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Abstract: Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective 
responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous 
neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency 
virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, 
HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways 
activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in 
cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated 
with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this 
glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. 
Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other 
neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in 
macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune 
modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of 
pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV 
infection is also discussed. 
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OXIDATIVE STRESS IN HIV INFECTION 

 Evidence for a role of oxidative stress in the pathogenesis 
of HIV infection in both systemic and central nervous 
system (CNS) compartments has consistently been 
demonstrated in HIV infected individuals. HIV infection can 
induce systemic oxidative stress [1-4] through both chronic 
immune activation [5-7] and direct effects of HIV proteins 
[8-10]. Individuals infected with HIV express diminished 
levels of glutathione – a potent endogenous antioxidant – in 
plasma and peripheral blood mononuclear cells (PBMCs) 
generally, and specifically in lymphocytes and monocytes 
[11-13]. Infected individuals also express elevated serum 
levels of the lipid peroxidation products malondialdehyde 
and hydroperoxide [14-16]. HIV infected cells demonstrate 
reduced levels of thioredoxin (a thiol antioxidant) [17], and 
the HIV proteins gp120 [8, 18-22], Vpr [10, 23], and Tat [9, 
18] can directly induce cellular oxidative stress. Oxidative 
stress within infected cells can promote HIV replication 
through nuclear factor-kappa B (NF-κB)-driven 
transcriptional regulation [24-26] and inflammatory cytokine 
release [24, 27-31], thereby perpetuating systemic immune 
activation and disease progression. In clinical studies, 
markers for increased oxidative stress in plasma and  
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circulating CD4+ T-lymphocytes correlate with disease 
progression in HIV infected individuals [32-34]. 
 HIV infection of the brain, which likely occurs through 
infiltration of infected immune cells such as monocytes and 
T lymphocytes, also induces oxidative stress within the CNS 
[5, 6, 27, 35-37]. HIV proteins such as gp120 [8, 18, 38], 
Vpr [10, 39], and Tat [9, 18, 30] have been implicated in the 
direct induction of oxidative stress in several CNS cell types. 
In macrophages, the primary CNS reservoir for HIV 
replication, oxidative stress drives neurotoxin production 
[28, 37, 40-44], and markers of oxidative stress correlate 
with neurocognitive impairment [27, 43, 45] in HIV-infected 
individuals. Thus, the mechanisms and pathways by which 
HIV infection drives immune activation and its associated 
oxidative stress could be the targets for attenuating disease 
progression in both systemic and CNS compartments. 
 Although HIV does not infect neurons, HIV infection can 
result in a clinical syndrome of neurological and behavioral 
deficits known as HIV-associated neurocognitive disorders 
(HAND), which are pathologically associated with neuronal 
injury and neuronal loss. Chronic HIV infection in the CNS 
drives immune activation of resident macrophages and 
microglia, pervasive reactive astrocytosis, perivascular 
inflammation and infiltration of monocytic cells [46], which 
can result in HIV-encephalitis (HIVE), especially in those 
not receiving combination antiretroviral therapy (cART)[47]. 
Although the morbidity and mortality of HIV infection and 
the severity of neurocognitive impairment and associated 
neuroinflammation in HAND have significantly decreased 
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since the introduction of cART in 1996 [48-53], 
neuroinflammation persists at or above that observed in the 
pre-ART era [48, 50, 51, 53, 54], and systemic and CNS 
markers of activation of macrophages correlate with 
neurocognitive impairment in chronic HIV infection [55-63], 
even when HIV levels are controlled with cART [64-68]. 
Interestingly, the clinical severity of HAND correlates more 
with monocyte infiltration and monocyte-derived 
macrophages (MDM) and microglia activation than with 
CNS viral antigen load or number of HIV-infected cells in 
the brain [68-72]. 

