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Abstract: Exogenous application of double-stranded RNAs (dsRNAs) and small-interfering RNAs
(siRNAs) to plant surfaces has emerged as a promising method for regulation of essential genes in
plant pathogens and for plant disease protection. Yet, regulation of plant endogenous genes via
external RNA treatments has not been sufficiently investigated. In this study, we targeted the genes
of chalcone synthase (CHS), the key enzyme in the flavonoid/anthocyanin biosynthesis pathway, and
two transcriptional factors, MYBL2 and ANAC032, negatively regulating anthocyanin biosynthesis
in Arabidopsis. Direct foliar application of AtCHS-specific dsRNAs and siRNAs resulted in an efficient
downregulation of the AtCHS gene and suppressed anthocyanin accumulation in A. thaliana under
anthocyanin biosynthesis-modulating conditions. Targeting the AtMYBL2 and AtANAC032 genes by
foliar dsRNA treatments markedly reduced their mRNA levels and led to a pronounced upregulation
of the AtCHS gene. The content of anthocyanins was increased after treatment with AtMYBL2-dsRNA.
Laser scanning microscopy showed a passage of Cy3-labeled AtCHS-dsRNA into the A. thaliana leaf
vessels, leaf parenchyma cells, and stomata, indicating the dsRNA uptake and spreading into leaf
tissues and plant individual cells. Together, these data show that exogenous dsRNAs were capable
of downregulating Arabidopsis genes and induced relevant biochemical changes, which may have
applications in plant biotechnology and gene functional studies.

Keywords: exogenous dsRNA; plant foliar treatment; plant gene regulation; RNA interference; gene
silencing; anthocyanins

1. Introduction

The current RNA-based crop improvement studies employ the RNA interference
(RNAi) phenomenon for downregulation of gene targets in plants for further plant disease
control and crop management [1,2]. The principles of the RNAi phenomenon are also
being actively exploited in plant gene functional studies. RNAi is a natural regulatory
mechanism that involves sequence-specific degradation of target mRNAs or translation
inhibition induced by short small-interfering RNAs (siRNAs) or microRNAs (miRNAs)
originated from long double-stranded RNA (dsRNA) precursors that may vary in length
and origin [3,4]. Plants have developed RNAi as an effective mechanism implicated in
plant pathogen and viral defense [5], plant growth and development [6], and abiotic
stress responses [7]. In the course of RNAi, long dsRNAs precursors are recognized and
processed by a ribonuclease DICER into small RNA duplexes of 20–24-nucleotide (nt)-long,
i.e., siRNAs and miRNAs [3]. These siRNAs are then incorporated into the RNA-induced
silencing complex (RISC) that drives silencing of the target mRNAs via their cleavage,
destabilization, or hindering translation.
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The major RNAi-based crop improvement/protection strategies include the genera-
tion of dsRNA/hairpin RNA (hpRNA)-expressing transgenic plants and host-induced gene
silencing (HIGS), which allowed the silencing of genes in plant microbial pathogens [8–10]
or application of modified plant viruses inducing degradation of target plant mRNA, i.e.,
virus-induced gene silencing or VIGS [11]. RNAi-based insect management strategies
include generation of transgenic plants expressing dsRNAs targeting essential insect genes,
feeding insects with dsRNAs, or plant foliar treatments with dsRNAs [12,13]. However,
the consequences of plant genetic modifications are not clear, which raises serious public
concerns on their impacts on human health and environment [14]. Furthermore, gener-
ation of transgenic plants is a costly and a complicated process for many horticultural
crops. Although VIGS does not require genetic modifications of plants, this method pos-
sesses serious limitations that prevent its wide application [15]. Therefore, development
of an alternative approach for plant gene regulation without genomic modifications is an
important challenge for plant biotechnology.

There is an increasing number of studies that show induction of plant fungal [16–21]
and viral [22–27] resistance after external application (spraying or mechanical inoculation)
of dsRNAs, siRNAs, or hpRNAs designed to target virulence-related genes of the pathogens.
Recent studies have also provided evidence that both plants and infecting pathogens were
capable of the RNA uptake, and this eventually triggered RNAi-mediated silencing of
the pathogen virulence-related genes [16,17,21,22,27]. Exogenously induced RNAi has
recently emerged as a strategy with a potential to protect plants from microbial diseases,
viral infections, and invading insects [9,28,29].

Several studies reported that external application of dsRNAs [22,30,31] to Arabidopsis
thaliana and siRNAs [32–34] to A. thaliana or Nicotiana benthamiana triggered silencing of
common plant transgenes, such as green fluorescent protein (GFP), β-glucuronidase (GUS),
yellow fluorescent protein (YFP), or neomycin phosphotransferase II (NPTII). Plant trans-
genes are known to be more prone for RNAi-mediated suppression in comparison with
plant endogenes [35–37], and, therefore, targeting transgenes might be more achievable.
However, there are also data showing that naked GFP-dsRNAs and GFP-hpRNAs did not
induce GFP silencing in N. benthamiana and were not processed into siRNAs, indicating
insufficient dsRNA uptake by plant cells [38,39]. According to Numata et al. [32] and
Dalakouras et al. [33], downregulation of the GFP and YFP transgenes after foliar appli-
cation of siRNAs was successful only after application of accessory technologies (using
carrier peptide or high-pressure spraying). According to our recent data, appropriate plant
age, late time of day, low soil moisture (at the moment of dsRNA application), and optimal
dsRNA application modes were important for efficient NPTII transgene suppression in
A. thaliana induced by direct foliar dsRNA treatments [31].

