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Simple Summary: The intestinal microbial community in horses is very complex and interacts
closely with diets. Apart from traditional forage diets, such as hay and pasture grass, silage is used
to feed horses in China and other areas of the world for economic reasons or convenience of storage.
Additionally, silage is also used for its convenience of harvesting and its nutrient components,
including lactic acid and volatile fatty acids. In this study, we detected the characteristic composition
of a fecal microbial community in horses that were fed silage with the use of a relatively new
sequencing technique; we compared this result with that from horses that were fed hay and pasture
grass. This study revealed some characteristic findings on the fecal microbial composition in horses
that were given each of type of diet and showed significant differences between the groups. Our
results provided novel data about the fecal microbial composition in horses on the silage diet. We
hope that these could help balance the intestinal microbiota in horses that are mainly fed silage in
combination with other types of forages in order to maintain intestinal health.

Abstract: Diet is an important factor affecting intestinal microbiota in horses. Fecal microbiota is
commonly used as a substitute for studying hindgut microbiota when investigating the relationship
between intestinal microbial changes and host health. So far, no study has compared the difference
between the fecal microbiota found in horses that are fed pasture grass, silage, and hay. The present
study aims to characterize the fecal microbiota in horses that were exclusively on one of the three
forage diets, and to analyze the potential impact of these forages, especially silage, on horse intestinal
health. There were 36 horses randomly assigned to each of the three groups; each group was fed only
one type of forage for 8 weeks. High throughput sequencing was applied to analyze the bacterial
taxa in fecal samples collected from the horses at the end of the feeding trial. The Lachnospiraceae
family was statistically more abundant in horses fed with hay, while it was the least abundant in
horses fed with silage. The Streptococcaceae spp., considered a core microbial component in equine
intestinal microbiota, were present in significantly lower quantities in feces from horses that were fed
pasture grass as compared to those from horses fed hay or silage. The novel data may help promote
the balancing of horse intestinal microbiota and the maintenance of intestinal health in horses.

Keywords: fecal microbiota; hay; horses; pasture; silage; 16S rRNA

1. Introduction

Horses (Equus caballus) are hindgut fermenters characterized by a complex microbiota,
mostly comprising anaerobic microorganisms that facilitate the digestion of a high-fiber
diet [1–3]. The intestinal microbiota also impacts the host’s immune system, influences the
animal’s metabolism, and helps in the detoxification of harmful substances [4,5]. Therefore,
the disruption of an animal’s intestinal microbiota can have major consequences on its
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overall health. The intestinal microbiota in mammals is influenced by many external
factors, including lifestyle, environment [6], as well as dietary patterns [7]. The variance of
microbial composition is also associated with changes in the gastrointestinal ecosystem
and potentially systemic health conditions [8].

The fecal microbiota has been commonly used to study the effects of diet on the equine
intestinal microbiota [7,9,10]. Diet has a significant impact on the intestinal microbiota [11].
Changes to the natural diet pattern of horses associated with domestication have influ-
enced various bodily systems, thus causing health issues such as colic [12–14], metabolic
syndrome [15], laminitis [16], and other dysfunctions. There is evidence that changes in
dietary patterns alter the colonic microbiota, subsequently leading to changes in colonic
pH and fermented products [12], and some of these changes may predispose horses to colic.
Understanding the impact of different dietary patterns on the intestinal microbiota will
help to reveal connections between diet and the overall health of horses.

In the present study, we investigated the effects of three different forage feeds—grass
at pasture, silage, and hay—on the horse fecal microbiota. Traditionally, pastures and hay
have been the major feed sources for horses [17,18]. In contrast, forages wrapped as bales
and sealed in air-tight bags for anaerobic fermentation, including silage [19], have been fed
to horses in some European countries as well as in Brazil [20–22]. These types of diet are
easier to store as compared to hay and are associated with a lower emission of airborne
irritants, which tend to reduce the occurrence of severe equine asthma [23]. Silage also has
a lower dry matter proportion, a higher concentration of lactic acid, volatile fatty acids
(VFA), and other fermented products as compared to hay. These nutrients, mainly VFA,
can be readily absorbed and assimilated by the body [19]. These characteristics also make
silage more digestible than hay [24]. A study has also shown that horses expressed obvious
preference for silage in comparison with hay [25], which may be due to the fermentation
dominated by lactic acid production and a high concentration of VFA, especially butyric
acid in silage [26]. Only a few studies focused on the impact of silage on the equine hindgut
ecosystem [27,28]. One study showed that no major microbial alterations were observed
in fecal samples taken from horses on the silage and hay diets [27], while another one
showed higher counts of Streptococci in colon samples taken from horses that were fed hay
as compared to those from horses that were fed silage; the reason for this is still unclear [28].

