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Abstract: As a third of people with diabetes mellitus (DM) will suffer the microvascular

complications of diabetic retinopathy (DR) and therapeutic options can effectively prevent

visual impairment, systematic screening has substantially reduced disease burden in devel-

oped countries. In an effort to tackle the rising incidence of DM, screening programmes have

modernized in synchrony with technical and infrastructural advancements. Patient evaluation

has shifted from face-to-face ophthalmologist-based review delivered through community

grassroots to asynchronous store-and-forward modern telemedicine platforms commissioned

on a nationwide scale. First pioneered with primitive 35-mm slide film retinal photography,

the last decade has seen an emergence of high resolution and widefield imaging devices,

which may reveal extents of DR indiscernible to the clinician but with implications of

potential earlier identification. Similar progress has been seen in image analysis approaches –

automated image analysis of retinal photographs of DR has evolved from qualitative feature

detection to rules-based algorithms to autonomous artificial intelligence-powered classifica-

tion. Such models have, relatively rapidly, been validated and are now receiving approval

from health regulation authorities with deployment into the clinical sphere. In this review, we

chart the evolution of global DR screening programmes since their inception highlighting

major milestones in healthcare infrastructure, telemedicine approaches and imaging devices

that have shaped the robust and effective frameworks recognised today. We also provide an

outlook for the future of DR screening in the context of recent technological advancements

with respect to their limitations in current times.
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Introduction
Despite the first description of diabetic macular changes by Eduard Jaeger and

Albert von Graefe in the 1850s, the relationship between cystoid macular oedema

and diabetes mellitus (DM) would remain disputed until Edward Nettleship pub-

lished histopathological evidence of diabetic macular oedema in 1872.1–3 Whereas

the original descriptions by Jaeger were documented by ocular fundus paintings,

Jackman and Webster were the first to publish a human retinal photograph nearly

30 years later in 1886.4,5 In 1968, the Airlie House classification of diabetic

retinopathy (DR) established the first standards defining formal quantitative and

qualitative features of disease revealed through standardised stereoscopic color
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fundus photography (CFP), as will be further explained in

the review of imaging modalities.6,7 This provided the

basic foundation for subsequent landmark studies as the

Diabetic Retinopathy Study (DRS) and Early Treatment

for Diabetic Retinopathy Study (ETDRS).8

DM is a global pandemic, estimated to affect 642 million

people in 2040. A third of these will suffer from some degree

of retinopathy.9,10 The impacts of DR on health-related qual-

ity of life, psychological well being and visual functioning

are well established.11–13 The rationale for DR screening is

based on the rules set forth by the WHO for screening in

medicine by Wilson and Junger in 1968, including among

others that DR is an important public health problem, with

suitable testing, clear benefits of early treatment, and cost-

efficiency.14 Hence, systematic DR screening programs in

Iceland, the United Kingdom (UK), Singapore and Ireland as

well as regional programs in the US and various European

countries have been established.15–20

In this article, we evaluate the features and health

economic impacts of different DR screening programs

based on retinal photography.

History
Iceland, being cited as a pioneer of DR screening, started

a screening program for patients with insulin-dependent

diabetes in 1980.19–21 Screening was undertaken by an

ophthalmologist in conjunction with the annual acquisi-

tion of CFP. Regional programs in Sweden were also

among the first established screening programs in this

era, systematically screening all DM patients in a tertiary

center in Lund with a follow-up of 5 years.22 In

Stockholm, Sweden’s capital, with more than a million

inhabitants, a screening program started in 1990 based on

four field 45° CFP in more than 100 primary healthcare

centers.23 This program was based on a national training

program of doctors and nurses, which had started 10 years

earlier and had led to improved DM control and aware-

ness. Analysing referral letters for patients with DM and

severe sight loss, Bäcklund et al could show that new

blindness in DM was reduced by more than 30% follow-

ing the implementation of DR screening.23 A consensus

statement by the British Diabetes Association declared

that DR screening should be based on methods that can

provide a minimum sensitivity of 80% and 95% of speci-

ficity for referable DR.24 The UK is the largest country to

have adopted nationwide screening for all patients with

DM above the age of 12 years based on telemedicine.