MACROPHAGES AND MICROGLIA AS MEDIA-
TORS OF HAND NEUROPATHOGENESIS 

 While systemic effects of HIV infection are likely driven 
by HIV infection of CD4+ T-lymphocytes, the CNS effects 
of infection are predominantly driven by HIV infection of 
macrophages and microglia. Within the CNS productive HIV 
infection, i.e. infection resulting in the production and 
release of new infectious virions, occurs in perivascular 
macrophages and microglia, while HIV infection in 
astrocytes is non-productive [73-76]. Monocytes originate 
from the bone marrow, travel through the vasculature, and 
can differentiate into dendritic cells (DCs) in the periphery, 
or given the appropriate chemotaxis signal can transverse 
across the endothelial cell barrier into underlying end-
organs; DCs do not cross this vascular barrier as readily as 
monocytes. After or during transmigration, monocytes 
differentiate into perivascular macrophages, often referred to 
as monocyte-derived macrophages (MDM). Monocytes 
express the receptor CD14, and all cells of the monocyte-
lineage – e.g. MDM and DC – continue to express CD14 
after differentiation. Migration of HIV-infected monocytes 
across the blood-brain-barrier (BBB) is believed to be the 
primary source of HIV entry into the CNS. However, it 
should be noted that other possible routes of HIV entry into 
the brain include transmigration of HIV-infected T 
lymphocytes from the blood into CNS tissue or parenchyma 
[77-79], and infection of or transcytosis through brain 
microvascular endothelial cells that comprise the BBB [80-
86], although there is limited pathological evidence for these 
routes of entry. See Fig. (1) for a schematic model of HIV 
neuropathogenesis. 
 It is still uncertain how and when HIV enters the CNS, 
and two different models have been proposed: the “Trojan 
horse” and “late invasion” models. In the “Trojan horse” 
model, the virus is carried across the BBB early during the 
course of infection by infiltrating macrophages, and only 
later during infection, the virus is activated to replicate, 
recruiting additional monocyte/macrophages into the CNS 
via cytokine and chemokine signaling, and increased BBB 
permeability. In the “late invasion” model, chronic immune 
dysregulation in the periphery leads to an expansion of 
activated monocyte population from bone marrow that is 
highly invasive into the CNS and other end-organs [87]. 

MACROPHAGE NEUROTOXIN PRODUCTION 

 The neuropathology of HAND is described as decreased 
CNS neuronal synaptic and dendritic density [70, 88, 89],  
neuronal cell death [72, 90-92], and altered neuronal cell 

functioning [93-101], each of which has been linked to 
persistent inflammation and oxidative stress. These 
neurotoxic effects likely result from effects of soluble factors 
released from HIV-infected monocyte-derived macrophages 
(HIV-MDM) and immune-activated MDM, microglia and 
astrocytes [102-105]. Many studies have implicated 
excitotoxic activity through N-methyl-D-aspartate-receptor 
(NMDAR) over-activation [106-108]. The other neurotoxins 
released from HIV-MDM or microglia are glutamate [109], 
quinolinic acid [110, 111], NTox [112], platelet activating 
factor [113], TNFα [114], and the HIV proteins gp120 [115, 
116] and Tat [108, 117] and others. Analysis of 
cerebrospinal fluid (CSF) from HIV-infected individuals 
demonstrated increased levels of glutamate [118-120], 
quinolinic acid [111, 121], platelet activation factor [113], 
TNFα  [108, 114], and other excitotoxins, which correlate 
with increased severity of HAND and with 
neuroinflammation. Several of these neurotoxins also alter 
astrocyte function, in particular glutamate homeostasis. 

HEME OXYGENASE-1 AND HIV CNS INFECTION 

 Despite the multi-faceted nature of CNS damage by HIV, 
there may be an innate host response to combat the 
pathological effects of neuroinflammation and oxidative 
stress. Heme oxygenase-1 (HO-1, alternatively referred to as 
heat shock protein-32, HSP32), initially identified as a phase 
II detoxifying enzyme that degrades free heme, has been 
shown to have potent anti-oxidant qualities and to be highly 
inducible in response to numerous toxic insults, including 
heat-shock [122-127], ultraviolet radiation [128], ischemia 
and/or hypoxia [129-131] or hyperoxia [132], heavy metals 
[130, 133, 134] and exposure to reactive oxygen species 
(ROS) [126, 128, 135-141]. To counter the 
neuroinflammation and oxidative stress, a normal cellular 
response is acute induction of HO-1 expression, which 
generates the potent antioxidants bilirubin and biliverdin, as 
well as carbon monoxide, which has also pro-survival effects 
[142, 143]. However, whether this response occurs within 
the CNS during HIV infection has not been reported. 
 HO-1 is highly expressed in CNS cells, primarily 
astrocytes, macrophages and microglia, particularly during 
brain injury in several disease states, including Alzheimer’s 
disease [144-146], Parkinson’s disease [147-149], Pick 
disease [150], Huntington’s disease [151] and multiple 
sclerosis [152, 153] (for more reviews on neurodegenerative 
disorders: [154-157]). Recent work from our lab has 
demonstrated a deficiency of HO-1 expression in the brains 
of individuals with HAND with and without encephalitis 
(Gill et al. in revision), and in HIV-MDM in vitro [158], 
which suggests a possible role for HO-1 deficiency in the 
neuropathogenesis of HAND. 