In China, silage is used widely in the northwest area, such as the Xinjiang province,
since silage is less expensive and easier to store as compared to other feeding materials.
In other areas of China with enough pasture sources, the forage and roughage diets are
more commonly used [29]. To our knowledge, there are no studies on the effects of silage
on the equine fecal microbiota that used a high-throughput sequencing technique. We
hypothesized that, given the significant variation in the constituents of silage as compared
to grass and hay, the fecal microbial composition of horses feeding on silage might be
affected and hence would differ markedly from horses that are fed other sources of forage.

The study revealed the impact of different diets on the equine fecal microbiota, which
might facilitate an understanding of dietary influence on the gastrointestinal health of
horses and promote research on making more appropriate adaptations for the horse diet in
areas that mainly use silage in feeding.

2. Materials and Methods
2.1. Ethnic Announcement

The study was performed at the Guanzhong Stud farm in Shanxi province, China.
The project was conducted with the welfare license (No.AW11101202-2-1) from the Animal
Care and Use Committee of China Agricultural University.

2.2. Animal Selection and Experimental Design

Twenty-four mares and twelve stallions, all of the Guanzhong breed, were randomly
selected from a large population at a Horse Ranch in Shanxi Province. The body weight
of these horses were calculated with the estimation formula developed by Carroll and
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Huntington [30], and they weighed an average of 391 kg (SD ± 21.4 kg). The horses used
had no history of illness and antibiotic administration in the 6 months preceding the study.
During this time, the horses were found to be clinically healthy based on the farm records
and physical examinations; varied in age—from 3 to 15 years old (mean age = 7 years old);
and had a mean body condition score of 4.8 (SD ± 0.6), based on the Henneke scoring
system. Before the study, all the horses were kept in individual stalls and fed the same
commercial hay, with corn-based concentrates formulated by this farm.

The experimental dietary patterns were three forage-only diets: (1) local pasture
ryegrass (September–October) (15% DM), (2) soft, dough-high stage ryegrass silage (26%
DM), and (3) second-cutting ryegrass hay (91% DM) (Table 1). All the feeding grass was
from the same pasture. Before the start of the feeding trial, three representative samples
were collected from each type of diet. The three samples of each diet were combined for
nutrition-content testing at the Animal Nutrient Analysis Center of China Agricultural
University (Beijing, China). Nutritive content was measured or calculated according to the
AOAC analytical methods (AOAC Int. 2010).

Table 1. Chemical composition: pasture grass, silage, and hay (as fed).

Pasture Grass Silage Hay

DM 1 (%NM 2) 15.53 25.78 91.50
CP 3 (%DM) 13.11 8.54 9.36
CF 4 (%DM) 0.98 1.34 1.82
Ash (%DM) 11.24 9.91 5.04

NDF 5 (%DM) 47.56 66.62 59.89
ADF 6 (%DM) 29.02 46.94 34.71
Ca 7 (%DM) 0.57 0.28 0.16
P 8 (%DM) 0.13 0.22 0.06

1 dry matter; 2 natural matter; 3 crude protein; 4 crude fat; 5 neutral detergent fiber; 6 acid detergent fiber;
7 calcium; 8 phosphorus.

The mares (24) and the stallions (12) were equally divided into three groups, after
which one group of mares was randomly combined with one group of stallions. As a result,
three groups of horses were created, with the same male-to-female ratio. Each group was
assigned one of the three dietary patterns and started the feeding trial at 8:00 am on the
same day. The experiment started in September and continued for 8 weeks [31]. A week
before the experiment, the diet of each horse was gradually changed by mixing new and
old feed at a ratio of 25:75 for three days, 50:50 for two days, 75:25 for two days, and finally,
100% of the forage assigned to the group. For the following 8 weeks, the pasture group
(group P) was maintained on the pasture of the ranch during the entire feeding trial. The
silage group (group S) and the hay group (group H) were housed individually and fed
three times a day throughout the trial. Horses in group S and group H were allowed 30-min
paddock-based exercise each day, although grazing was restricted with the use of a muzzle.
The nutrition requirement of each horse from group S and group H was calculated based
on 2% of the body mass as dry matter intake for maintenance. All groups had free access
to water without administering concentrate feed, other dietary supplements, or medical
treatment. The body weight of each horse was monitored weekly throughout the trial in
the same method descirbed presviously in this study. A physical examination of each horse
was performed weekly as well to monitor their health condition.