To the best of our knowledge, there are four investigations and a patent that showed
that external plant treatments with naked dsRNAs led to downregulation of plant endoge-
nous genes, including silencing of the 3-phosphate synthase (EPSPS) gene in tobacco and
amaranth leaves [40], MYB1 gene in the orchid flower buds [41], Mob1A, WRKY23, and
Actin genes in Arabidopsis and rice [42], two sugar transporter genes STP1 and STP2 in
tomato seedlings [43], and a downy mildew susceptibility gene LBDIf7 in grapevine [44].
According to the data, external plant dsRNA treatments led to the dsRNA uptake, reduced
mRNA levels of the gene targets, and some phenotypic or biochemical changes. There
were also experimental findings where nanoparticles [45] and laser light [46] were used to
ensure perception of exogenous dsRNA and downregulation of the targeted endogenous
genes SHOOT MERISTEMLESS (STM) and WEREWOLF (WER) in A. thaliana and phytoene
desaturase (PDS) gene in Citrus macrophylla after external dsRNA treatments.

Anthocyanins are naturally occurring colored pigments derived from the plant phenyl-
propanoid pathway and are relatively easy to induce for accumulation and quantitative
analysis [47,48]. Apart from providing color to plants and animal attraction, anthocyanins
are known to possess beneficial human health effects and plant protective properties
against pests and pathogens [47,49]. Therefore, in the present study, we targeted an-
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thocyanin biosynthesis-related genes (Figure 1), including chalcone synthase (CHS) and
two transcriptional repressors, a R3-type single-MYB protein MYBL2 and a NAC-type
transcription factor ANAC032 genes, in A. thaliana by direct foliar treatments with dsR-
NAs and siRNAs. This analysis quantitatively documented changes in AtCHS, AtMYBL2,
and AtANAC032 gene expression and anthocyanin production after the foliar dsRNA
and siRNA applications. To prove the specificity of the downregulation effect, we also
treated wild-type A. thaliana with dsRNAs and siRNAs specific for the bacterial neomycin
phosphotransferase II (NPTII) and did not observe an effect.
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UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). Two transcriptional factors negatively 
regulating anthocyanin biosynthesis include a R3-type single-MYB protein (MYBL2) and a NAC-
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Figure 1. Schematic representation of the anthocyanin biosynthesis pathway. Enzymes of each
step are shown in purple. Enzymes involved in general phenylpropanoid pathway are phenylala-
nine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumaryol CoA ligase (4CL).
Enzymes involved in flavonoid biosynthesis are chalcone synthase (CHS), chalcone isomerase (CHI),
flavanone 3-hydroxylase (F3H), flavanone 3′5′-hydroxylase, (F3′5′H) and flavanone 3′-hydroxylase
(F3′H). Anthocyanins are synthesized by dihydroflavonol 4-reductase (DFR), synthase (ANS), and
UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). Two transcriptional factors negatively regu-
lating anthocyanin biosynthesis include a R3-type single-MYB protein (MYBL2) and a NAC-type
transcription factor (ANAC032).