HEME, HEMOGLOBIN SCAVENGING AND HEME 
OXYGENASE-1 INDUCTION 

 As the name suggests, a primary function of heme 
oxygenase is to metabolize heme. Heme is a porphyrin 
molecule with a bound iron (Fe++) ion, and is a prosthetic 
group used by hemoglobin and myoglobin proteins to  
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transport oxygen (O2) by the binding of O2 to Fe++. 
Erythrocytes also known as red blood cells (RBCs) are 
abundant with heme due to their abundance in hemoglobin, 
as the primary carriers of oxygen to tissues not capable of 
direct gas exchange with the external environment. 
Macrophage scavenging and phagocytosis of hemoglobin-
containing senescent erythrocytes (but not erythrocytes 
without hemoglobin) induce HO-1 expression [136, 159]. 
Indeed, monocytes/macrophages appear to function as the 
major scavenger of free hemoglobin in the vasculature. 
Monocytes/macrophages express the membrane protein 

CD163, which binds to free hemoglobin [160-162] and 
induces HO-1 expression [163-165]. HO-1 expression is 
essential for monocytes/macrophages viability during erythr-
ophagocytosis as such cells deficient in HO-1 (HO-1 -/-) die 
due to this activity [166]. 
 Free heme or hemin also induces HO-1 in 
monocytes/macrophages [167-169]. Macrophages also 
express CD91/lipoprotein receptor related protein (LRP), 
which scavenges free hemoglobin and induces HO-1 
transcription upon binding [170]. Interestingly, CD91/LRP is 
expressed in several other cell types, such as neurons, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Model of HIV Neuropathogenesis. HIV infected immune cells, including CD4+ T cells and CD14+ monocytes, circulate through 
the blood and produce reactive oxygen species (ROS), which can further enhance viral replication and release. Infected or activated immune 
cells can also release the pro-inflammatory cytokines, TNF-α and IL-1β, which ROS can exacerbate. HIV proteins – gp120, Tat, and Vpr – 
may also be released and induce toxicity independently of infectious virions. ROS contribute to increased blood brain barrier (BBB) 
permeability, which can allow for increased entry of infected immune cells (e.g. monocytes) from the blood into central nervous tissue; 
infected T lymphocytes may also be a source of virus entry into the CNS. As monocytes enter the nervous tissue they differentiate into 
macrophages, and release IFN-γ in addition to TNF-α. HIV may replicate in macrophages and may be transmitted to microglia, which in turn 
can further replicate and transmit HIV. Infected or immune-activated microglia or macrophages can produce IFN-γ and TNF-α in a positive 
feedback loop, and can release a host of neurotoxic factors. Most neurotoxicity is initially limited to synaptic loss and decrease in dendritic 
density that is dependent on the NMDA-type glutamate receptor. This leads to eventual loss of neuronal function and finally neuronal death. 
HIV can infect but not productively replicate in astrocytes. Activated astrocytes have abnormal glutamate metabolism, leading to excess 
glutamate release and excitotoxicity. TNF-α and IL-1β stimulation of astrocytes can further increase glutamate release. Astrocytes, microglia 
and macrophages are potent inducers of heme oxygenase-1 (HO-1), which is downregulated in infected macrophages and in HIV-infected 
brains, and thus may also contribute to neuropathogenesis of HIV infection; neurons demonstrate very limited expression of HO-1. Red 
arrows indicate potential neurotoxins or direct neurotoxic pathways. 
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although it is unclear if it also functions to scavenge 
hemoglobin or induce HO-1 in neurons [170]. This induction 
of HO-1 in monocytes/macrophages through 
hemoglobin/heme binding, however, can be abrogated by 
other cellular cues. In particular, binding of the platelet 
derived CXCL4 inhibits CD163 expression and thus also 
HO-1 induction [171]. Exposure to lipopolysaccharide (LPS) 
can also inhibit CD163 expression and HO-1 induction in 
monocytes [162]. Moreover, oxidized hemoglobin induces a 
structural alteration that does not allow binding of CD163 to 
signal downstream to increase HO-1 expression [172]. Thus 
HIV may indirectly reduce HO-1 in monocytes/macrophages 
due to the increased levels of ROS and oxidative damage in 
HIV infection. 
 HO-1 enzymatic breakdown of heme yields bilirubin, 
which is further converted to biliverdin, both of which are 
potent free radical scavengers. Thus, macrophages can 
induce HO-1 to counteract the high levels of ROS they 
produce during phagocytosis, including phagocytosis of 
parasites, which are released in order to better destroy the 
engulfed material [173-175]. Indeed, exposure to external 
ROS can induce HO-1 in monocytes/macrophages [139, 176, 
177]. HO-1 may also induce the production of glutathione, 
another potent endogenous antioxidant [173, 178], and 
depletion of glutathione may itself trigger HO-1 induction 
[179]. 

