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Abstract

Aquatic hyphomycete fungi are fundamental mediators of energy flow and nutrient spiraling in rivers. These microscopic
fungi are primarily dispersed in river currents, undergo substantial annual fluctuations in abundance, and reproduce either
predominantly or exclusively asexually. These aspects of aquatic hyphomycete biology are expected to influence levels and
distributions of genetic diversity over both spatial and temporal scales. In this study, we investigated the spatiotemporal
distribution of genotypic diversity in the representative aquatic hyphomycete Tetracladium marchalianum. We sampled
populations of this fungus from seven sites, three sites each in two rivers in Illinois, USA, and one site in a Wisconsin river,
USA, and repeatedly sampled one population over two years to track population genetic parameters through two seasonal
cycles. The resulting fungal isolates (N = 391) were genotyped at eight polymorphic microsatellite loci. In spite of seasonal
reductions in the abundance of this species, genotypic diversity was consistently very high and allele frequencies
remarkably stable over time. Likewise, genotypic diversity was very high at all sites. Genetic differentiation was only
observed between the most distant rivers (,450 km). Clear evidence that T. marchalianum reproduces sexually in nature
was not observed. Additionally, we used phylogenetic analysis of partial b-tubulin gene sequences to confirm that the
fungal isolates studied here represent a single species. These results suggest that populations of T. marchalianum may be
very large and highly connected at local scales. We speculate that large population sizes and colonization of alternate
substrates in both terrestrial and aquatic environments may effectively buffer the aquatic populations from in-stream
population fluctuations and facilitate stability in allele frequencies over time. These data also suggest that overland dispersal
is more important for structuring populations of T. marchalianum over geographic scales than expected.
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Introduction

Within-species genetic diversity is distributed spatially among

populations and is variable over time. Levels and distributions of

this diversity can be assessed using data from molecular markers

(e.g. microsatellites) in conjunction with population genetic

analyses. In the case of aquatic hyphomycete fungi, which are

microscopic, submerged in water, and grow into and through

opaque substrates, population genetic studies can generate

unprecedented insight into otherwise unobservable biological

phenomena.

Aquatic hyphomycetes are saprotrophic fungi that are funda-

mental mediators of energy flow and nutrient spiraling in stream

food webs [1–4]. More than 90% of the carbon in wooded stream

food webs originates from terrestrial vegetation [5,6] but is initially

inaccessible to aquatic invertebrates, which generally do not

produce the enzymes necessary to digest recalcitrant plant

compounds [7]. In the process of obtaining their own nutrition,

aquatic hyphomycetes digest plant debris (e.g. [8,9]), thereby

promoting decomposition and making carbon and nutrients

available to aquatic invertebrates [10,11].

Deciduous leaves, the primary substrate of aquatic hyphomy-

cetes, are highly seasonal in abundance in temperate climates [12–

14], with leaves most abundant in late autumn and winter and

least abundant in summer and early fall [15]. Similar seasonal

fluctuations in aquatic hyphomycete abundances are also observed

in temperate streams [15–18]. For example, sporulation rate [18],

the fraction of leaves colonized by aquatic hyphomycetes [17] and

within stream fungal biomass [15] decrease with substrate

availability. Similar dynamics have been reported from streams

around the world (e.g. [14,19–26]) making these annual fluctua-

tions one of the best-studied aspects of aquatic hyphomycete

biology. The magnitude of these fluctuations is substantial,

inspiring their description as ‘‘boom-bust’’ cycles [27].

In spite of their seasonal dynamics, populations of aquatic

hyphomycetes are maintained in streams over time (e.g.

[18,22,26,28,29]); however, the impact of the boom-bust cycles

on levels of genetic diversity and the genetic structure of aquatic

hyphomycete populations over time is unknown. One possibility is

that these boom-bust cycles are the equivalent of annual

population bottlenecks, which are expected to result in reduced

genetic diversity and random changes in allele frequencies over

time due to the genetic drift inherent in small populations [30–32].