Screening commenced in 2003, reaching national

coverage in 2008. The four constituent countries,

England, Scotland, Wales and Northern Ireland provide

screening programs through an asynchronous store-and-

forward telemedicine approach. Dilated CFP are acquired

in a community setting by trained technicians and images

are assessed using hierarchical graders with subsequent

referral to the hospital eye services of the National Health

Service (NHS) when indicated.25 This program has an

uptake of above 80% of the diabetic population, having

screened more than 2,250,000 patients with DM from

2016 to 2017 in England alone.26 The value of this effort

was recognised in 2010 when, for the first time in 50

years, DR was no longer the primary cause for blindness

certification in the working-age population of the UK.27

Singapore was the latest nation to establish nationwide

telemedicine-based DR screening. Whereas previously

patients had attended ad hoc screening in the primary

care clinics for CFP, now standardised two field

45° CFPs are taken by trained nurses and directly sent to

a reading center, providing same-day reports and, if neces-

sary, referrals to hospital eye services.28 Screening for DR

is not limited to the nationwide programs covered in this

review; many countries have adopted opportunistic

screening contingent on national guidelines. As these pro-

grams, however, are neither structured nor audited, and

therefore are not comparable due to the lack of publicly

available data, they will not be covered in this review.

There are multiple examples of regional telemedicine

screenings, often covering rural areas in Australia, the

US, Canada, Europe, and India.18,29-38 A graphical over-

view of population and selected regional DR screening

programs, their implementation and outcome reporting,

precisely instant or synchronous versus asynchronous

store-and-forward reporting is represented in Table 1 and

displayed in Figure 1.

There is evidence that patient acceptance of telemedi-

cine services may be superior to traditional face-to-face

consultations. When conducting a randomised trial com-

paring telemedicine screening to direct face-to-face

screening in the US, Mansberger et al demonstrated that

attendance was higher when DR screening was based on

a telemedicine-based methodology. Interestingly, the

authors were able to show that when both groups were

combined to be screened via telemedicine, the attendance

proportions in both groups were comparable, showing that

the acceptance of telemedicine screening is higher com-

pared to face-to-face examinations.39
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It seems conceivable that increased attendance and

registration of large screening programs, therefore, is

best achieved via telemedical screening programs.40

Different Imaging Approaches
The Arlie House Symposium in 1968, an international

meeting of leaders in ophthalmology, internal medicine

and neurosurgery sought to classify and quantify the emer-

ging global problem of DR. Consensus of participants was

established on the definition, assessment and recording of

disease features identified through standardised fundus

photography.8

Only three years later, a modified version of the Arlie

House Classification was used for grading images based

on the seven field 30° stereoscopic CFP in the first land-

mark trial comparing the impact of panretinal photocoa-

gulation or observation on severe vision loss in DR.41

Over a 5-year study period, scatter photocoagulation treat-

ment reduced the risk of severe vision loss by around 50%

compared to observation, and showed a reduction of DR

progression.42 The ETDRS study, another landmark trial,

based its assessment on the Arlie House Classification

using the seven field 30° stereoscopic CFP protocol.43

The investigators however elaborated further on the grad-

ing criteria by introducing additional granular features,

such as microaneurysms and intraretinal microvascular

abnormalities. Indeed, this detailed grading system has

remained in use for many decades and is still considered

to be the gold standard. Whereas this modality has proven

to be of great value for research, it is not feasible in

a screening setting.

When comparing single, two field and three field 45°

CFP with the ETDRS gold standard, differences in the

sensitivity and specificity have been found. The sensitivity

and specificity for the detection of referrable disease was

highest in three field CFP (92% and 96%), followed by

two field CFP (96% and 89%) and was lowest in single-

field CFP (78% and 86%).44–47 The sensitivity and speci-

ficity of two mydriatic 45° CFP, the first centered at the

macula and the second on the optic disc, has been shown

to be 80.2% and 96.2%, respectively.48 Despite the super-

ior diagnostic accuracy of multiple field CFP, acquisition

needs to be balanced with the greater focus on patient

collaboration, resource and training. Accordingly, most

screening services have adopted a two field CFP strategy

as a compromise.

Due to the technological advances of digital photo-

graphy and its achievements regarding resolution, the UK

DR screening programs initially utilized 45° digital CFP

with non-mydriatic fundus cameras on dilated patients.25

The cameras must provide a resolution of at least 30

pixels per degree on a photograph of 45° in width and

40° in height and be able to accommodate ±15 D of

refractive error.25 Agreement between CFP on 35 mm

Table 1 Selected Population Screenings and Selected Regional Screening Programs

Name Starting

Date (and

End)

(n) Screened Per Annum Country (n)ational

(r)egional

(i)nstant Reporting (a)

Synchronous Reporting

NHS DESP151 2003 2.250.000 England n a

NHS Scotland DRS152 2003 264.000 Scotland n a

DESW153 2003 170.000 Wales n a

NIDESP154 2008 66.000 Northern

Ireland

n a

SiDRP155 2010 600.000 Singapore n i

Iceland156 1980 5000 diabetics- biannual screening Iceland n i

Aboriginal controlled community

Health services (ACCHS)157
2000–2004 1318 Aboriginals and 271 non

Aboriginals over 5 years (318p/a)