INFECTIOUS AGENTS AND HEME OXYGENASE-1: 
BENEFICIAL AND INJURIOUS RESPONSES 

 In addition to heme metabolism and oxidative stress, 
monocytes/macrophages increase HO-1 expression in 
response to viral and bacterial agents as well. Several studies 
have shown robust induction of HO-1 in 
monocytes/macrophages following exposure to LPS, 
typically found in Gram-negative bacteria [180-185]. Also, 
in at least one study, HO-1 is found to be induced by and 
protective against non-tuberculous mycobacterial infection 
[186]. HO-1 is also induced during tuberculosis infection, 
however it is unclear whether this promotes or reduces 
infection [187]. Herpes simplex virus-1 (HSV-1) 
encephalitis induces a strong HO-1 response in macrophages 
in the brain [188, 189]; and infection of neurotropic Borna 
disease virus (BSV) in the brain leads to sustained HO-1 
induction in activated microglia, reactive astrocytes and 
mononuclear infiltrates for up to 4 weeks post-infection, 
presumably as a neuroprotective response [190]. 
 The macrophage production of HO-1 during other 
parasitic infections might subserve both beneficial and 
injurious responses. As monocytes/macrophages express 
HO-1 to protect against the ROS they release to kill engulfed 
pathogens, induction of HO-1 helps to promote 
monocytes/macrophages survival and maintain degradative 
function. However, certain parasites have found ways to 
exploit the protective effects of HO-1 expression in 
monocytes/macrophages. For example, Leishmania chagasi 
promastigote infection in macrophages, persists longer in 
macrophages that express HO-1 [191], and the ability of HO-
1 to reduce superoxide production is thought to aid in 
Leishmania Mexicana pifano amastigote infection [174]. 
However, drugs that are successful in controlling Leishmania 

donovani appear to do so by increasing HO-1 expression in 
THP-1 monocytic lines [192]. 
 In contrast, higher HO-1 expression is associated with 
increased susceptibility to malaria (Plasmodium falciparum) 
infection [193-196]. This may be due to the heme overload 
from malaria-induced hemolysis, from which increased HO-
1 activity would lead to an overload of free iron [197]. HO-1 
expression is high in the malaria-infected brain, monocytic 
cells and microglia that surround the classic malaria 
granulomas (Durck’s granulomas), [198]; however, whether 
this is a beneficial or injurious response to bleeding and free 
hemoglobin rather than a direct response to the malaria 
pathogen is unknown, as other reports have found that HO-1 
expression can be protective against the disease [199, 200]. 

INJURY-INDUCED HEME OXYGENASE-1 
EXPRESSION IN THE BRAIN 

 Although neurons appear to have little to no HO-1 
inducibility within the brain, some neurons in the spinal cord 
peripheral nervous system (PNS) show increased HO-1 
expression in response to injury [201-203]. Some reports 
indicate that cortical neurons can express HO-1, if only for a 
few hours [204-207]. In contrast, HO-1 is robustly expressed 
in astrocytes, macrophages, microglia, and oligodendrocytes 
in response to injury [201, 208, 209], including 
hypoxia/ischemia [204, 207, 210]. 
 Perivascular macrophages within the brain can express 
high levels of immunoreactive HO-1 during injury. This is 
especially true where there is hemorrhage [201, 205, 211, 
212]. In particular, CD163+ macrophages appear to be 
primary inducers of HO-1, at least in response to traumatic 
brain injury (TBI) [213, 214]. Increased permeability of the 
BBB is also sufficient to induce HO-1 expression in 
astrocytes and macrophages/microglia [215]. There is 
prolonged expression of HO-1 in microglia and 
macrophages, with reports of up to 42 days [203], 5 months 
[206], or 6 months after the initial injury [216]. 