2. Results
2.1. AtCHS-Specific Exogenous dsRNAs Downregulate AtCHS mRNA Levels and Anthocyanin
Content in Arabidopsis

We used PCR and in vitro transcription protocol to produce dsRNA molecules of the
AtCHS gene, encoding the key enzyme in the flavonoid/anthocyanin biosynthesis pathway
(Figure 1), and the non-related NPTII bacterial gene, encoding the bacterial neomycin
phosphotransferase II enzyme. We synthesized the NPTII-dsRNAs and treated wild-type
A. thaliana to verify whether any observed effects on AtCHS mRNA levels were sequence-
specific. To analyze the effect of exogenous dsRNAs on the expression of AtCHS, large
fragments of AtCHS and NPTII cDNAs were amplified (Figure 2a,d). Then, the obtained
PCR products, containing T7 promoters at both ends, were used as templates for in vitro
transcription. For external application, the synthesized dsRNAs were diluted in water to
a final concentration of 0.35 µg/µL. The dsRNAs (100 µL of each dsRNA per individual
plant, i.e., 35 µg) were applied on the leaf surface (on both the adaxial and abaxial sides)
of four-week-old A. thaliana rosettes by spreading with sterile individual soft brushes [31]
(Supplementary Video S1). Importantly, we treated the four-week-old rosettes of A. thaliana
at a late day time (21:00–21:30) under low soil moisture conditions in all experiments,
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since the appropriate plant age, late day time, and low soil moisture at the time of dsRNA
application were important parameters for successful NPTII suppression in transgenic A.
thaliana according to our recent analysis [31]. An analysis of the dsRNA concentration
effect on transgene silencing in A. thaliana was performed previously [30], indicating that
35 µg of a transgene-encoding dsRNA resulted in the highest transgene silencing efficiency
as compared to other dsRNA concentrations.
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Figure 2. Schematic representation of the dsRNA position and siRNAs structures used in this study
and the qRT-PCR primers designed to verify the effects of external RNA treatments on the levels of
endogenous AtCHS, AtMYBL2, and AtANAC032 mRNAs. (a) Representation of AtCHS cDNA coding
region with positions of the AtCHS-specific dsRNA and siRNA; (b) representation of AtMYBL2 cDNA
coding region with position of the AtMYBL2-specific dsRNA; (c) representation of AtANAC032 cDNA
coding region and position of AtANAC032-specific dsRNA; (d) representation of NPTII coding region
and positions of the NPTII-specific dsRNA and siRNA. Black arrows indicate positions of the primers
(s1, a1, s2, a2, s3, a3) used for amplification of the endogenous AtCHS, AtMYBL2, and AtANAC032
transcripts. UTR—untranslated region. 2 × 35S—the double 35S promoter of the cauliflower mosaic
virus (CaMV). Tnos—nopaline synthase terminator.

Then, we studied whether exogenous application of the naked AtCHS and NPTII-
dsRNAs on the foliar surface of wild-type A. thaliana could led to any changes in the
mRNA transcript levels of AtCHS gene and anthocyanin levels in comparison with the
control water treatment (Figure 3). Since under standard cultivation conditions anthocyanin
production and AtCHS expression were low, we divided the treated A. thaliana rosettes into
two groups for post-treatment incubation either under control conditions (+22 ◦C, 16 h
light) or anthocyanin-inducing conditions (+7 ◦C, and 23 h light) for two and seven days
in order to induce AtCHS expression and anthocyanin biosynthesis (Figure 3a). qRT-PCR
revealed that cultivation of A. thaliana under the anthocyanin-inducing conditions resulted
in a dramatically higher AtCHS mRNA levels in the control plants treated with water and
NPTII-dsRNAs than cultivation under control conditions (Figure 3b). Importantly, this
AtCHS-induction effect was not observed for plants treated with AtCHS-dsRNAs under
the anthocyanin-inducing conditions, at both two days and seven days post-treatment
(Figure 3b). Notably, AtCHS mRNA levels were considerably lower in the AtCHS-dsRNA-
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treated A. thaliana than in the water- and NPTII-treated controls under the anthocyanin-
inducing conditions, at both two days and seven days post-treatment.
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Figure 3. The effect of external AtCHS- and NPTII-encoding dsRNAs on AtCHS mRNA level and
total anthocyanin content in Arabidopsis thaliana. (a) Arabidopsis plants grown under control (+22 ◦C,
16 h light, upper panel) and anthocyanin-inducing (+7 ◦C, 23 h light, lower panel) conditions for
seven days after treatment with sterile water or synthetic dsRNA. (b) Quantitative real-time PCR
measuring relative mRNA levels of endogenous AtCHS in the leaves of A. thaliana treated with
water or synthetic dsRNAs. (c) HPLC results of total anthocyanins in the leaves of A. thaliana grown
under the control and anthocyanin-inducing conditions. WC—A. thaliana treated with sterile water;
CHS—A. thaliana treated with AtCHS-dsRNAs; NPT—A. thaliana treated with NPTII-dsRNA; dpt—
days post-treatment. The data are presented as the mean ± SE (three independent experiments).
Means followed by the same letter were not different using Student’s t test. p < 0.05 was considered
statistically significant.

