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Abstract

In the present study, we carried out an examination of the amino acid usage in the zebra

finch (Taeniopygia guttata) proteome. We found that tRNA abundance, base composition,

hydrophobicity and aromaticity, protein second structure, cysteine residue (Cys) content

and protein molecular weight had significant impact on the amino acid usage of the zebra

finch. The above factors explained the total variability of 22.85%, 25.37%, 10.91%, 5.06%,

4.21%, and 3.14%, respectively. Altogether, approximately 70% of the total variability in

zebra finch could be explained by such factors. Comparison of the amino acid usage

between zebra finch, chicken (Gallus gallus) and human (Homo sapiens) suggested that the

average frequency of various amino acid usage is generally consistent among them. Corre-

spondence analysis indicated that base composition was the primary factor affecting the

amino acid usage in zebra finch. This trend was different from chicken, but similar to human.

Other factors affecting the amino acid usage in zebra finch, such as isochore structure, pro-

tein second structure, Cys frequency and protein molecular weight also showed the similar

trends with human. We do not know whether the similar amino acid usage trend between

human and zebra finch is related to the distinctive neural and behavioral traits, but it is worth

studying in depth.

Introduction

Amino acids are utilized with different frequencies in various proteins and organisms. Such

biases in amino acid usage have been demonstrated extensively in prokaryote and eukaryote

genomes, and likely reflect a balance or near balance between the action of mutation, selection,

and genetic drift [1–3]. Base composition in a number of species has been shown to correlate

with the amino acid content of proteins. This trend has been attributed to the neutral processes

or mutation[1, 4–11]. Using a measure based on tRNA-gene copy numbers as a rough estimate

of tRNA abundance, a positive correlation between tRNA abundance and the amino acid con-

tent has been documented in many organisms, suggesting selection plays an important role in

shaping amino acid frequencies[3, 12–17]. In addition, intragenomic analyses have suggested
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that factors like hydrophobicity, aromaticity, cysteine residue (Cys) content, gene function,

metabolic cost, mean molecular weight and gene expression level also have significant impact

on the global amino acid composition of each species[1–3, 18–23].

Although there are many influencing factors, the base composition was considered as the

driving force in the amino acid usage. Knight et al. [1] made a comparative study on the

impact of GC content on codon usage and amino acid usage for bacteria, archaea and eukary-

otes with limited gene sample. They concluded that amino acid responses were determined by

the mean GC content of their codons (explaining 71–79% of the variance). However, Rao et al.

[3] reported that only approximately 10–40% variation of amino acid usage could be explained

by GC content in chicken. A recent study argued that the impact could be also in the opposite

direction, i.e. the selection at the amino acid level could affect the nucleotide content and

codon usage significantly [24].

In the avian group, Rao et al. [3] made a systematic study of the amino acid usage in the

chicken proteome. They found that the relative amino acid usage was strongly correlated with

the tRNA abundance. Correspondence analysis also suggested that the main factors responsi-

ble for the variation of amino acid usage in chicken were hydrophobicity, aromaticity, and

genomic GC content. In the present study, we carried out an examination of the amino acid

usage in the zebra finch (Taeniopygia guttata) proteome. The aim of this study is to explore

which are the main parameters that shape the global amino acid usage in the zebra finch, to

assess the similarities and differences between the two bird genomes, and to describe their bio-

logical implications.

Materials and methods

Sequence data

In this study, gene sequences, coding DNA sequences (CDSs), or complete mRNA sequences

corresponding to all annotated genes in Taeniopygia guttata genome were downloaded from

Ensembl. For this data collection, a strict criteria was defined: (1) Only nuclear genes with

known protein products (rather than a novel or predicted transcripts) were included; (2) Only

genes with complete CDSs were included; (3) Genes with a CDS that did not begin with an

ATG start codon, or did not have a length� 300 bp, or did not occur in multiples of three

nucleotides, or contained an internal stop codon, were discarded. We declare that all the data

used in this study are public.

tRNA gene copy number data

The copy numbers of individual tRNA genes in the Taeniopygia guttata genome were taken

from (http://gtrnadb.ucsc.edu/GtRNAdb2/genomes/eukaryota/Tgutt2/). In this data set, pseu-

dogenes have already been removed.