However, previous studies have revealed high levels of genotypic

diversity in populations of these fungi [33–36]. As single time point

studies, however, they do not address the possibility of changes in
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genotypic diversity or population structure in populations of these

fungi over time. To understand if/how fluctuations in fungal

abundances impact genetic diversity and population structure in

aquatic hyphomycetes, repeated sampling of populations must be

undertaken.

Aquatic hyphomycetes are primarily dispersed in river currents

as spores, either free-floating or trapped in foam. The asexually

produced spores of these fungi are generally sigmoid, tetraradiate,

or highly branched in shape, which may assist in their downstream

dispersal [33]. There is evidence that spores can travel

downstream in water as far as 1.8 km [37]. Some aquatic

hyphomycetes can also survive passage through the digestive

tracts of aquatic detritivores (e.g. [38]); therefore, aquatic animals

may provide an additional means of within stream dispersal. It is

unknown if or how animal mediated dispersal impacts aquatic

hyphomycete population structure. Given that aquatic hyphomy-

cete spores are primarily dispersed in river currents, and thus

unidirectionally, genetic differentiation between rivers [35] and

hierarchical population structure within individual rivers and

watersheds could occur [39,40]. Previous aquatic hyphomycete

population genetic studies have sampled from only one stream

[33,34], or from one site in each of several streams in different

drainages [35]; thus, we cannot yet determine whether or not

aquatic hyphomycete distributions have a hierarchical component.

Alternative modes of dispersal, enabling dispersal across

terrestrial barriers, must also occur to generate the broad, nearly

cosmopolitan distributions observed for most species of aquatic

hyphomycetes [41]. For example, Tetracladium marchalianum de

Wild. occurs in temperate and sub-tropical areas worldwide

[42,43] including Hawaii, USA [44], which has never had a

freshwater link to any other body of land. Overland dispersal could

also explain the isolation of genotypically identical individuals of

Tetrachaetum elegans Ingold from separate streams in the Montagne

Noire region of France [35]. Although alternative modes of

overland dispersal have been proposed for these fungi, including

transportation by wind, insects, water droplets, waterfowl, and as

hyphae in fragments of dry leaves [9,41,45,46], it is not yet known

which occur in nature. The frequency of overland dispersal is also

unknown, but has important consequences for the geographic

structuring of genetic diversity among populations of these fungi.

For example, if overland dispersal of aquatic hyphomycetes is

common, populations in neighboring streams may be genetically

homogeneous and genetic structure within streams unlikely.

Because aquatic hyphomycetes are microscopic and have few

distinguishing/measurable morphological characters, dispersal of

these fungi can best be inferred from species distributions and

molecular population genetics studies.

Reproductive mode also has important implications for levels

[47] and distributions of genetic diversity in populations of aquatic

hyphomycetes, as well as the evolutionary potential of populations

[48,49]. Most aquatic hyphomycetes are only known to reproduce

asexually; only 34 of about 300 aquatic hyphomycetes have known

sexual states [50]. However, determination of which reproductive

modes (sexual and/or asexual) are occurring in fungi is not

straightforward. Fungi have different morphologies that accom-

pany sexual and asexual reproduction and sexual states may be

separated from asexual states by time, substrate, habitat, climate or

other factors. For these reasons, mycologists have increasingly

turned to molecular marker and DNA sequence data to determine

whether fungi known only in an asexual state reproduce sexually

in nature [51].

In this study, we use one of the most commonly occurring

[43,45,52,53] and distinctive [53–55] species of aquatic hypho-

mycete, T. marchalianum, as a model to track population genetic

parameters over time, through population reduction and subse-

quent expansion, and over spatial scales ranging from within

streams to between streams separated by 450 km, providing the

first spatiotemporal population genetic analysis of an aquatic

hyphomycete. Because T. marchalianum is only known to reproduce

asexually but may undergo sexual reproduction in nature, we use

multilocus genotype data to look for evidence of genetic

recombination. Additionally, using partial b-tubulin sequence

data we verify that morphologically identified isolates of this

fungus represent a single species, insuring that analysis and

interpretation of these data are not confounded by the presence of

cryptic species (species that are morphologically indistinguishable).