Both HPLC and spectrophotometric analysis of total anthocyanins revealed that
plants treated with AtCHS-dsRNAs, but not with NPTII-dsRNAs, exhibited a markedly
lower total content of anthocyanins under the anthocyanin-inducing conditions than the
water-treated plants (Figure 3c and Figure S1a). Using HPLC with high-resolution mass
spectrometry (HPLC-MS), we detected eight anthocyanin compounds in the water- and
dsRNA-treated leaves of A. thaliana (Figure 4 and Figure S2a; Table S1). It is possible that
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other anthocyanins were present in the analyzed tissues of A. thaliana but in trace amounts.
The content of most individual anthocyanins was higher in the plants grown under the
anthocyanin-inducing conditions than at +22 ◦C (Figure 4a and Figure S2a). Plant treatment
with exogenous AtCHS-dsRNAs reduced the content of all individual anthocyanins, and
the changes were statistically significant for A7, A9, and A11* (Figure 4b and Figure S2a).
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Figure 4. HPLC chromatograms of anthocyanins in Arabidopsis thaliana treated with water, AtCHS-
dsRNA, or AtMybL2-dsRNA (detected at 530 nm). (a) Induction of anthocyanin production in
water-treated plants (WC) under anthocyanin-induction conditions (+7 ◦C, 23 h light) in comparison
with the control (+22 ◦C, 16 h light); (b) The effect of AtCHS-dsRNA treatment on anthocyanin
profiles in A. thaliana; (c) The effect of AtMybL2-dsRNA treatment on anthocyanin profiles in A.
thaliana. A8—Cyanidin 3-O-[2′ ′-O-(xylosyl) 6′ ′-O-(p-O-(glucosyl) p-coumaroyl) glucoside] 5-O-[6′ ′ ′-
O-(malonyl) glucoside]. A10—Cyanidin 3-O-[2′ ′-O-(2′ ′ ′-O-(sinapoyl) xylosyl) 6′ ′-O-(p-O-(glucosyl)
p-coumaroyl) glucoside] 5-O-glucoside. A11. Cyanidin 3-O-[2′ ′-O-(6′ ′ ′-O-(sinapoyl) xylosyl) 6′ ′-O-
(p-O-(glucosyl)-p-coumaroyl) glucoside] 5-O-(6′ ′ ′ ′-O-malonyl) glucoside. A7—Cyanidin 3-O-[2′ ′-O-
(2′ ′ ′-O-(sinapoyl) xylosyl) 6′ ′-O-(p-coumaroyl) glucoside] 5-O-glucoside. A5—Cyanidin 3-O-[2′ ′-O-
(xylosyl)-6′ ′-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside. A9—Cyanidin 3-O-[2′ ′-O-(2′ ′ ′-O-
(sinapoyl) xylosyl) 6′ ′-O-(p-O-coumaroyl) glucoside] 5-O-[6′ ′ ′ ′-O-(malonyl) glucoside]. * — Asterisk
indicates a tautomer.

2.2. AtCHS-Specific Exogenous siRNAs Downregulate AtCHS mRNA Levels and Anthocyanin
Content in Arabidopsis

Two 21-nt long complimentary single-stranded RNAs (ssCHS-s and ssCHS-a) designed
to target the AtCHS mRNAs were in vitro synthesized and HPLC purified (Table S2). In
addition, two 21-nt long complimentary single-stranded RNAs (NPTII R3-s-Me and R3-
a-Me) designed to target the NPTII mRNAs [34] were in vitro synthesized and HPLC
purified (Table S2). The complimentary ssRNAs contained a phosphate group at 5′ end,
a 2′-O-methyl at 3′ end, and 2-nt 3′ overhangs at both ends (Figure 2a,d; Table S2). The
ssRNAs were combined and annealed to form siRNAs, i.e., siCHS and siNPTII (Figure 2a,d).
The NPTII-specific siRNA was included in the study to verify whether any observed effects
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of AtCHS-siRNA were sequence-specific. In our earlier study, 50 pmol/µL was chosen
as the optimal concentration of the NPTII-siRNAs for plant foliar treatments due to the
combination of effectiveness and lower cost of ssRNA synthesis [34].

qRT-PCR analysis revealed that the level of AtCHS mRNAs was considerably lower
in siCHS-treated plants than in the water- and siNPTII-treated controls grown under the
anthocyanin-inducing conditions for two days after the treatments (Figure 5a,b). We
noted that the effect became less evident seven days after the treatments. Both HPLC and
spectrophotometric analysis of total anthocyanins in the plants cultivated for seven days
after the treatments revealed that the siCHS treatment led to a markedly lower anthocyanin
content under the anthocyanin-inducing conditions than the water and siNPTII treatments
(Figure 5a,c and Figure S1b). siNPTII resulted in the anthocyanin level comparable to
that in the water-treated plants. Using HPLC-MS, we also detected eight anthocyanin
compounds in the A. thaliana treated with water or siRNAs (Figure S2b; Table S1). The
siCHS treatment considerably lowered content of most individual anthocyanins.
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Figure 5. The effect of external AtCHS- and NPTII-encoding siRNAs on AtCHS mRNA level and
total anthocyanin content in Arabidopsis thaliana. (a) Arabidopsis plants grown under control (+22 ◦C,
16 h light, upper panel) and anthocyanin-inducing (+7 ◦C, 23 h light, lower panel) conditions for
seven days after treatment with sterile water or synthetic siRNA. (b) Quantitative real-time PCR
measuring relative mRNA levels of endogenous AtCHS in the leaves of A. thaliana treated with
water or synthetic siRNAs. (c) HPLC results of the total anthocyanin content in the leaves of A.
thaliana grown at the control and anthocyanin-inducing conditions. WC—A. thaliana treated with
sterile water; siCHS—A. thaliana treated with synthetic AtCHS-siRNAs; siNPT—A. thaliana treated
with NPTII-siRNA; dpt—days post-treatment. The data are presented as the mean ± SE (three
independent experiments). Means followed by the same letter were not different using Student’s
t test. p < 0.05 was considered statistically significant.
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2.3. Targeting AtMYBL2 and ANAC032 Repressors by Foliar dsRNA Treatments Downregulates
Their mRNA Levels and Leads to a Pronounced AtCHS Upregulation