Correspondence analysis

Correspondence analysis (COA) implemented by CodonW 1.4.2 was used to identify the

major factors that shape variation in amino acid usage among proteins of Taeniopygia guttata.

For each gene, the relative amino acid usage (RAAU), the GC content of the CDS (GCcds), the

GC content at the first, the second and the third position (GC1, GC2 and GC3), the average

hydrophobicity (general average hydrophobicity, GRAVY) and the average aromaticity (aver-

age aromaticity, Aromo), were calculated by CodonW 1.4.2. We also performed a principal-

components analysis (PCA) for the genes of zebra finch. The results were similar to the corre-

spondence analysis.

Amino acid usage in the zebra finch
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Statistical analysis

Correlation analysis between variables was performed by SAS Proprietary Software Release

8.1. In order to assess the actual strength of correlation, all correlation coefficients reported in

this study were tested independently, excluding the influence of other related variables. To

determine the variables contributing to the variability and how they may interact, we per-

formed multiple linear regressions with the variables, excluding those not contributing signifi-

cantly through the use of the t-statistical logarithm with backward stepwise regression. The

significance tests were corrected for multiple testing by the Bonferroni step-down correction

[25].

Results

Relationship between amino acid usage and tRNA gene copy number

The relative amino acid usage (RAAU) for each gene was calculated by CodonW 1.4.2. We

found that the amino acids were not equally used in the zebra finch proteome. The average

RAAU of Leu, Ser, Ala, Lys, Glu and Arg was relatively high (> 6%); otherwise, some amino

acid RAAU such as Cys, His, Trp, Tyr was relatively low (< 3%). We retrieved the tRNA gene

copy numbers for each codon in the Taeniopygia guttata genome. The isoaccepting tRNA

genes were summed for each amino acid. Our data demonstrated that the average RAAU was

correlated with the isoaccepting tRNA gene copy numbers significantly (r = 0.478, p = 0.038)

(Fig 1).

Factorial correspondence analysis for amino acid usage

Correspondence analysis (COA) was used to explore the major factors shaping variation in

amino acid usage among Taeniopygia guttata proteins. The coordinate of each gene on each

axis and the fraction of the total variation accounted for by each axis was generated by COA.

Our data indicated that 4 of the 19 axes accounted for almost 50% of the total variance

(47.79%) in amino acid composition of Taeniopygia guttata proteins. The first major axis

accounted for 17.34% of the total variance, and the 2nd, 3rd, 4th major axis accounted for

Fig 1. Relationship between the relative amino acid usage and the isoaccepting tRNA gene copy number. The

tRNA gene copy numbers for each codon in the Taeniopygia guttata genome was taken from http://gtrnadb.ucsc.edu/

GtRNAdb2/genomes/eukaryota/Tgutt2/ (August 2, 2017). The isoaccepting tRNA gene number was summed for each

amino acid. The relative amino acid usage (RAAU) for each amino acid was calculated by CodonW 1.4.2. The average

RAAU values of amino acid was correlated with the isoaccepting tRNA gene copy numbers significantly (r = 0.478,

p = 0.038).

https://doi.org/10.1371/journal.pone.0204796.g001
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14.68%, 8.5%, 7.27% of the total variance, respectively. The distribution of the amino acid resi-

dues and the total genes for the first two axes were shown in Fig 2.

Impact of GC content on amino acid usage

The GC content of the CDS (GCcds), the GC content at the first, the second and the third posi-

tion (GC1, GC2 and GC3), were calculated by codonW 1.4.2. As shown in Fig 3, axis 1 was

positively correlated with the GCcds, GC2, and GC3, significantly (axis 1 vs. GCcds, r = 0.543,

p< 0.0001; axis 1 vs. GC2, r = 0.887, p< 0.0001; axis 1 vs. GC3, r = 0.186, p< 0.0001). Multi-

ple regression analysis indicated that the main factor was GC2 (R2 = 0.788, p< 0.0001). Axis 2

was negatively correlated with GCcds, GC1, and GC2, significantly (axis 2 vs. GCcds, r = - 0.427,