Australia r a

Ophdiat158 2004–2009 38,596 over 5 years (7719 p/a) France r a

South-Ostrobothnia digital

mobile screening31
1999–2006 17.471 over 7 years (2496 p/a) Finland r a

EyePACS159 2006 140000160 USA r i

Diabetic retinopathy screening

Canary Islands37
2007 42.000 (in 2015) Spain r a

Abbreviations: NHS, National Health Service; DESP, diabetic eye screening program; DRS, diabetic retinopathy screening; DESW, Diabetic Eye Screening Wales; NIDESP,

Northern Ireland diabetic eye screening program; SiDRP, Singapore diabetic retinopathy screening program.
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Figure 1 Timeline bubble chart displaying selected regional screenings with either synchronous (green) or asynchronous (blue) reporting of screening outcomes. The bubble

diameter is an approximation of the number of screened patients with diabetes per annum (yellow), references can be found in Table 1.

Huemer et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Clinical Ophthalmology 2020:142024

http://www.dovepress.com
http://www.dovepress.com


film and digital CFP has been shown to be substantial to

almost perfect regarding DR severity levels as well as

moderate to substantial for diabetic macular edema sever-

ity levels.49 In a systematic review assessing the detec-

tion of any level of DR with digital retinal imaging,

Piyasena et al could show that both non-mydriatic and

mydriatic fundus imaging delivered satisfactory levels of

sensitivity with 86% after exclusion of ungradable

images. The proportion of ungradable images in non-

mydriatic settings was 18.6% compared to 6.2% in

mydriatic settings.47 With respect to the heterogeneity

of the studies the authors concluded, that specificity

results would depend on whether ungradable images

were counted as test positive and causing difficulties in

comparing specificity and proposing standardised report-

ing of ungradable images. In a randomised trial, Scanlon

et al found age to be the strongest predictor of ungrad-

able images, mostly related to cataracts and smaller pupil

size.50 As the application of mydriatic eye drops also has

potential side effects, such as mydriasis-induced acute

angle closure with an incidence of 6 in 20,000 in

a Caucasian population, a fine balance between image

quality, gradability and patient risk needs to be

emphasised.51 The Scottish DR screening is based on

a single-field macular centered 45° digital CFP, only

using mydriatic eye drops if the image quality is poor.52

The approach of two 45° digital CFP is also used in the

first autonomous artificial intelligence (AI)-based device

with FDA approval.53 In contrast to the UK, where trained

technicians conduct image acquisition, for this study,

a device was introduced in combination with a non-

mydriatic fundus camera and AI system operator with no

prior experience of fundus imaging and a standardised

4-hour training program. The AI would detect the image

quality and operators would improve quality and/or per-

form pupil dilation for the patients if necessary. The algo-

rithm succeeded the preset superiority endpoints for

detecting referrable, in this study defined as more-than-

mild DR (ETDRS level ≥35) with a sensitivity of 87% and

a specificity of 90.7% as well as imageability rate of

96.1% hence becoming the first FDA autonomous artificial

intelligence device in any field of medicine.53

Another increasingly popular method to conduct color

fundus imaging without pupil dilation is confocal scanning

ophthalmoscopy (cSO). Beams emitted by lasers or light-

emitting diodes (LED) of different wavelengths scan the

retina generating a composite pseudocolor image with vary-

ing fields of view. Optos (Optos plc, Scotland), a Scottish

company launching their first device 25 years ago, provides

various camera models consisting of a 200-degree ultra-

widefield based on three lasers with different wavelengths,

namely blue (488 nm), green (532 nm) and red (635 nm).

Table 2 Overview of Selected Diabetic Retinopathy Clinical Decision Support Systems

Name Classification Year of

Implementation

Country Regulatory Status and Relevance to DR

iGradingM Presence/absence of DR 2010 Scotland,

UK

CE mark for medical device in EU, Level 1 Grading

NHS Scotland DRS

Retmarker Presence/absence of DR;

microaneurysm turnover

2014 Denmark/

Portugal

Class IIa medical device in EU, used in local screening

program in Portugal

EyeART Refer/no refer recommendation 2015 USA Class IIa medical device in EU, commercially available

in Canada

IDx-DR Referable/non-referable DR 2016 USA first FDA approved autonomous AI device

SELENA+ DR grading, referable/non-referable

DR

2017 Singapore planned to be implemented in Singapore by 2022

Google

Inc

Referable/non-referable DR 2016 USA CE mark for medical device in EU, current studies in