2.3. Fecal Sampling

All fecal samples were collected manually from the mid-rectum of each horse at the
end of the feeding trial, for three consecutive days [32,33]. Fresh samples (108 in total) were
immediately saved in individual sterile plastic bags and temporarily placed in ice, for no
more than 2 h. Upon arrival at the laboratory, the central part of each fecal sample was
collected [34] and transferred into a sterile cryogenic vial (Corning, NY, USA) with the use
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of sterile Q-tips. A new Q-tip was used for each individual horse. All tubes were marked
before being stored at −80 ◦C for further analysis.

2.4. DNA Preparation

Three samples of each individual were thawed and pooled together before DNA
extraction. The E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) was used
to extract the bacterial genomic DNA from fecal samples following the manufacturer’s
instructions. After DNA extraction, the DNA concentration and purity were assessed
with the NanoDrop 2000 UV-vis spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA).

2.5. High-Throughput Sequencing

The hypervariable region V3–V4 of the 16S rRNA gene was amplified using primer
pairs 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R(5′-GGACTACHVGGGTWTC
TAAT-3′) [35]. The PCR product was later purified using the AxyPrep DNA Gel Extrac-
tion Kit (Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s
recommendations, and quantified using the Quantus Fluorometer (Promega, Madison,
WI, USA). The purified amplicons were pooled in equimolar, and paired-end reads
were sequenced on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illu-
mina, San Diego, CA, USA) according to the standard protocols by Majorbio Bio-Pharm
Technology Co., Ltd. (Shanghai, China).

2.6. Bioinformatics Analysis

The raw 16S rRNA gene sequencing reads were quality-filtered and merged using
the FASTQ (v 0.20.0) [36] and FLASH (v 1.2.7) [37], respectively (a maximum mismatch
ratio of the overlap region at 0.2, and no ambiguous nor unassembled reads were allowed).
Operational taxonomic units (OTUs) with a 97% similarity cutoff [38,39] were clustered by
UPARSE (v 7.1) [39]. QIIME (v 1.9.1) was applied to identify the most abundant sequence
of each OTU. The RDP Classifier (v 2.2.0) [40] was used to analyze the representative
sequence of each OTU taxon, which was later comparedagainst the Silva rRNA database
(v 138) with a confidence threshold of 0.7.

Rarefaction curve plotting and alpha diversity analysis (Chao and Shannon indexes)
were performed by MOTHUR (v 1.3.0) (Ann Arbor, MI, USA). The Student’s t-test was
applied for the comparison of the alpha diversity difference between groups. A principal
coordinates analysis (PCoA) based on the Bray–Curtis distance was generated using QIIME
(v 1.9.1) [41] to assess the bacterial community composition between groups. Analysis of
Similarity (ANOSIM) was applied to test the significance of clustering associated with diet.
A non-parametric factorial Kruskal–Wallis sum-rank test was used in a Linear discriminant
analysis effect size (LEfSe) [42] to detect significant differences of microbial taxa between
the three groups.

3. Results

The body condition score of all horses did not change and their body weight remained
relatively stable throughout the feeding trial. Throughout the trial, the physical examination
was unremarkable for each horse, and no clinical abnormalities were observed.

3.1. Sequencing Quality Data

A total of 2,463,742 sequence reads were detected from all the samples, while 1,181,628
sequences—ranging from 32,823 to 71,449 per sample—remained after quality control.
After clustering at the 97% threshold level, 3644 OTUs were retained and classified as
bacteria, with 29 phyla, 64 classes, 142 orders, 263 families, and 530 genera.