p< 0.0001; axis 2 vs. GC1, r = - 0.343, p< 0.0001; axis 2 vs. GC2, r = - 0.517, p< 0.0001). Mul-

tiple regression analysis indicated that the main factors were GC2 and GC1 (R2 = 0.425,

p< 0.0001). Axis 3 and axis 4 also correlated with the GC content. The main factors for Axis 3

were GC1 and GC2 (R2 = 0.556, p< 0.0001), while the main factors affecting Axis 4 were GC1

and GCcds (R2 = 0.126, p< 0.0001). According to Sabbı́a et al. [20], we used the GC content of

the surrounding regions of gene (25 kb upstream of the initiation codon plus the 25 kb down-

stream of the stop codon) as an estimator for isochore structure, and made correlation analysis

between the estimator and axis 1, axis 2. We found that both axis 1 and axis 2 were significantly

Fig 2. Distribution of the amino acids and genes on the first two axes of the correspondence analysis. a.

Representation of the first two axes of the correspondence analysis performed on the amino acid frequency of

Taeniopygia guttata protein. b. Representation of the first two axes of the correspondence analysis performed on the

amino acid frequencies of 8109 Taeniopygia guttata genes. Membrane proteins are indicated by red dots. The total

number of membrane proteins was 298. The percentage of membrane proteins with the positive value account for

72%.

https://doi.org/10.1371/journal.pone.0204796.g002
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correlated with the estimator, suggesting that the isochore structure had a significant impact

on the amimo acid usage in zebra finch (axis 1 vs. estimator, r = 0.198, p< 0.0001; axis 2 vs.

estimator, r = - 0.16, p< 0.0001).

Impact of hydrophobicity and aromaticity on amino acid usage

The average hydrophobicity (general average hydrophobicity, GRAVY) and aromaticity (aver-

age aromaticity, Aromo), were calculated by CodonW 1.4.2. As shown in Fig 4, axis 2 was

strongly correlated with the GRAVY score of proteins (r = 0.732, p< 0.0001), and the Aromo

score of proteins (r = 0.689, p< 0.0001). As axis 2 was also found to be correlated with GCcds,

GC1, and GC2 significantly, we made a multiple regression analysis between axis 2 and all 5

variables. Our data indicated that 90.4% of the total variation of axis 2 could be explained by

GRAVY, Aromo, GC2 and GC1 (R2 = 0.904, p< 0.0001), and 74.3% could be explained by

Gravy and Aromo (R2 = 0.743, p< 0.0001). Axis 1 also showed a significant correlation with

the GRAVY score (r = 0.228, p< 0.0001), but did not correlate with the Aromo score (r =

0.01, p = 0.334). As shown in Fig 2A, the strong hydrophobic amino acid Ile, Val, Phe, Leu,

Met, and the aromatic amino acid Tyr, Phe, and Trp, were at the above of the plane (positive

values for axis 2). The distribution of genes in Fig 2B indicated that the membrane proteins

were related to the distribution of axis 2, in which the majority of them showed a positive

value over the axis 2.

Impact of protein second structure, molecular weight and Cys frequency on

amino acid usage

The amount of secondary structure for each protein was predicted by the use of PHD software.

The distribution of alpha helix, extend strand, and random coil over the entire protein data set

were analyzed. Correlation analyses indicated that extend strand was positively correlated with

Fig 3. Relationship between GC content and axis 1,axis 2. a. Axis 1 positively correlated with GCcds significantly. b.

Axis 1 strongly correlated with GC2 positively. c. Axis 1 weakly correlated with GC3 positively. d. Axis 2 negatively

correlated with GCcds significantly. e. Axis 2 negatively correlated with GC1 significantly. f. Axis 2 negatively

correlated with GC2 significantly.

https://doi.org/10.1371/journal.pone.0204796.g003
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axis1 (r = 0.157, p< 0.0001) and axis2 (r = 0.354, p< 0.0001). Random coil was positively cor-

related with axis1 (r = 0.204, p< 0.0001), negatively correlated with axis2 (r = -0.229,

p< 0.0001) and axis4 (r = -0.335, p< 0.0001). The second structure could explain 5.06% of

the total variability found in our proteins.