We used PCR and in vitro transcription protocol to produce dsRNA molecules of the
AtMYBL2 and AtANAC032 genes, encoding transcriptional repressors negatively regu-
lating anthocyanin biosynthesis in A. thaliana [50,51]. Full-length coding cDNAs of the
AtMYBL2 and AtANAC032 genes were amplified (Figure 2b,c). The obtained PCR products,
containing T7 promoters at both ends, were used as templates for in vitro transcription.
For external plant treatments, the synthesized dsRNAs were diluted and applied on the
leaf surface (on both the adaxial and abaxial sides) of four-week-old wild type Arabidopsis,
as described above for AtCHS-dsRNA. At the same time, we treated A. thaliana with NPTII-
dsRNA to verify whether any observed effects of the dsRNAs were sequence-specific.

Then, we studied whether simple exogenous application of the AtMYBL2-, AtANAC032-,
and NPTII-dsRNAs to the foliar surface of four-week-old A. thaliana could lead to any
changes in the mRNA transcript levels of AtMYBL2, AtANAC032, and AtCHS genes in com-
parison with the water-treated controls two and seven days post-treatments (Figure 6a). For
this purpose, we also divided the treated A. thaliana rosettes into two groups for incubation
under control conditions (+22 ◦C, 16 h light) and anthocyanin-inducing conditions (+7 ◦C,
23 h light). Foliar plant treatment with the AtMYBL2-dsRNAs triggered considerable
downregulation of AtMYBL2 mRNA levels both under standard and anthocyanin-inducing
conditions (Figure 6b). AtMYBL2 transcript levels were significantly reduced two and
seven days post-treatment at +22 ◦C and seven days post-treatment at +7 ◦C. Exogenous
application of AtANAC032-dsRNA also resulted in a pronounced inhibition of AtANAC032
mRNA levels, especially under the anthocyanin-inducing conditions (Figure 6c). Fur-
ther analysis revealed a dramatic upregulation of AtCHS expression after application of
both AtMYBL2- and AtANAC032-dsRNAs (Figure 6d). However, the dsRNA-induced
effect on anthocyanin accumulation was not as evident as that for gene transcript levels
(Figure 6e and Figure S1c). While the AtMYBL2- and AtANAC032-dsRNA treatments led to
a 3.3-6.4-fold upregulation of AtCHSs, the total content of anthocyanins was considerably
increased only after foliar treatment with AtMYBL2 and by 1.7-fold (Figure 6d,e). HPLC
analysis of individual anthocyanins revealed a statistically considerable increase in the con-
tent of A8, A11, and A9 after treatment with AtMYBL2-dsRNA (Figure S2c). Importantly,
exogenous application of NPTII-dsRNA did not have a marked effect on the AtMYBL2,
AtANAC032, or AtCHS mRNA levels.

2.4. Detection of AtCHS-dsRNA in A. thaliana Leaves by Laser Scanning Microscopy

To further investigate localization and transport of the exogenous dsRNAs, we labeled
the in vitro synthesized AtCHS-dsRNAs with the Cy3 dye and applied to the adaxial and
abaxial foliar surface of four-week-old A. thaliana rosettes at 21:00 at a concentration of
0.35 µg/µL [31] by spreading with sterile individual soft brushes. Linear unmixing of
the λ-stacks revealed two peaks of fluorescence, including a peak at ≈570 nm–580 nm
and a peak at ≈690 nm (Figure S3). The peak at 570 nm–580 nm corresponds to Cy3
(Silencer™ siRNA Labeling Kit with Cy™3 dye), and the peak at 690 nm—chlorophyll
fluorescence [52]. Inspection of the adaxial and abaxial leaf surface by laser scanning
microscopy 13–15 h post-treatment detected the presence of the Cy3-labeled dsRNA in the
leaf veins, parenchyma cells, and stomata of the dsRNA-treated A. thaliana leaves (Figure 7).
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AtCHS mRNA levels and total anthocyanin content in Arabidopsis thaliana. (a) Arabidopsis plants grown under control
(+22 ◦C, 16 h light, upper panel) and anthocyanin-inducing (+7 ◦C, 23 h light, lower panel) conditions for seven days after
treatment with sterile water or synthetic dsRNAs. (b) Quantitative real-time PCR measuring relative mRNA levels of
endogenous AtMYBL2 in the leaves of A. thaliana treated with water or synthetic dsRNAs. (c) Quantitative real-time PCR
measuring relative mRNA levels of endogenous AtANAC032 in the leaves of A. thaliana treated with water or synthetic
dsRNAs. (d) Quantitative real-time PCR measuring relative mRNA levels of endogenous AtCHS in the leaves of A. thaliana
treated with water or synthetic dsRNAs. (e) HPLC results of the total anthocyanin content in the leaves of A. thaliana grown
at the control and anthocyanin-inducing conditions. WC—A. thaliana treated with sterile water; MYB—A. thaliana treated
with AtMYBL2-dsRNAs; ANA—A. thaliana treated with AtANAC032-dsRNAs; NPT—A. thaliana treated with NPTII-dsRNA;
dpt—days post-treatment. The data are presented as the mean ± SE (three independent experiments). Means followed by
the same letter were not different using Student’s t test. p < 0.05 was considered statistically significant.
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Figure 7. Detection of Cy3-labeled AtCHS-dsRNA (red) in the externally treated Arabidopsis thaliana leaves by laser scanning
microscopy. Adaxial (a–c) and abaxial (d–h) leaf sides of four-week old A. thaliana were exogenously treated with the
labeled AtCHS-dsRNA (red) by sterile soft brushes and analyzed 13–15 h post-treatment. (a) Negative control (sterile water);
(b–h)—AtCHS-dsRNA treatment. Green color results from the autofluorescence of chloroplasts. Red color results from the
Cy3-labeled dsRNA. Scale bars, 100 µm. Three independent trials showed the same results.