India, Thailand

RETCAD Referable/non-referable DR 2020 Netherlands Class IIa medical device in EU

MEDIOS

AI

Referable/non-referable DR 2019 India CE mark for medical device in EU, offline smartphone

based
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The potential benefits of incorporating ultra-widefield ima-

ging were shown in a screening setting, where the Optos

revealed peripheral features of the disease in 20% of

patients without discernible DR.54 The Clarus ultra-

widefield camera by Carl Zeiss Meditec is able to capture

a single-field image of 133°, which can be montaged to 200°

on two fields with LED-based cSO.55 Another example is

the multicolor scanning laser imaging module by

Heidelberg Engineering, where a special lens can be

mounted onto the OCT/cSO camera, providing a 105° pseu-

docolor image. Centervue Eidon combines a confocal scan-

ning laser ophthalmoscopy technique with a confocal white

light imaging to obtain true color CFP covering 60° per

image.56,57 These technical advances may be of great inter-

est even in a screening setting due to the advances of non-

mydriatic imaging; however, further studies are warranted.

However, the aforementioned devices enabling DR

screening may be costly and require technical support

and infrastructure limiting their use in less affluent set-

tings, such as the developing world. One potential option

is CFP acquisition using smartphone-based camera sys-

tems in combination with AI. The Remidio Fundus on

Phone camera system consists of a slit lamp-based non-

mydriatic smartphone camera, which provides 45° images

to detect DR and was validated against high-end fundus

cameras, showing on-par performance for any DR and

referable DR, thus having received FDA approval.58,59

Automated Image Analysis: Before
and After AI
Telemedical assessment of CFP for DR screening requires

a large amount of trained graders in reading centers to

cope with the rising volume of images. For this and other

reasons, the prospect of automated analysis of retinal

images has garnered interest from ophthalmologists and

computer scientists alike. The first publication analysing

computer-aided detection (CADe) in ophthalmology was

published in 1973, focusing on the detection of contour

lines of retinal vessel images.60 In 1984, a French group

was the first to describe microaneurysms in fluorescein

angiography.61 The development of digital photography

and technical advances in computing power led to compu-

ter-aided diagnosis (CADx) systems, which not only incor-

porate qualitative detection of features but also enable

calculation of disease probability and risk stratification.

To provide guidance, the American Telemedicine

Association has therefore released statements on the

quality,62,63 namely to validate against the gold standard

ETDRS 30° seven-field stereoscopic CFP.43

Traditional machine learning techniques for image ana-

lysis were based on thresholding, edge detection, proces-

sing and filters to detect disease features with more

advanced models leveraging ensemble-based approaches,

multi lesion approach or content-based image retrieval.64–67

Already in 2008, Abràmoff et al published the results of an

automated retinal image analysis system (ARIAS), report-

ing 84% sensitivity and 64% specificity for the detection of

referrable DR in a retrospective analysis of 7689 CFP. In

2013, the same group reported the results of the Iowa

Detection Program (IDP) for detection of referrable DR

and reached 96.8% sensitivity and 59.4% specificity.68

Other examples of ARIAS based on using classic

machine learning techniques have shown to provide

image grades without the help of human graders.69,70

Tufail et al conducted a study in 2013 to assess the safety

and cost-efficiency of three ARIAS, namely iGradingM,

Retmarker and EyeArt with images from the UK National

Health Service Diabetic Eye Screening Program (NHS

DESP), comparing it to manual grading.71 They showed

that EyeArt would provide a 94.7% sensitivity for any DR,

93.8% for referrable DR and 99.6% for PDR. Retmarker

would achieve 73.0% sensitivity for any DR, 85% for

referrable DR and 97.9% for PDR. iGradingM classified

all images as either showing disease or being ungradable;

hence, iGradingM could not be included in further analy-

sis. Cost efficiency compared to human graders was shown

for Retmarker and EyeArt. iGradingM is an ARIAS that

provides binary grades for disease/no disease as well as for

image quality. It has been used as a level 1 grading in the

Scottish DR screening program after extensive validation

since 2010.66,72,73 In a retrospective evaluation, the rate of

DR was 6.6% with a sensitivity of 97.8% for referrable

DR;73 the specificity was calculated as 41.2%.74 The

above mentioned traditional machine learning techniques

have been reviewed in detail elsewhere;75–77 their rele-

vance today has, however, has been surpassed by the

recent developments in deep learning (DL).