Previous studies demonstrated that the molecular weight of proteins had a significant effect

on the amino acid usage. The same trend was also found in Taeniopygia guttata proteome.

The molecular weight of proteins were negatively correlated with axis 1 (r = -0.4261, p<

0.0001). We also analyzed the influence of the Cys frequency on the total variability. We found

that Cys frequency was positively correlated with axis 1(r = 0.35, p< 0.0001) and axis 3

(r = 0.494, p< 0.0001). 4.21% of the total variability could be explained by Cys frequency. The

CDS length also showed a significant correlation with axis 2 (r = -0.2179, p< 0.0001) and axis

3 (r = -0.1252, p < 0.0001), but with very low coefficients.

Discussion

In the present study, we carried out a genome scale analysis of the amino acid usage in the

zebra finch (Taeniopygia guttata). The effects of tRNA abundance, base composition, hydro-

phobicity and aromaticity, protein second structure, Cys frequency and protein molecular

weight on amino acid usage were investigated in detail. We found that the above factors influ-

enced the variability of amino acidic composition of the zebra finch proteome, explaining

22.85%, 25.37%, 10.91%, 5.06%, 4.21%, and 3.14% of the total variability, respectively. Alto-

gether, approximately 70% (71.54%) of the total variability in the Taeniopygia guttata prote-

ome could be explained by such factors.

Among the avian species, chicken (Gallus gallus) is the best studied representative. The

chicken and zebra finch lineages diverged about 100 million years ago. Their genome struc-

tures are similar, such as smaller, tighter, marked reduction of interspersed repeats etc., but

Fig 4. Relationship between axis 2 and the GRAVY score of proteins, the Aromo score of proteins. a. Axis 2

strongly correlated with the GRAVY score of proteins. b. Axis 2 strongly correlated with the Aromo score of proteins.

https://doi.org/10.1371/journal.pone.0204796.g004
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they differ in many intrachromosomal rearrangements, lineage-specific gene family expan-

sions, the number of long-terminal-repeat-based retrotransposons, and so on [26]. The zebra

finch is an ideal model for study on the brain development, as it communicates through

learned vocalizations, an ability documented only in human (Homo sapiens) and a few other

animals, but lacking in chicken [27]. Here, we made a comparison of the amino acid usage

among zebra finch, chicken and human. As shown in Fig 5, there was no significant difference

in the average use of 20 amino acids. The trends of the various amino acid usage frequency

were generally consistent. For example, the contents of Leu, Ser, Ala and Glu were relatively

high, otherwise, some amino acid contents such as Cys, His, Met, Tyr were relatively low (S1

Table). Rao et al. [3] argued that the primary factors responsible for the variation of amino

acid usage in chicken were hydrophobicity and aromaticity. In that study, axis 1 was strongly

correlated with the GRAVY score and Aromo score. This correlation trend was not consistent

with the present study. Correspondence analysis and multiple linear regression analysis in the

zebra finch indicated that axis 1 was mainly influenced by GC2 (R2 = 0.788, p< 0.0001), other-

wise, hydrophobicity and aromaticity were main factors impacted on axis 2 (R2 = 0.743,

p< 0.0001). In other words, base composition was the primary factor responsible for the varia-

tion of amino acid usage in zebra finch. This trend is similar to a previous study in human

[20]. Other factors affecting the amino acid usage in zebra finch, such as isochore structure,

protein second structure, Cys frequency and protein molecular weight also showed the similar

trends with human (S2 Table). We do not know whether the similar amino acid usage trend

between human and zebra finch is related to the distinctive neural and behavioral traits, but it

is worth studying in depth.

There was no significant difference in the average use of 20 amino acids among zebra finch

(Taeniopygia guttata), chicken (Gallus gallus) and human (Homo sapiens). The trends of the

various amino acid usage frequency were generally consistent.

Supporting information

S1 Table. Comparison of amino acid usage frequency among Taeniopygia guttata, Gallus
gallus and Homo sapiens.
(DOCX)

Fig 5. Comparison of the average frequency of various amino acids usage among zebra finch (Taeniopygia
guttata), chicken (Gallus gallus) and human (Homo sapiens).

https://doi.org/10.1371/journal.pone.0204796.g005
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