3. Discussion

It is well established that spraying plants with dsRNAs and siRNAs encoding key
genes of plant pathogenic fungi [16–21] and viruses [22–27] effectively reduces develop-
ment of the pathogens and suppresses the infection process. These externally applied
dsRNAs and siRNAs have been shown to spread systemically into plant tissues and were
uptaken by the fungal cells inducing a RNAi-mediated silencing of the targeted genes of the
pathogens [16,17,21,27]. This strategy of plant disease control was termed as spray-induced
gene silencing (SIGS) and is currently considered as an efficient and sustainable plant
protection strategy and for other crop improvement strategies [29]. Much less is known
about the influence of exogenous dsRNAs/siRNAs on gene silencing in the plant genome.
Only four studies [41–44] and one patent [40] reported on direct plant treatments with
naked dsRNA resulting in a reduction of the mRNA levels of a plant endogenous gene
target that would also lead to phenotypic or biochemical changes. In addition, two studies
reported using nanoparticles [45] or laser light [46] to ensure perception of exogenous
dsRNA and downregulation of a plant endogenous gene by external dsRNA application.

We developed our study based on the initial report by Numata et al. [32] who infil-
trated A. thaliana leaves with a carrier peptide in a complex with siRNAs encoding the
AtCHS gene. Numata et al. [32] reported a local loss of anthocyanin pigmentation by visual
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observation, but AtCHS mRNA and anthocyanin levels were not analyzed. In our study,
we show that foliar application of the gene-specific dsRNAs and siRNAs highly reduced
mRNA levels of three anthocyanin biosynthesis-related genes and considerably affected
anthocyanin production at both two days and seven days post-treatment. The present study
demonstrated that external dsRNA treatments could lead to both gene downregulation
(exogenous AtCHS-dsRNAs downregulated AtCHS expression) and gene upregulation
(AtMYBL2-dsRNAs and AtANAC032-dsRNAs upregulated AtCHS expression). In all exper-
iments, we treated A. thaliana with NPTII-encoding dsRNAs, which encode a bacterial gene
that is not encoded in the genome of wild-type Arabidopsis. In all cases, the foliar-applied
unspecific NPTII-dsRNAs had no effect on the expression of the AtCHS, AtMYBL2, and
AtANAC032 genes of A. thaliana, which proves that the observed dsRNA-induced gene
silencing effect was sequence-specific and was not a result of the dsRNA application itself.

The positive transcriptional regulation of anthocyanin biosynthesis in Arabidopsis
and other plants is achieved via a concerted action of a number of transcription factors,
involving the MYB–bHLH–WD repeat (MBW) protein complex, which is composed of
R2R3-MYB, basic helix-loop-helix (bHLH), and WD40-repeat proteins [53]. As to nega-
tive regulation, single repeat R3-MYB transcription factors, including MYBL2, CAPRICE
(CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1 (ETC1), and ETC2, were
shown to suppress anthocyanin accumulation by interfering with the formation of MBW
protein complex [50,53]. In addition, there are other molecular players regulating antho-
cyanin biosynthesis in Arabidopsis, such as ubiquitin protein ligases or other transcription
factors. For example, a NAC transcription factor, ANAC032, that has recently been re-
ported to act as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana
during stress conditions. In our work, we targeted two unrelated transcription repressors,
MYBL2 and ANAC032, and verified that the gene-specific dsRNAs downregulated their
expression and upregulated AtCHS at the same time. According to our data, both the
AtMYBL2- and AtANAC032-dsRNA treatments led to a 3.3-6.4-fold upregulation of AtCHS
expression, while the total content of anthocyanins was considerably increased only after
foliar treatment with AtMYBL2 and by 1.7-fold. We propose that since there is a plethora
of transcriptional regulators implicated in the regulation of anthocyanin biosynthesis,
the resulting elevation of anthocyanin production after targeting only two of them was
not dramatic.