Although the principles of DL were described decades

ago, only recently has its potential to healthcare applica-

tions become popular. The main reasons are due to

improvements in computing power, especially by graphi-

cal processor units (GPU), large quantities of digital data

and publically available pre-trained convolutional neural

network (CNN) models like AlexNet, VGGNet or

GoogleNet.78–82 DL models have outperformed traditional
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methods in speech recognition, computer vision, and have

also been shown to be equivalent to humans in disease

detection from medical imaging.83–87 One of the main

differences of CNNs compared to traditional techniques

is that raw data are processed by identifying features of

interest through extensive training.79

With the vast amount of data collected from screening

services, DL development may be ideally afforded by DR

screening. The group of Abramoff et al, who had exten-

sively reported on automated image analysis systems men-

tioned previously, enhanced their algorithm by

incorporating DL, showing an increased, although not

statistically significant sensitivity of 96.8% for referrable

disease; however, they reported a steep increase from

59.4% to 87% specificity validating on the same publicly

available MESSIDOR-2 dataset with an area under the

receiver operator curve (AUC) of 0.98 in the detection of

referrable disease.88 The algorithm, now called IDx-DR,

has also been validated on a Dutch dataset labelled by

three retina specialists using the International classification

of diabetic retinopathy (ICDR) and the EURODIAB grad-

ing. The reported sensitivity and specificity using ICDR

grades were 68% and 86%, respectively, and 91% and

84% using the EURODIAB grades.89 A key evaluation

aspect in prediction models validation is that of the pro-

spective setting. The same group subsequently published

results from a prospective trial in a primary care setting,

exceeding the pre-specified primary endpoint goals of

a >85% sensitivity and >82.5% specificity with

a sensitivity/specificity of 87.2%/90.7% and an imageabil-

ity rate of 96.1%, receiving FDA approval for diagnosing

more than mild DR autonomously. It is conceivable that

the metrics of the IDx-DR algorithm could represent

benchmark metrics for future market authorisation from

the FDA.90

One concern of DL models, which are typically trained

for the classification of a single disease, is their limited

ability to generalise to unseen pathology. Although a given

DL model may demonstrate clinical effectiveness in the

detection of referable DR, what of the scenario where the

image may demonstrate features of other diseases, such as

glaucoma, which are known to occur with a higher inci-

dence in people with DM?91 Ting et al have reported on

a DL model to analyse DR, glaucoma and age-related

macular degeneration (AMD) using CFP.92 This algorithm,

now called SELENA+ was trained on almost 500,000

images;93 the authors reported a sensitivity of 90.5%,

a specificity of 91.6% and an AUC of 0.936 for detecting

referrable disease and was tested on the Singapore

Integrated DR programme (SiDRP). To test the algorithm

in multi-ethnicity environments, it was externally vali-

dated on datasets from six different countries, including

Singapore, Hong Kong, China, Australia, USA and

Mexico, achieving an AUC of 0.889 to 0.983 in these

datasets. Of importance, this algorithm could detect possi-

ble glaucoma with a sensitivity/specificity of 96.4%/87.2%

and 93.2%/88.7% for AMD when compared to human

graders. Only recently, the Singaporean Health Minister

announced that this algorithm will be deployed across the

Singapore DR Screening program by 2022.94

In 2016, Gulshan et al published the results of a study

sponsored by Google Inc, about DR detection by a CNN

trained on about 128,000 CFP graded by 54 US licensed

ophthalmologists and ophthalmology residents.82 Similar to

IDx-DR the model could detect referrable DR with an AUC

of 0.991 and 0.990 for the EyePACS-1 and MESSIDOR-2

datasets, sensitivity/specificity for EyePACS-1 were 90.3%/

98.5% and 87.0%/98.% for MESSIDOR-2.

The EyeARTsystem owned by Eyenuk is another exam-

ple of a DL system used for DR grading, that has improved

its performance by combining their traditional machine

learning approach with CNN. EyeART v1, as aforemen-

tioned, has been evaluated in a UK-based study.71 EyeART

v2.0, however, is a cloud-based technology and has been

tested on >800,000 images of about 100,000 consecutive

patients.95 It achieved a 91.3% sensitivity and 91.1% spe-

cificity for referrable DR with an AUC of 0.965 compared

to the EyePACS graders. Furthermore, the algorithm was

tested on the above mentioned Remidio Fundus on phone -

smartphone-based system. Albeit a small study with only

296 patients included, EyeART achieved a sensitivity/spe-

cificity of 95.8%/80.2% for detecting any DR and 99.1%/

80.4% for detection of sight-threatening DR. Remidio, the

company behind the smartphone-based CFP, has developed

a DL system called MEDIOS AI.96 This offline system on

the same smartphone, which takes the photograph, was

trained to detect more-than-mild DR achieving an impress-

ive performance of 100% sensitivity and 87% specificity in

231 patients compared to the grading from ophthalmolo-

gists using the same images. Further studies with larger

cohorts are ongoing at multiple sites.

