [151]

Boolean methods [135, 152, 153]
ODE models [155-158]

Reconstruction of gene regulatory networks
Reconstruction of gene regulatory networks

Cardiac differentiation [154]
Cardiac development [158]

7,440 reactions involving 5,063 metabolites. Recon 2 has
been expanded to account for known drugs for drug target
prediction studies [151] and to study off-target effects of drugs
(173].

Reconstruction of gene regulatory networks from gene
expression data is another well developed field. Network
inference methods can be split into five categories based
on the underlying model in each case: regression, mutual
information, correlation, Boolean regulatory networks, and
other techniques [152]. Over 30 inference techniques were
assessed after DREAMS challenge in 2010 [152]. Performance
varied within each category and there was no category found
to be consistently better than the others. Different meth-
ods utilize different information available in experiments
which can be in the form of time series, drug perturbation
experiments, gene knockouts, and combinations of experi-
mental conditions. A tree-based method (using ensembles
of regression trees) [174] and two-way ANOVA (analysis of
variance) method [175] gave the highest performance in a
recent DREAM challenge [160].

Boolean regulatory networks [135] are a special case of
discrete dynamical models where the state of a node or a set
of nodes exists in a binary state. The actual state of each node
or set of nodes is determined by using Boolean operations
on the state of other nodes in the network [153]. Boolean
networks are extremely useful when amount of quantitative
data is small [135,153] but yield high number of false positives
(i.e., when a given condition is satisfied while actually that is
not the case) that may be reduced by using prior knowledge
[176, 177]. Another bottleneck is that Boolean networks
are prohibitively expensive when the number of nodes in
network is large. This is due to the number of global states
rising exponentially in the number of entities [135]. A method
to overcome this bottleneck is to use clustering to break down
the problem size. For example, Martin et al. [178] broke down
a 34,000-probe microarray gene expression dataset into 23
sets of metagenes using clustering techniques. This Boolean
model successfully captured the network dynamics for two
different immunology microarray datasets. The dynamics
of gene regulatory network can be captured using ordinary
differential equations (ODEs) [155-158]. This approach has
been applied to determine regulatory network for yeast
[155]. The study successfully captured the regulatory net-
work which has been characterized using experiments by

molecular biologists. Reconstruction of a gene regulatory
network on a genome-scale system as a dynamical model is
computationally intensive [135]. A parallelizeable dynamical
ODE model has been developed to address this bottleneck
[179]. It reduces the computational time to O(N %) from time
taken in other approaches which is O(N?) or O(N? logN)
[179]. Determining connections in the regulatory network for
a problem of the size of the human genome, consisting of
30,000 to 35,000 genes [16, 17], will require exploring close to
abillion possible connections. The dynamical ODE model has
been applied to reconstruct the cardiogenic gene regulatory
network of the mammalian heart [158]. A summary of
methods and toolkits with their applications is presented in
Table 2.

5. Conclusion

Big data analytics which leverages legions of disparate,
structured, and unstructured data sources is going to play
a vital role in how healthcare is practiced in the future.
One can already see a spectrum of analytics being utilized,
aiding in the decision making and performance of healthcare
personnel and patients. Here we focused on three areas of
interest: medical image analysis, physiological signal process-
ing, and genomic data processing. The exponential growth of
the volume of medical images forces computational scientists
to come up with innovative solutions to process this large
volume of data in tractable timescales. The trend of adoption
of computational systems for physiological signal processing
from both research and practicing medical professionals
is growing steadily with the development of some very
imaginative and incredible systems that help save lives.
Developing a detailed model of a human being by combining
physiological data and high-throughput “-omics” techniques
has the potential to enhance our knowledge of disease states
and help in the development of blood based diagnostic
tools [20-22]. Medical image analysis, signal processing of
physiological data, and integration of physiological and “-
omics” data face similar challenges and opportunities in
dealing with disparate structured and unstructured big data
sources.

Medical image analysis covers many areas such as image
acquisition, formation/reconstruction, enhancement, trans-
mission, and compression. New technological advances have
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resulted in higher resolution, dimension, and availability of
multimodal images which lead to the increase in accuracy
of diagnosis and improvement of treatment. However, inte-
grating medical images with different modalities or with
other medical data is a potential opportunity. New analytical
frameworks and methods are required to analyze these data
in a clinical setting. These methods address some concerns,
opportunities, and challenges such as features from images
which can improve the accuracy of diagnosis and the ability
to utilize disparate sources of data to increase the accuracy
of diagnosis and reducing cost and improve the accuracy
of processing methods such as medical image enhancement,
registration, and segmentation to deliver better recommen-
dations at the clinical level.

Although there are some very real challenges for sig-
nal processing of physiological data to deal with, given
the current state of data competency and nonstandardized
structure, there are opportunities in each step of the pro-
cess towards providing systemic improvements within the
healthcare research and practice communities. Apart from
the obvious need for further research in the area of data
wrangling, aggregating, and harmonizing continuous and
discrete medical data formats, there is also an equal need
for developing novel signal processing techniques specialized
towards physiological signals. Research pertaining to mining
for biomarkers and clandestine patterns within biosignals to
understand and predict disease cases has shown potential
in providing actionable information. However, there are
opportunities for developing algorithms to address data filter-
ing, interpolation, transformation, feature extraction, feature
selection, and so forth. Furthermore, with the notoriety
and improvement of machine learning algorithms, there are
opportunities in improving and developing robust CDSS for
clinical prediction, prescription, and diagnostics [180, 181].

Integration of physiological data and high-throughput
“-omics” techniques to deliver clinical recommendations is
the grand challenge for systems biologists. Although asso-
ciating functional effects with changes in gene expression
has progressed, the continuous increase in available genomic
data and its corresponding effects of annotation of genes
and errors from experiment and analytical practices make
analyzing functional effect from high-throughput sequencing
techniques a challenging task.

Reconstruction of networks on the genome-scale is an
ill-posed problem. Robust applications have been developed
for reconstruction of metabolic networks and gene regulatory
networks. Limited availability of kinetic constants is a bottle-
neck and hence various models attempt to overcome this lim-
itation. There is an incomplete understanding for this large-
scale problem as gene regulation, effect of different network
architectures, and evolutionary effects on these networks are
still being analyzed [135]. To address these concerns, the
combination of careful design of experiments and model
development for reconstruction of networks will help in
saving time and resources spent in building understanding
of regulation in genome-scale networks. The opportunity of
addressing the grand challenge requires close cooperation
among experimentalists, computational scientists, and clin-
icians.
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