In summary, our results demonstrate a high potential of exogenous dsRNAs for
regulating plant endogenous genes due to a pronounced sequence-specific gene downreg-
ulation effect. Furthermore, external plant treatments with gene-specific dsRNAs were
capable of inducing the desired phenotypic and biochemical effects. Taken together, the
findings reveal that exogenous RNAs can be exploited by plant biologists for further crop
improvement and for fundamental gene functional studies.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

The seeds of wild-type A. thaliana (cv. Columbia) were vapor-phase sterilized as
described [34] and plated on solid 1

2 Murashige and Skoog (MS) medium for two days
at 4 ◦C. Then, the plates were kept at 22 ◦C for 1 week in a growth chamber (Sanyo
MLR-352, Panasonic, Osaka, Japan) at a light intensity of ~120 µmol m−2 s−1 over a 16 h
daily light period. One-week-old A. thaliana seedlings were planted to pots (7 cm × 7 cm)
containing 100 g of commercially available rich soil (the soil was well-irrigated by filtered
water applied at the bottom of the pots). Then, the plants were grown in the chamber at
22 ◦C under plastic wrap for additional three weeks without additional irrigation before
RNA treatments of four-week-old plants. After the RNA treatments, the A. thaliana was
incubated for additional seven days either under control (+22 ◦C, 16 h daily light period)
or anthocyanin-inducing (+7 ◦C, 23 h daily light period) conditions in a growth chamber
(KS-200, Smolenskoye SKTB SPU, Smolensk, Russia) without further irrigation to induce
AtCHS expression and anthocyanin accumulation.
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4.2. Isolation and Sequencing of AtCHS, AtMybL2, and AtANACO323 Transcripts

Full-length coding cDNA sequences of AtCHS (AT5G13930.1, 1188 bp) AtMYBL2
(AT1G71030.1, 588 bp), and AtANAC032 (AT1G77450, 762 bp) were amplified by RT-PCR
using RNA samples extracted from the adult leaves of A. thaliana. The RT-PCRs were
performed in a Bis-M1105 Thermal Cycler (Bis-N, Novosibirsk, Russia). The primers are
listed in Table S3. The RT-PCR products were subcloned into pJET1.2/blunt and sequenced
as described previously [54].

4.3. dsRNA Synthesis and Application

All dsRNAs were synthesized using the T7 RiboMAX™ Express RNAi System (Promega,
Madison, WI, USA). For this purpose, the cloned full-length cDNAs of AtMYBL2 and
AtANAC032 and a large cDNA fragment of AtCHS (736 bp out of 1188 bp) were ampli-
fied by PCR for in vitro transcription and dsRNA production. We also amplified a large
fragment of NPTII (GenBank AJ414108, 599 bp out of 798 bp) using pZP-RCS2-nptII plas-
mid [55]. The T7 promoter sequence was introduced into both the 5′ and 3′ ends of the
amplified AtCHS, AtMYBL2, AtANAC032, or NPTII in a single PCR for each gene using
primers listed in Table S3. The PCRs were performed in the Bis-M1105 Thermal Cycler
programmed according to T7 RiboMAX™ Express RNAi System instructions. Then, the
obtained PCR products were used as templates for in vitro transcription and dsRNA syn-
thesis following the manufacturer’s protocol. The resultant dsRNAs were analyzed by gel
electrophoresis and spectrophotometry to estimate dsRNA purity, integrity, and amount.

The AtCHS-, AtMYBL2-, AtANAC032-, and NPTII-dsRNAs were applied to individual
four-week-old rosettes of wild-type A. thaliana by spreading with individual soft brushes
(natural pony hair) sterilized by autoclaving [31] (Supplementary Video S1). For each
dsRNA treatment, 35 µg of the dsRNA were diluted in 100 µL of nuclease-free water
and applied to the foliar surface (all leaves of one rosette for each type of condition were
treated on both the adaxial (upper) and abaxial (lower) sides). One plant of A. thaliana was
treated with the dsRNA of each type (100 µL) and one plant—with sterile filtered water
(100 µL) in each independent experiment. The dsRNAs in all experiments were applied to
four-week-old rosettes of A. thaliana at a late day time (21:00–21:30) under low soil moisture
conditions, since the appropriate plant age, late day time, and low soil moisture at the
time of dsRNA application were important parameters for successful NPTII suppression
in transgenic A. thaliana according to our recent analysis [31]. Soil water content before
dsRNA treatment was 50–60%.

4.4. siRNA Synthesis and Application

The AtCHS- and NPTII-encoding ssRNAs were in vitro-synthesized, modified, and
HPLC purified by Syntol (Moscow, Russia). The RNA oligonucleotide sequences are
presented in Table S2 and Figure 2a,d. The synthesized single-stranded oligonucleotides
were prepared to form siRNA as described [34]. Briefly, to form the siRNA duplexes, equal
volumes of the ssRNAs diluted to a concentration of 100 pmol/µL were combined and
annealed at 90 ◦C for 1 min. Then, the mixture was slowly cooled to room temperature. The
final concentration of annealed oligonucleotides was 50 pmol/µL. 100 µL of each siRNA
duplex or 100 µL of nuclease-free water were applied onto the leaf surface of four-week-old
A. thaliana by spreading with individual soft brushes as described above for dsRNA.