Another, also commercially available web-based solu-

tion is called RetCAD, owned by a dutch company named

Thirona. This algorithm is trained to detect DR and AMD,

and has been validated on the MESSIDOR dataset with

1200 images and the AREDS dataset for AMD with
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130,000 images. The sensitivity/specificity for referrable

DR were 90.1%/90.6% and 91.8%/87.5% for referrable

AMD, which was defined as intermediate or severe AMD;

AUC were reported as 0.951 for DR and 0.949 for AMD.97

The above mentioned DL models have been reviewed in

detail elsewhere and are summarised in Table 2.98,99

DL research has additionally hinted at the potential

benefits of DR screening for disease risk stratification

beyond the eye. People suffering from DM have a higher

incidence of several complex disorders of ageing, includ-

ing cardiovascular disease and dementia, which have well-

described quantifiable retinal manifestations.100,101 Deep

learning, of course, is not limited to detect DR, and,

depending on the labels of the images during the training

of the model, other outcomes can be evaluated. Poplin et al

reported in 2017 a model that was trained with the images

and labels of the UK biobank study for prediction of

cardiovascular risk factors from CFP using DL. The DL

system could detect age with a mean absolute error within

3.26 years, smoking status (AUC 0.71) and sex with an

astonishing AUC of 0.97, task retinologists were not able

to conquer in 150 years of looking at the fundus.102 Poplin

et al reported to have also trained models to detect HbA1c

from CFP, however, were limited to the metadata from the

datasets included in the study, as HbA1c was only avail-

able in one dataset.102 The same group has also developed

a model to detect anemia from CFP with an AUC of 0.89,

again training on images of the UK biobank study.103

Although only providing proof of concept and lacking

robust evaluation, these two examples show the potential

benefit of telemedicine screenings for systemic disease

evaluation in patients with DR. Oculomics, a term intro-

duced for describing ocular biomarkers for systemic dis-

ease, could be of great interest in these systematic and

ideally nationwide screenings.104

Clinicians should, however, be aware, that many of the

AI-related publications lack reporting standards.105 To

address this scarcity, the CONSORT-AI and SPIRIT-AI

steering groups are planning to extend the current state-

ment, complementary to current reporting standards as the

TRIPOD-ML initiative. It is also important to understand

the metrics of the compared methods, and to judge the

validation data sets on multiple ethnicities, image quality

as well as being aware of flaws in methodology.106–108 So

far, only the IDx-DR device has been granted FDA

approval and although the promise of DL is big, the

clinical value has yet to be robustly evaluated. Few studies

in medical images follow a prospective and/or randomised

design, and are at higher risk for bias; data and code

availability are not given in most studies.

It is worth mentioning that these so-called narrow AI

models are trained for specific tasks, and therefore will not

be able to detect retinal comorbidities like choroidal mel-

anomas or retinal detachments. These limitations will

make human adjudication in ungradable CFPs for the

foreseeable future irreplaceable.

With respect to the global distribution of diabetes, it is

of paramount importance for the latter, that ARIAS are not

only validated in high-income countries to provide further

certainty before a potential implementation can be envi-

sioned. This was, for example, undertaken by the groups

of Abramoff et al with 6788 images from the Nakuru Eye

Study in Kenya, and Bellemo et al in Zambia, validating

their model on 76,370 images of 13,099 patients with

diabetes.109,110 Gulshan et al conducted a prospective vali-

dation of the above mentioned DL system developed by

Google inc., and evaluated the performance on data from

two eye care centers in India.82,111 The performance was

compared to human graders, in a binary fashion for detect-

ing more-than-mild DR (ETDRS level ≥35) or referable

diabetic macular edema. With an 88.9%/92.2% sensitivity/

specificity and an AUC of 0.963 in one center and

a 92.1%/95.2% sensitivity/specificity and an AUC of

0.980 at a second center, the automated DR detection

was equal to or succeeded human grading.112

Health Economics
The global pandemic of DR requires efforts on different

levels, and epidemiological as well as technical stand-

points need to be considered.113 Almost 80% of respon-

ders in the DR Barometer study replied that the sight

impairment due to their DR and diabetic macular edema

make daily life activities including work difficult and

sometimes impossible.114 The costs of DR have been

shown to rise with the progression of the disease as pub-

lished in a study by Woung et al in Taiwan,115 and have

been calculated to account for 1.5% of the entire health-

care costs in Germany in 2002, estimated to reach 3.51

Billion € in this year.116 The screening for DR with the

aim of early detection and timely as well as appropriate

referral according to the guidelines has been shown to be

cost-effective.117,118 In a systematic review recently pub-

lished, Lee et al could show, that teleophthalmology is the

most cost-effective intervention among all telemedicine

strategies in diabetes management.119 Furthermore, the

implementation of telemedicine screening when compared
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to family physician-based screening, both based on fundus