The rarefaction curve for the number of observed species indicated adequate sequenc-
ing depth. It also showed an almost full coverage of the bacterial community from sampling
(Figure 1).
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3.2. Microbial Composition Analysis

Stacked histograms were used to illustrate the relative abundance of the dominant
bacterial population at the phylum, family, and genus levels (Figure 2). Six phyla, twenty-
five families, and thirty-eight genera had a mean relative abundance of more than 1% and
were illustrated in histograms. Firmicutes (59.8%), Bacteroidetes (25.2%), Verrucomicrobia
(6.4%), Spirochaetes (2.2%), Euryarchaeota (1.9%), and Actinobacteria (1.7%) were the
most abundant phyla in all groups (Figure 2a). Additionally, the relative abundance of
Verrucomicrobia, Spirochaetes, Euryarchaeota, and Actinobacteria differed significantly
(p < 0.05) between the groups.

At the family level, Lachnospiraceae and Oscilliospiraceae were the top two abundant
bacterial taxa in all groups, which rendered a significant difference between the groups
(p < 0.01) (Figure 2b). Lachnospiraceae, belonging to the phylum Firmicutes and the order
Clostridiales, had the highest relative abundance in group H, while the lowest in group S.
Oscilliospiraceae, which also belong to the phylum Firmicutes and the order Clostridiales,
were most abundant in group P. Streptococcaceae, a member of the phylum Firmicutes and
the order Lactobacillales, ranked seventh based on the average relative abundance in all
groups and demonstrated a tremendously low level in group P (p < 0.001).

At the genus level, seven genera that could not be ranked or classified were abundant
in all three groups. Most of the genera were detected as significantly different between all
groups (Figure 2c). Streptococcus were the fourth most abundant taxa in all groups at this
level and revealed a significantly lower relative abundance in group P (p < 0.001).
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Figure 2. Relative abundance of the dominant bacterial community at the phylum (a), family (b), and genus (c) levels of the
three groups. The Student’s t-test was used to assess the difference between the alpha diversity of the groups of samples.
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3.3. Alpha Diversity Analysis

An alpha diversity analysis was conducted with the Chao index and the Shannon
index to analyze the microbial species richness and diversity among the three groups in
different dietary patterns (Figure 3). Notable differences in the Chao index were identified
among all three groups (Figure 3a). Group P had the highest score from the Chao index,
representing the richest microbial community among the three groups, while group H had
the lowest OTU richness. The microbial diversity of the group S and group H samples
were significantly lower than that of group P, as revealed by their lower Shannon indexes
(both p < 0.001) (Figure 3b).
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3.4. Beta Diversity and LEfSe Analysis

A beta diversity analysis of samples was applied to evaluate differences of fecal
bacterial communities in the three groups. The PCoA analysis based on the Bray–Curtis
distance was performed (Figure 4). The bacterial composition of each group clustered
notably at the OTU level according to the dietary regimens. Group S showed a slightly
higher variability compared with those of group P and group H.

A linear discriminant analysis (LDA) Effect Size (LEfSe) was applied to identify the
discriminatingly abundant taxa of microbial populations across the feeding patterns. From
505 genera or higher taxa, 414 taxa were statistically different among the three groups
(p < 0.05). Of these, 26 had an LDA score with the threshold > 3.0. There were 6 out of 26
taxa associated with group S, while seven and thirteen taxa were associated with group P
and group H, respectively (Figure 5). In the samples of group S, the most distinct bacterial
taxa were F082, Rikenellaceae, and Methanobacteriales, while Oscillospirales, Clostridia, and
Oscillospiraceae were the three taxa with the highest effective size in group P. Lachnospirales,
Lachnospiraceae, and Streptococcaceae were the top three most associated with group H.
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4. Discussion

The microbial community in the gastrointestinal tract of horses was shaped by many
factors [43]. Therefore, in this study, the feeding trial was started at the same time on the
same day, and maintained consistently for 8 weeks to ensure adaptation to new diets in
selected horses [27]. Furthermore, male and female horses have significantly different
fecal microbiota at each level of classification [44]. Hence, this study maintained the same
ratio of mare to stallions (2:1) in each group to standardize any sex effect. Obesity and
age are associated with fecal microbial changes [45]. There is evidence that aged horses
(>19 years old) might be more predisposed to metabolic diseases and changes of body
fat mass, with subsequent influences on the intestinal microbial composition [45]. In the
current study, horses were selected based on their similar body condition scores (BCS
4–6), with ages between 3 and15 years old, to decrease microbiota variance related to
obesity and aging. Horses in groups S and H were fed their respective forage daily, at a dry
weight equivalent to 2% of each horse’s body mass, which is suitable for the majority of
animals [46]. However, the amount of pasture grass consumed was not easy to estimate. It
has been reported that the daily voluntary intake of dry matter by a horse is about 2.6% of
their body mass [18], which can help with the DM estimation of group H. In addition, the
BCS and body weight of each horse were monitored throughout the trial to ensure that no
significant changes occured in the two factors.