Methods

Organism and Study Sites
Tetracladium marchalianum is only known to reproduce via mitosis,

either through the production of distinctive tetraradiate haploid

spores (Figure S1; see also [53–55]) or fragmentation of non-

reproductive hyphae. The main axis of each spore (26–46 mm

long) (measurements and terminology from [53]) has 1–3

septations with a globose distal cell (relative to the cell from

which it is produced). Mature spores have three branches (25–

40 mm61.5–2.5 mm), one of which originates from the side of a

shorter branch and terminates in a second central globose cell

(combined size 31–41 mm61.5–4 mm). Tetracladium marchalianum is

known to degrade carboxymethylcellulose, xylan, and polygalac-

turonic acid [56], and its role in leaf decomposition in streams is

well established [57–59]. Phylogenetic analyses indicate that

within the Ascomycota, T. marchalianum belongs within the class

Leotiomycetes and possibly within the order Helotiales [54]. The

average genome size of taxa in this order is 1C = 0.03 pg, or

approximately 27.14 Mb (Fungal Genome Size Database www.

zbi.ee/fungal-genomesize, accessed on 6/26/2009).

The three rivers sampled in this study were the Middle Fork of

the Vermilion (Vermilion) and Sangamon Rivers in Illinois, USA,

and Konkapot Creek in Wisconsin, USA (Figure 1). The

Vermilion and Sangamon Rivers, which drain neighboring

watersheds, were each sampled at three sites (Figure 1). In a

downstream direction, the sites in the Vermilion River (V1, V2,

V3) were separated by 7 and 9 km of channel length, and in the

Sangamon River (S1, S2, S3) by 30 and 10 km of channel length.

Konkapot Creek (K) is approximately 450 km north of the Illinois

sites and only one site in Konkapot Creek was sampled. All sites

were bordered by eastern deciduous forest with Quercus (oak) and

Acer (maple) common at all sites, and Platanus (sycamore) also

present at the Illinois sites.

Sample collection and spore isolation
All seven sites were sampled in December 2002. Eight

additional collections were taken from S1 between March 2002

and March 2004 (Table 1). No collections were made within two

weeks following substantial, potentially riverbed scouring, rain

events. For each collection 60–100 individual submerged leaves or

leaf fragments from naturally occurring leaf packs, no more than

one leaf per pack, were removed from the river, placed in

individual plastic bags which were sealed and stored at 10uC until

they were prepared for single spore isolation (1–5 days). Each leaf

was rinsed with deionized water and 10–12 leaf discs (6 mm in

diameter) were cut using a sterilized handheld paper hole puncher.

The discs from an individual leaf were incubated together in

deionized water in a Petri dish at 10uC under continuous

fluorescent light. Dishes were examined weekly for sporulation

using a dissecting microscope until T. marchalianum spores were

T. marchalianum over Space and Time
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observed, maximally one month. Individual spores were isolated

from the dishes and allowed to germinate on antibiotic water agar

[AWA: 1.8% Bacto Agar (BD DifcoTM, Franklin Lakes, NJ) plus

0.5 mg/ml Streptomycin Sulfate and Penicillin G (Sigma-Aldrich,

St. Louis, MO) per 1 L deionized water] in Petri dishes. The

identity of each germinating T. marchalianum spore was visually

confirmed using a light microscope within 24 hours of plating on

AWA. Individual spores were transferred to Potato Dextrose Agar

with antibiotics [PDA+: 3.9% Potato Dextrose Agar (Difco) plus

0.5 mg/ml Streptomycin Sulfate and Penicillin G (Sigma) per 1 L

deionized water] and grown at room temperature with ambient

light. Up to thirty independent isolates from each collection (each

originating from a different leaf) were randomly selected for DNA

extraction and genotyping at 8 polymorphic microsatellite loci

(GenBank accessions DQ272269—DQ272276) as previously

described [36,43].

Data analysis
Genotypic diversity [60], the probability of two individuals

sampled at random from a population having different genotypes,

was calculated using MultiLocus 1.3b [61]. Individuals with

identical multilocus genotypes were identified using a custom

Python script (individuals with missing data were excluded). Allelic

richness was calculated using CONTRIB [62] with rarefaction to

the smallest sample size obtained minus 1 to produce estimates

that are unbiased by differences in sample sizes.