imaging has also been shown to be cost-effective.28 The

authors concluded, that firstly the costs of grading in

a central reading center are lower, and secondly due to

higher specificity on the grades less unnecessary referrals

were generated. The US Department of Veteran Affairs

concluded in a retrospective study that in order to be cost-

effective, a DR screening service has to include more than

3500 patients, or patients, who are less than 80 years of

age.120 However, offering annual screening to all patients

with DM might not be cost-effective, as the number of

patients with DM is increasing.121,122 The risk for patients

with DM and no evidence of DR to develop sight-

threatening DR over a period of 2 years are relatively

low, independent of single-field or two field CFP

screenings.21 This finding was supported by the analysis

of 116,134 patients undergoing DR screening in the US by

Kaiser Permanente, the largest private healthcare provider

in the US, showing that patients with no or mild DR rarely

required retinal intervention in the 2 years after retinal

screening.123 By stratifying patients into low risk and

high-risk groups due to their repeated findings in the

screening services, and subsequent adaptation of the

screening intervals, cost reduction could be

achieved.122,124 It is, however, unclear how patient beha-

viour would change under extended screening intervals,

giving the patient a wrong impression of the potential

damage that can be caused by DR.125

The UK national diabetic eye screening program

(NDESP) is by far the largest existing program, having

screened 2.257.124 out of 3.175.121 eligible patients alone

between 2016 and 2017.26 These images were all graded

by trained graders, undergoing thorough training to be

eligible, with various levels of adjudication.126 In 2011

the total amount of workload for the human graders in

the NDESP was calculated to be greater than 300.000

hours per year for retinal images of roughly 1.700.000

patients.127 This labour-intensive work also contains

further potential for reduction of cost. Strategies to

improve the cost-effectiveness could include, of course,

automated image processing using ARIAS.71,74 Tufail et al

presented two strategies for calculating cost-effectiveness

of two ARIAS, Retmarker and EyeArt. The grading sys-

tem in the NDESP contains three levels of graders, with

adjudication for different levels of DR.71 In strategy 1, the

ARIAS would replace the level 1 grader, in strategy 2 the

ARIAS would act as a filter before the level 1 grader. The

authors concluded that, if properly implemented, ARIAS

could help the impending challenge of DR in both devel-

oped and developing countries. In a preprint issued by the

Lancet, Xie et al have conducted an economic analysis

comparing a semi-automated DL system, a fully auto-

mated DL system and the current full human grading

model of the SiDRP in Singapore.128 They could show

that the semi-automated DL system, which would function

as a triage prior to secondary human assessment is equally

effective as full human assessment, but less cost-

intensive.128 Further assessments of the costs and require-

ments of transition processes from human-based screening

to AI-assisted programs as well as from opportunistic to

population-based-programs are warranted.129

Implications for the Future
Most patients with diabetes are not aware of their current

status of DR. The National Health and Nutrition

Examination Survey (NHANES) in the US, the Andrah

Pradesh Eye Disease Study (APEDS) in India and the

Singapore Epidemiology of Eye Disease (SEED) Study

all found that more than 70% of the patients with diabetes

assessed in these studies were not aware of their own DR

status.130–132 Due to an increasing global population, the

majority of patients with diabetes now live in low- and

moderate-income countries, with potentially underfunded

healthcare systems.133

The International Diabetes Federation conducted the

DR barometer study, with the aim to assess the awareness

of DR and the access to care. This study of 2329 health-

care professionals from 41 countries reported several inter-

esting insights: more than a third of diabetes specialists

included in the survey reported that they would not discuss

eye care with their patients with diabetes. Sufficient infor-

mation on eye complications was only available of one in

five primary care providers. The most substantial barriers

to care according to the healthcare professionals were

patients´ lack of knowledge or awareness of eye complica-

tions in 43%, the lack of importance given to eye exam-

inations by patients in 33% and the high cost of care in

32%. Ophthalmologists included would complain about

late screening in 66% and a lack of patient education

material in 55%.134 These insights have to be interpreted

critically due to the way this study was conducted, and

may only give a snapshot of today’s situation.