Greater changes were demonstrated in fecal bacterial diversity and structure asso-
ciated with different diets, especially with supplementation. Therefore, it is considered
a potentially good indicator while studying the equine intestinal ecosystem [47]. Other
advantages of using fecal samples include easy collection, reliable dysbiosis detection,
and convenient microbial tracking [48]. In the current study, significant differences of
richness and diversity of fecal microbiota were demonstrated among the three groups.
Horses maintained on pasture had the richest and most diverse OTUs, while microbiota
in group H had the least OTU richness and diversity. There is evidence that a diverse
community of organisms is critical to the maintenance of healthy microbiota and resillience
to the overgrowth of pathogenic microbial floras [49]. The OTU results in group P probably
indicate that higher richness and diversity of intestinal microbiota could be an evolutionary
strategy for herbivorous browsers to stay healthy while dealing with the unstable quantity
and quality of feed available under the circumstance of naturally grazing on pasture [50]. In
humans, decreases in microbial diversity and richness have been associated with some GIT
disorders such as chronic diarrhea [51]. In horses, it has also been observed in colic patients
presented to the hospital [52]. The less rich and diverse OTUs of group H might not indicate
an abnormality since the horses were clinically healthy. An analysis of the fecal microbiota
prior to the feeding trial can be helpful to determine if it is a significant alteration.

The microbial composition was statistically different between the groups, as illustrated
by the PCoA plot with three distinct clusters (Figure 4). Silage is fermented anaerobically
from forage to facilitate preservation, and has been used as one of the main diets for horses
in China [29] and other countries [53]. Studies exploring the association of equine fecal
microbiota with the silage diet are scarce [27]. We hypothesized that silages characterized
with higher acidity and as more fermented products than hay and fresh grass may exert
a distinct impact on the hindgut microbiota of horses. In the current study, horses that
were fed silage had the highest relative abundance of Euryarchaeota, while horses that
were fed pasture grass had the lowest. This trend was consistent with the levels of NDF
and ADF measured in the forages. Phylum Euryarchaeota contains all presently known
methanogen [54], and there is a correlation between methane output—one of the fermented
products—and the concentration of fiber in the diet [55], especially ADF, which is not easily
digestible [56].

Firmicutes and Bacteroidetes have consistently been reported as the predominant
proportion of fecal and hindgut microbiota in healthy horses [45,57–59], whereas a marked
decrease of Firmicutes and an increase of Bacteroidetes have been noted in horses with
colitis [58]. These two phyla were the most abundant in all three groups without any
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significant differences of relative abundance between groups, which indicated their overall
healthy intestinal status. Fibrobacteres, the fibrolytic phylum, is commonly abundant in
equine intestinal microbiota [7,35,60,61]. Several studies such as those by Shepherd et al.
(2012), Costa et al. (2012), and Daly et al. (2012) [10,58,62] reported low abundance, al-
though the cause of the varying abundance of Fibrobacteres in equine intestinal microbiota
remains unclear. In this study, it had a low relative abundace in all groups (0.4% in group
H, 0.3% in horses fed silage, and 0.07% in group P) and its level positively correlated with
the dry matter content in the three forages. Further research is necessary to determine the
relationship between the relative abundance of Fibrobacteres and different diets.

The Lachnospiraceae was the bacterial family with the highest relative abundance in all
three groups, while it also varied significantly between groups. It was the most abundant
in horses that were fed hay, and the least abundant in the silage group. The Lachnospiraceae
consists of a large and diverse cluster of fibrolytic and saccharolytic bacteria such as
Clostridium spp., Ruminococcus spp., and Eubacterium spp. [62]. There is also evidence
that many bacteiral members in the Lachnospiraceae family possess the ability to express
different genes that are associated with fibrolytic and saccharolytic digestion [63]. There are
also abundant and diverse genes to express carbonhydrate-active enzymes in this family
that help with the digestion of fibrous components in plants [63,64]. In the present study,
hay comprised the highest dry matter content, according to Table 1; therefore, it might
contribute to the increase of fibrolytic bacteria in the hindgut ecosystem to facilitate fiber
digestion in horses that are fed hay.