FUNCTIONAL CONSEQUENCES OF INDUCED 
BRAIN HO-1 EXPRESSION 

 In most reports, the increased expression of HO-1 is 
thought to be neuroprotective given the many beneficial 
cellular effects of HO-1 [157]. However, there is evidence 
that in some cases HO-1 induction may exacerbate injury, 
and therapeutic interventions that reduce HO-1 in glia have 
been proposed for certain neurodegenerative diseases [156]. 
For example, Wang & Doré [212] reported that HO-1 knock-
out mice had less brain injury due to intracerebral 
hemorrhage than their wild-type counterparts, along with 
overall reduction in leukocyte infiltration, 
microglial/macrophage activation, and free radical levels. 
Also, macrophage cell lines (RAW 264.7) that express the 
Apo-ε4 allele – a known genetic risk factor for Alzheimer’s 
disease – express higher levels of HO-1 than cells expressing 
the Apo-ε3 allele [217]. 
 There are some interesting reports of brain injury 
surprisingly causing damage in other organ systems. For 
example, increased macrophage HO-1 expression in either 
the kidney or lung is seen in brain death during kidney 
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transplantation [218], and acute lung injury following TBI 
[219]. This suggests that either there is a humoral signal 
released within the brain (e.g. monocytes/macrophages, 
astrocytes, microglia, neurons) that activates macrophages in 
the periphery, or that macrophages activated in the injured 
brain are able to migrate out of the CNS into the periphery 
and into other organs. These findings may suggest that 
constitutive HO-1 expression in non-injured or healthy tissue 
may cause tissue damage, and may be the reason HO-1 is 
expressed as an inducible rather than a constitutive protein. 
 There are numerous examples of beneficial effects of 
HO-1 induction in the CNS. Induction of HO-1 in astrocytes 
is reported to reduce microglial activation, ROS levels and 
leukocyte infiltration in a mouse model of HSV-1 
encephalitis [189], and HO-1 is briefly induced in astrocytes 
following excitotoxicity [220]. In addition, some metabolites 
of the kynurenine pathway expressed in activated 
macrophages and microglia - hydroxyanthranilic acid (3-
HAA) and 3-hydroxykynurenine (3-HK) – inhibit cytokine 
release and cytokine-induced neuronal death, which may be 
due to the ability of 3-HAA to induce HO-1 in astroyctes 
[221]. HO-1 expression in macrophages/microglia is 
particularly beneficial in the spinal cord, as shown in 
experimental autoimmune encephalitis mouse models [222] 
and spinal cord injury [223]. Furthermore, HO-2 may be 
neuroprotective, as neuronal expression of HO-2 is increased 
in response to hypoxia-ischemia [207], and HO-2 knock-out 
mice show increased brain swelling, neuronal death, 
leukocyte infiltration, free radicals and activation of 
astrocytes and microglia/macrophages due to intracerebral 
hemorrhage in comparison with wild-type mice with 
intracerebral hemorrhage [224]. 

SIGNALING PATHWAYS OF HEME OXYGENASE-1 
EXPRESSION 

 The canonical mechanism of HO-1 induction is related to 
the antioxidant response (AR) pathway mediated by the 
master transcriptional regulator, nuclear factor erythrocyte-2 
related factor 2 (Nrf2). Nrf2 is normally sequestered in the 
cytosol by its binding partner, Keap1, which helps target 
Nrf2 for degradation [225]. However, upon exposure to 
oxidative stress, Keap1 is degraded, which allows Nrf2 to 
translocate to the nucleus and activate transcription of many 
genes that function to protect and repair damage due to 
oxidative stress [226]. However, the specific signaling 
pathway(s) of Nrf2 activation are still unclear, as several 
regulatory kinases have been implicated, which may vary 
due to the type of stimulus the cell detects. 
 There appear to be several signaling pathways that can 
lead to HO-1 expression. LPS is commonly used to induce 
HO-1 expression; and as the major detector of LPS, Toll-like 
receptor-4 (TLR4) would be predicted to mediate HO-1 
induction. Indeed, several studies have shown TLR4-
mediated HO-1 induction, particularly in macrophages [182, 
184, 227] and MyD88-dependent signaling of HO-1 
expression [228]. There appears to be a negative feedback 
loop whereby HO-1 induction leads to decreased TLR4 
expression [229, 230], or inhibits the signaling properties of 
TLR4 [231, 232]. The alpha7 nicotinic acetylcholine 
receptor [233] and the beta adrenergic receptor in RAW 
264.7 macrophage cell lines [234] are also reported to 