There is undeniably a need for a global strategy to

tackle the burden of DR. Patient education will be as

important as raising awareness from the levels of primary

care all the way through to tertiary care. Technical
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advances, as well as lessons learnt from large screening

services, may lead the way. Initiatives, such as the

Diabetic Retinopathy Network (DR-NET), supported by

the VISION 2020 LINKS Programme, provide opportu-

nities for knowledge exchange on the construction of DR

screening programmes, best practice on the development

of national frameworks and procedures on governance and

audit. Another consideration is the advances in technology,

particularly in regards to the use of digital cameras as well

as cloud-based and offline screening algorithms. It is esti-

mated that 80% of the population of sub-Saharan Africa

have a mobile device, and eHealth applications and

screening programs could play an important role as health-

care devices.135

Deep-learning systems need to go through robust vali-

dation processes in multiethnic cohorts to avoid biases; the

ownership of data on a global level is still not regulated.136

The European Union´s General Data Protection Regulation

or California´s Consumer Privacy Act are examples of

recent regulations to apply rules for data transfer and

collection, and may be first steps in the right direction of

data protection in a fast-growing online world.137,138 An

interesting proposal about the ethics of sharing and using

clinical imaging data for AI was put forward by Larson

et al, stating that rather than discussing the ownership of

data between patients and provider organisations, they

propose that clinical data would not be owned at all in

a traditional sense.139 Larson et al argue that everybody

involved in dealing with the data has an obligation to

ensure that the data would be used for the benefit of future

patients and society. It is also important to bear in mind

that by installing a screening service into an already

stretched system with little resources for treatment, strate-

gies from high resource countries will not work. Thus, for

instance, criteria for referrable disease could be adapted to

focus on those being affected the most.110

Frequently asked questions about these DL systems

almost always include the following three: will AI replace

ophthalmologists, how can we open the black box, and can

these algorithms be sued? The first question was addressed

in a recent article by Korot el al, stating that although

current AI systems may be good at dealing with high

volume data related tasks; however, a clinician´s ability

to interpret the complex and multivariate data-driven AI

recommendations should be the next step for

ophthalmologists.140 The black box problem refers to the

interpretability of AI systems, and those end-to-end solu-

tions will not provide insight to the clinicians regarding.141

As these DL systems are providing interesting results,

clinicians as well as public health providers would be

interested to be able to interpret, and scale the newly

discovered insights, for example, individually stratifying

certain risk factors. Current strategies of using again AI to

analyse these black boxes by using reinforcement learning

are providing a prosperous outlook, and hopefully, these

black boxes can be turned into white boxes soon.142–144

So, what about the legal aspects of AI, can an algorithm be

sued?145 The answer to this question will depend a lot on

the regulators and the robust clinical evaluation prior to

the approval.

As the current Covid19 pandemic causing global tur-

moil in 2020 caused by SarsCoV-2 is affecting all con-

tinents with an unclear outcome, telemedicine has arisen to

the forefront of transforming healthcare delivery

models.146,147 In Ophthalmology, the decoupling of clin-

ical data gathering using virtual clinics and explanation of

results using video consultations with treatments such as

intravitreal injections for diabetic macular oedema will

allow the sustained provision of eye care in the new era

of social distancing. Not only have virtual clinics proven

to be cost-effective and safe, but patients’ acceptance is

also high.148,149 Once validated, simple machine learning

techniques could support fully automated clinics support-

ing clinicians for instance by detecting non-glaucomatous

visual field defects in virtual glaucoma clinics, hence

enhancing patient safety.150 This model not only future

proofs eye care provision but provides resilience should

a second or third wave pandemic arise. Research in the

patient acceptance, efficacy, safety, and cost-efficiency of

these pathways will likely, in the coming years, dominate

the implementation research fields of Ophthalmology.

Conclusions
The growth in global incident DM rates secondary to

ageing populations and rising obesity levels are well

recognised. While many parts of the developed world

benefit from effective infrastructure for DR screening,

there remains a scarcity of similar programmes in the

developing world, where over 60% of the global DM

burden is thought to exist. Fortunately, novel approaches

in hardware and image analysis may afford the opportu-

nities to address this unmet need. The latest imaging

devices provide higher resolution and peripheral views

previously restricted to clinical examination and the unpre-

cedented technological environment has fostered a vibrant

sphere of AI research in DR detection. The rewards of
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these efforts are beginning to translate into clinical benefit

with the approval of some of the first autonomous AI-

based DR detection tools. Hardware bears important finan-

cial considerations however the permeation of mobile

smartphones in the developing world may provide

a window of opportunity. Moreover, enhancing global

advocacy through partnerships, such as that epitomised

by the Vision 2020 LINKS programme, has helped estab-

lish robust frameworks for the implementation of DR

screening in the developing world. By either engaging

with clinicians through telemedicine platforms or cloud-

based upload to an AI model, there are indications that we

may yet be able to democratize the power of effective DR

screening on a global scale.
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