The Lachnospiraceae has been found in the gastrointestinal tract (GIT) of many mam-
mals [63]. In humans, the Lachnospiraceae have demonstrated the ability to convert lactate
to butyrate [65], which is critical in the maintenance of healthy intestines and the reduction
of the risk of intestinal inflammation. The Lachnospiraceae is also involved in the production
of short-chain fatty acids (SCFA), which act as growth factors for healthy epithelium [65,66].
Another study in humans showed that low levels of this family might be correlated with
inflammatory bowel diseases [67], which also strengthened its importance in the health
of GIT. In the current study, the Lachnospiraceae was least abundant in horses that were
fed silage, which might impact the ability of butyrate conversion. Further investigation is
necessary to look at whether the decrease of Lachnospiraceae in the intestinal microbiota is
correlated with a compromised GIT health of horses that are fed silage in the long term.

Among all three groups, the Oscillospiraceae was another bacterial family with signifi-
cantly different levels between groups. It was the most abundant in horses managed on
pasture and the least in group H, which indicated that its presence could have been influ-
enced by different diets. Based on the result of LEfSe, Oscillospirales and Oscillospiraceae
were more associated with group P. Certain ingredients of the diet might exert influence on
the relative abundance of Oscillospiraceae, such as crude protein, which was found to be
most abundant in pasture grass in this study. However, further investigation is necessary
to promote the understanding of the relationship between Oscillospiraceae and diet, as well
as its role in intestinal health.

The Streptococcaceae was the bacterial taxon most affected by dietary patterns in this
study. The OTUs detected in horses from group P was tremendously lower than those in
the other two groups. There was a similar trend for Streptococcus at the genus level. The
Streptococcaceae is under the order Lactobacillales and includes some lactic-acid producing
bacteria, for example Streptococci [68]. The Strepcoccoaceae has been detected in some studies
as one of the main bacterial taxa in the healthy horse hindgut ecosystem [69,70], because
some species have lost the virulent factors and genes during evolution and adapted to the
ecosystem of animals [71]. However, the proliferation of some Streptococcus spp. has been
strongly associated with the onset of laminitis induced by carbohydrates [72]. It has also
been reported to elevate significantly when horses are fed a high-startch diet. However, it
is still unknown whether the increase has any wider health implications for the horses [60].
Further analysis of carbohydrate content in the forages involved in this study may help
investigate its association with the low abundance of Streptococcaceae in group P. Streptococci
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has been reported absent in horsess involved in some studies [45,50]. One of the studies
reported that no Streptococcus was detected in clinically healthy horses fed on pasture in
New Zealand [50], which was similar to our result of extremely low levels of Streptococcus
in horses managed on pasture. The fecal microbiota in the horses prior to the feeding trial
might provide more clues as to whether the low level of Streptococcaceae in group P was
associated with diet change. It was not detected in this study since the main objective was
to compare the fecal microbiota of horses on three exclusive diets.

The most distinct bacterial taxa in horses that were fed silage were F082, Methanobacte-
riales, and Rikenellaceae. Studies on these taxa were still limited in reporting its presence,
especially of the newer taxa F082 and Rikenellaceae; therefore, their roles in intestinal mi-
crobiota are still undetermined [73,74]. As a result, more research, including functional
analysis, is required to help understand the relationship between silage feeding and its
associated fecal bacterial taxa.

Finally, at the genus level, the seven unranked or unclassified genera were abundant in
all groups. This reflected our overall lack of knowledge on the equine intestinal ecosystem.
Therefore, other bacterial identification methods could be involved to promote further
investigation on the equine intestinal microbiota.

5. Conclusions

In this study, the fecal microbiota of horses was found to have distinct characteristic
patterns in horses on different diets. For the first time, the baseline information on the
fecal microbiota of horses that were fed with silage was established. It was revealed that
Lachnospiraceae was least abundant in horses that were fed silage, compared with the other
two groups, which was a significant finding as it may indicate inflammatory changes as
revealed by previous studies on humans. Other than that, the silage diet did not generate
other apparent dysbiosis on the equine fecal microbiota in comparison with the other two
common forages of horses. More studies are warranted to further define the impact of the
silage diet on equine intestinal health.
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