initiate HO-1 expression, either through protein kinase C 
(PKC) or protein kinase A (PKA), respectively. Some 
reports state the HO-1 expression is signaled via PKC 
activity [183, 235], while others report extracellular signal-
regulated kinase (ERK)/mitogen-activated protein kinase 
(MAPK)-mediated induction [236, 237], and perhaps 
activation of both PKC and ERK [238]. ERK may also 
regulate HO-1 production at the translational level rather 
than at the transcriptional level [239]. Other major kinases 
have also been shown to function in HO-1 induction, 
including p38 MAPK [231, 240-246] and c-Jun N-terminal 
kinase (JNK) 1/2 [247, 248]. 
 While many reports show or suggest Nrf2-dependent 
binding to the antioxidant response element (ARE) in the 
HO-1 promoter as the major inducer of HO-1 expression 
[249], there is evidence for Nrf2 independent HO-1 
induction. The transcription factor activator protein-1 (AP-1) 
binds to at least 2 different enhancer elements (4kb and 6kb 
upstream) in the HO-1 promoter, and such binding is 
necessary for LPS and hyperoxia-mediated induction of HO-
1 [180, 250, 251]. In ethanol induction of HO-1, Nrf2 was 
explicitly determined to be nonfunctional in HO-1 
expression while AP-1 was necessary [248]. The HO-1 
promoter also contains a cAMP-response element (CRE) 
approximately 650 bp upstream of the transcription start site, 
which is necessary for HO-1 induction [252]. AP-1 can bind 
this region, as well as the transcription factor CREB (cAMP-
response element binding) protein, known to be regulated by 
PKA [253, 254]. The HO-1 promoter also contains binding 
sites for nuclear factor-kappa B (NF-κB) 156 bp and 370 bp 
upstream from the transcription start site [181, 255-257]. It is 
also reported that HO-1 leads to reduced NF-κB p65/Rel A 
levels [258, 259], which may suggest a negative feedback 
mechanism of NF-κB. 

CYTOKINE AND HEME OXYGENASE-1 SIGNALING 
AND FEEDBACK 

 Apart from the primary enzymatic function of heme 
catabolism, and bilirubin and carbon monoxide production, 
all of which have cytoprotective effects, increased HO-1 
expression also correlates with altered expression of several 
cytokines. In many reports, HO-1 appears to promote the 
expression of anti-inflammatory cytokines and dampen the 
expression of pro-inflammatory cytokines. Interleukin-10 
(IL-10) is a classic anti-inflammatory cytokine, and several 
reports have shown that induction of HO-1 directly leads to 
increased IL-10 production [260-265]. Furthermore, HO-1 
expression inhibits expression of the prototypical pro-
inflammatory cytokine tumor necrosis factor-alpha (TNFα) 
[230, 263, 264, 266, 267]. Induction of HO-1 also reduces 
expression of other pro-inflammatory cytokines such as IL-
1β [267, 268], IL-6 [175, 261, 269], IL-33 [230] and 
monocyte chemoattractant protein-1 (MCP-1) [175, 259, 
267, 270, 271]. 
 At the same time, these HO-1 regulated cytokines may 
feedback to regulate HO-1 expression itself. In macrophages, 
IL-6 appears to increase HO-1 [272], while TNFα treatment 
in CD14+ cells leads to decreased HO-1 expression [273]. 
Several reports show that exposure to IL-10 directly induces 
HO-1 [163, 272, 274-276]. Furthermore, some evidence 
suggests that IL-10-induced inhibition of TNFα expression 
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is mediated by HO-1 expression [241]. In microglia, IL-10 
and HO-1 appear to be co-induced by the anti-inflammatory 
cytokine, IL-34 [277], further implicating a synergistic 
association between IL-10 and HO-1. 
 Although most reports point to the anti-inflammatory 
properties of HO-1, there are a few studies to the contrary. In 
RAW 264.7 macrophages, HO-1 inhibition is associated 
with decreased TNFα expression [268]; however the reverse 
experiment of HO-1 induction has not been performed to 
confirm this conclusion. It is also reported that HO-1 induces 
MCP-1 expression, although contradictory evidence has 
been published. In one study, genetic deficiency of HO-1 in 
macrophages (and other myeloid cells) resulted in reduced 
MCP-1 expression upon viral infection or TLR3 and TLR4 
stimulation [222]; however given the range of other 
cytokines and downstream transcription processes HO-1 
regulates, it is difficult to state a direct effect of HO-1 
expression leading to increased MCP-1 production. Another 
study with epithelial cells also reported increased MCP-1 
with increased HO-1, using hemin as an inducer of HO-1 
[278]; while hemin is a strong inducer of HO-1, it may also 
trigger other signaling pathways that regulate MCP-1 
expression independently of HO-1. Indeed, the authors state 
that there is a delayed phase of MCP-1 in these conditions 
that is HO-1 independent, which may suggest that hemin co-
induces HO-1 with MCP-1 to function as a negative 
regulator of MCP-1. HO-1 also decreases interferon-beta 
(IFN-β) [222] and interferon-gamma expression (IFN-γ) 
[266], which may serve either pro- or anti-inflammatory 
functions depending on the cell-type and surrounding 
cytokine milieu. Fig. (2) illustrates some of the signaling 
interactions described here. 