4.5. RNA Isolation and Reverse Transcription

For RNA isolations, a typical adult leaf of A. thaliana was collected from the same
individual plant before treatment, two days and seven days post-treatment for each type of
treatment in an independent experiment. Total RNA was isolated using the cetyltrimethy-
lammonium bromide (CTAB)-based protocol [56] and complementary DNAs were synthe-
sized as described [57].
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4.6. Gene Expression Analysis by qRT-PCR

The reverse transcription products were amplified by PCR and verified for the absence
of DNA contamination, using primers listed in Table S3. The qRT-PCRs were performed
with SYBR Green I Real-time PCR dye and a real-time PCR kit (Evrogen, Moscow, Russia)
as described [58] using two internal controls (GAPDH and UBQ) selected in previous
studies as relevant reference genes for qRT-PCRs on Arabidopsis [59]. The expression was
calculated by the 2−∆∆CT method [60]. All gene identification numbers and used primers
are listed in Table S3.

4.7. Quantification of Anthocyanins

Anthocyanin content in A. thaliana rosettes was determined using a SPECTROstar
Nano spectrophotometer (BMG Labtech, Ortenberg, Germany) as described in Teng et al. [61].
Treated A. thaliana rosettes were frozen at −20 ◦C and subsequently homogenized using a
mortar and a pestle. Shredded tissue was weighed and extracted for 1 d at 4 ◦C in 1 mL
of 1% (v/v) hydrochloric acid in methanol. Then, the mixture was centrifuged at 13,200
rpm for 15 min and the absorbance of the supernatant was measured at 530 and 657 nm.
Relative anthocyanin concentrations were calculated as described [61].

For HPLC–MS analysis, the samples were filtered through a 0.45-um nylon filter. Iden-
tification of all anthocyanins was performed using a 1260 Infinity analytical HPLC system
(Agilent Technologies, Santa Clara, CA, USA) coupled to Bruker HCT ultra PTM Discovery
System (Bruker Daltonik GmbH, Bremen, Germany) equipped with an electrospray ioniza-
tion (ESI) source. The data for anthocyanins were acquired in positive ion mode under the
operating conditions as described [62]. The MS spectra were recorded across an m/z range
of 100–1500, and the individual anthocyanins were identified as described [63].

HPLC with diode array detection (HPLC–DAD) for quantification of all anthocyanins
was performed using a HPLC LC-20AD XR analytical system (Shimadzu, Kyoto, Japan).
DAD data were recorded in the 200–800 nm range, and chromatograms for quantification
were acquired at 530 nm. The chromatographic separation was performed on Shim-pack
GIST C18 column (150 mm, 2.1-nm i.d., 3-µm part size; Shimadzu, Japan). Anthocyanins
were separated using 0.1% formic acid and acetonitrile as mobile phases A and B, respec-
tively, with the following elution profile: 0 to 35 min 0% of B; 35 to 40 min 40% of B;
40 to 50 min 50% of B; 50 to 65 min 100% of B. 5 µL of the sample extract was injected
with a constant column temperature maintained at 40 ◦C and a flow rate maintained at
0.2 mL/min. All solvents were of HPLC grade. The contents of anthocyanins were deter-
mined by external standard method using the four-point regression calibration curves built
with the available standards. The commercial standard cyanidin chloride was obtained
from Sigma-Aldrich (St. Louis, MO, USA) and used as the control.

4.8. Fluorescent dsRNA Labeling and Laser Scanning Microscopy

Fluorescent labeling of the in vitro synthesized AtCHS-dsRNA was performed using
the Silencer™ siRNA Labeling Kit with Cy™3 dye (Thermo Fisher Scientific, Waltham, MA,
USA) following the manufacturer’s instructions. A total of 35 µg of the labeled dsRNA
(100 µL) was applied on the adaxial and abaxial leaf surface of four-week A. thaliana as
described above. Fluorescent signals were analyzed 13–15 h after the foliar plant treatments
by laser scanning microscopy. The whole leaves were mounted in distilled water in a Petri
dish and were observed under a Zeiss LSM 780 laser scanning microscope operated in λ-
mode equipped with a Plan-Apochromat 20×/0.8 and a Plan-Neofluar 40×/0.6 objectives.
The excitation wavelength of an argon laser was set at 488 nm and the emission signal was
registered at 20 evenly spaced wavelengths (8.9 nm apart) in a range from 500 to 693 nm
by using a QUASAR detector. Finally, the resulted λ-stacks were linearly unmixed with
the Zeiss Zen 2.1 SP3 (Black Edition) software. The laser scanning microscopy was carried
out at the Far Eastern Center of Electron Microscopy (A.V. Zhirmunsky National Scientific
Center of Marine Biology, FEB RAS, Vladivostok, Russia).
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4.9. Statistical Analysis

The data are presented as mean ± standard error (SE) and were tested by paired Stu-
dent’s t-test. The p < 0.05 level was selected as the point of minimal statistical significance
in all analyses. At least three independent experiments were performed for each type of
analysis.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/
article/10.3390/ijms22136749/s1.
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