THERAPEUTIC POTENTIAL OF EXOGENOUS 
INDUCERS OF HEME OXYGENASE-1 EXPRESSION 

 Since HO-1 initiates potent endogenous antioxidant 
responses, induction of HO-1 expression has therapeutic 
potential for several diseases in which oxidative stress is 
symptomatic, including HIV infection. Treatment of mice 
with cobalt IX protoporphyrin (CoPP), a powerful HO-1 
inducer, was shown to promote graft survival in a model of 
kidney transplantation [266]. However, HO-1 inducers used 
in vitro, including LPS, hemin, or proto- or mesoporphyrins, 
have limited clinical relevance given the range of negative 
side effects and/or limited tolerability or bioavailability. 
Gene-therapy models have also been developed to more 
permanently induce HO-1 in target cell types [260, 279]. 
While promising, this type of approach may be beneficial 
only in certain conditions, and such therapies have not yet 
been fully validated in the clinical setting. A more immediate 
and simpler approach is the use of orally available 
compounds that can induce HO-1 in vivo. 
 Many studies have shown that a number of plant-based 
extracts (phytopharmaceuticals) induce HO-1, leading to 
ameliorated oxidative stress and inflammation. The sources 
of these compounds are several different plant species and 
plant organs, ranging from seeds to fruits to leaves to roots 
[238, 245, 247, 280-293]. Some of these compounds can be  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Signaling Pathways of HO-1. Green arrows represent 
increased HO-1 expression or activity. Red blocked lines represent 
inhibition or decreased expression. Several noxious stimuli, 
highlighted in the green box, are known inducers of HO-1, as well 
as hemoglobin/heme through the CD163 receptor and LPS through 
the TLR4 receptor. Anti-inflammatory cytokines are represented in 
blue; pro-inflammatory cytokines are depicted in red. There are 
many cytokine signaling loops that involve HO-1 activity or 
expression, including a positive feedback loop between HO-1 and 
IL-10 (anti-inflammatory), and a negative feedback loop between 
HO-1 and TNF-α (pro-inflammatory). Several transcription factors 
can also bind to the HO-1 promoter (HMOX1 is the gene symbol 
for HO-1), notably NRF2 at the ARE site, but also AP-1, CREB, 
and NF-κB can bind to the promoter at independent binding sites 
and induce HO-1 expression. 

found in commonly-used plants, such as brown rice [294], 
Chinese cinnamon [295] or Ginkgo biloba [243, 296]. 
Curcumin and omega-3 fatty acids are well-studied natural 
compounds with antioxidant and anti-inflammatory 
properties that might be related to their potent induction of 
HO-1 [270, 297-300], although it is not clear if their effects 
are directly due to their induction of HO-1. As dietary 
compounds that can be administered orally, such 
phytopharmaceuticals offer the promise of easily available 
therapy with potentially high tolerability. However, caution 
must be prioritized in directly translating these in vitro 
studies to the clinical setting, as no rigorous clinical trials 
have been performed for many of these compounds. The 
question of dosage, metabolism and bioavailability will need 
further and extensive study to determine the efficacy and 
safety of such compounds as a form of treatment. 
 Currently, there are two classes of FDA-approved drugs 
that have the immediate potential for testing HO-1 induction 
in clinical trials: statins and fumaric acid esters (FAEs). 
Statins have been widely prescribed to reduce cholesterol  
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levels by inhibiting HMG-CoA reductase [301]. However,  
in vitro and in vivo rodent models have shown that statins 
can robustly induce HO-1 in monocytes/macrophages, 
leading to reduction of inflammation [302-305]. BBB-
permeable statins therefore have the potential to induce HO-
1 in cells of the CNS, including macrophages, microglia, and 
astrocytes, although such studies have yet to be reported. 
 Fumaric acid esters, on the other hand, have a 
demonstrated effect in the CNS. In particular, a formulation 
of dimethyl fumarate (DMF) trade-marked as Tecfidera, was 
approved by the FDA on March 27, 2013 for the treatment of 
multiple sclerosis (MS). DMF is orally delivered, and is 
quickly metabolized to monomethyl fumarate (MMF), and 
both compounds exert similar, though not equivalent, 
biological activities (for review see Gill & Kolson 2013 
[306]). DMF functions as an immune modulator, and it was 
initially approved to treat psoriasis in Germany [307, 308]. 
Work from our lab has demonstrated that DMF/MMF can 
robustly induce HO-1 in macrophages [158], and others have 
shown the same effect in type II dendritic cells [309]. 
Furthermore, we have shown that DMF/MMF treatment of 
HIV-infected macrophages significantly attenuates the 
release of soluble neurotoxins. Pre-treatment of macrophages 
with DMF/MMF before HIV inoculation reduces HIV 
infection [158]. The reduction of neurotoxin release is 
clearly mediated by the increased HO-1 elicited by 
DMF/MMF, while the suppression of HIV infection might 
be related to inhibition of NFκ-B translocation [158]. The 
inhibition of HIV replication by HO-1 induction has also 
been previously observed in monocytes, using hemin as a 
stimulant [310], and in MDM using LPS to induce HO-1 
[311]. The correlation with increased HO-1 and decreased 
HIV replication has been recently demonstrated in clinical 
studies in which HIV+ patients with lower HO-1 expression 
were found to have higher levels of viremia (when removed 
from cART) [312]. The effects of HO-1 induction in the 
CNS of HIV+ patients and its relation to HAND remain to 
be examined; however, given the proven CNS efficacy of 
DMF in suppressing inflammation and immune activity in 
MS patients, DMF stands as a compelling candidate for 
HAND and other HIV-associated disorders in other tissues 
(kidney, liver, heart, bone) not derived from opportunistic 
infections. 

CONCLUSION 

 As this review highlights, there are several pathways 
through which HO-1 may be induced or activated, in 
monocytes/macrophages (the primary HIV reservoir in the 
CNS) and in CNS cells such as astrocytes and microglia, and 
even neurons in certain circumstances. Increased HO-1 
expression in these cell types has the potential to reduce 
several salient features of HAND and other HIV associated 
end-organ diseases that have oxidative stress and chronic 
immune activation as common symptoms. Several classes of 
pharmaceuticals, from fumaric acid esters (e.g. DMF or 
MMF) to statins to phytochemicals, have the potential to 
target these pathways to be tested or developed for HIV 
adjunctive therapy in addition to current anti-retroviral 
therapy, and may also aid in the treatment for other 
neurodegenerative diseases such as Alzheimer’s or 
Parkinson’s disease. 

LIST OF ABBREVIATIONS 

AP-1 = Activator protein 1 
ARE = Antioxidant response element 
BBB = Blood-brain barrier 
cART = Combined anti-retroviral therapy 
CNS = Central nervous system 
DC = Dendritic cell 
DMF = Dimethyl fumarate 
HAND = HIV-Associated Neurocognitive Disorders 
HIV = Human immunodeficiency virus 
HIVE = HIV Encephalitis 
HIV-MDM = HIV infected monocyte-derived macrophage 
HO-1 = Heme oxygenase-1 
HSV-1 = Herpes simplex virus-1 
IFNβ = Interferon-beta 
IFNγ = Interferon-gamma 
IL-10 = Interleukin 10 
IL-1β = Interleukin 1 beta 
LPS = Lipopolysaccharide 
MCP = Monocyte chemoattractant protein 1 
MDM = Monocyte-derived macrophage 
MMF = Monomethyl fumarate 
MS = Multiple sclerosis 
NF-κB = Nuclear factor kappa B 
Nrf2 = Nuclear factor erythrocyte-2 related factor 2 
PBMC = Peripheral blood mononuclear cells 
PNS = Peripheral nervous system 
ROS = Reactive oxygen species 
TBI = Traumatic brain injury 
TLR = Toll-like receptor 
TNFα = Tumor necrosis factor alpha 
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