Genetic differentiation was assessed using Weir and Cocker-

ham’s [63] estimator of FST, theta h, in FSTAT v 2.9.3.2 [64].

Because isolates of T. marchalianum were taken from different types

of leaves (oak, maple, sycamore, or unidentified) genetic

differentiation by leaf type was also analyzed to ascertain if

genotype–substrate specificities influence genetic structure in this

species. Genetic structure was also evaluated using a Bayesian

approach in Structure v2.3.2 [65–67] for K = 1 to K = 7 with

100,000 steps following a 50,000 step burn in. Both admixture

models (present/absent) were employed, allele frequencies were

assumed to be independent, and sample origin information was

disregarded.

The phylogenetic relationships among 19 T. marchalianum

isolates (18 from this study and 1 from Europe), 2 sister species

(T. setigerum and T. maxilliforme), and 4 additional species from

within the Order Helotiales [Rhynchosporium secalis (GenBank

Accession X81046.1), Sclerotinia sclerotiorum (AY312374.1), Botryoti-

nia fuckeliana (X73133.1), and Monilinia fructicola (AY283678.1)]

were determined from partial b-tubulin gene sequences. Uncor-

rected sequence divergence percentages between Tetracladium

individuals were also generated. All Tetracladium sequences

(GenBank accessions HQ123547—HQ123567) were obtained

using primers BT1819R and BT2916 [68]. The Maximum

Likelihood (ML) tree, based on 889 unambiguously aligned

nucleotides, was estimated using PhyML v2.4.5 [69]. A GTR+I+G

model of nucleotide evolution was assumed with all parameters of

the model estimated during the analysis. Support for each branch

was determined as the minimum of the Chi2-based and SH-like

support values; values greater than 0.90 indicate significant

support for a node.

Multilocus linkage disequilibrium was evaluated using the Index

of Association, IA, where if IA of the data is significantly different

from the results of 1000 randomized datasets (p#0.05) the null

hypothesis of recombination is rejected. The value of IA is

known to increase with the number of loci tested; therefore,

multilocus linkage disequilibrium was also measured using the

locus number independent measure rD, [61]. Both IA and rD were

calculated in MultiLocus 1.1.3b [61]. Important limitations of

analyses to determine reproductive mode should be noted. Asexual

population structure can result from selfing (homothallic

sexual reproduction), clonality, or sexual reproduction in

populations that are genotypically homogeneous: analyses of

reproductive mode based on genotypic diversity alone cannot

distinguish among these factors if asexual population structure is

observed.

Results

Collections
Tetracladium marchalianum was sampled over both spatial (S1, S2,

S3, V1, V2, V3, K) and temporal (S1: Mar02–Mar04) scales. Note

that the December 2002 collection from S1 is included in both

spatial and temporal spatial comparisons and is referred to as S1

and Dec02 accordingly. The 16 collections undertaken for this

Figure 1. Collection sites in Wisconsin and Illinois, USA. Collections were made from three sites each in the Sangamon River (S1, S2, S3) and
the Middle Fork of the Vermilion River (V1, V2, V3), and from one site in Konkapot Creek (K).
doi:10.1371/journal.pone.0015908.g001

T. marchalianum over Space and Time
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study (Table 1) resulted in the sampling of 1363 leaves and

isolation of 1036 cultures of T. marchalianum, each originating from

a single asexually produced spore of verified morphological

identity. The Aug03 collection yielded only three single spore

isolates and has been excluded from the genetic analyses presented

below due to small sample size. The relative proportions of maple,

oak, sycamore, and unknown leaf types in each collection varied

(Figure S2 A, B). This variation was largely mirrored by the

relative proportions of leaves of each type that were colonized by

T. marchalianum (Figure S2 C, D). Collections from S1 in 2002 were

made before (Mar02) and after (Oct02) the population reduction

occurred in that year. The sampling scheme was adjusted to span

the event the following year.

Population over time
The fraction of leaves colonized by T. marchalianum at S1 was

highest fall through spring (0.37–0.72) and smallest in summer

(0.03–0.20) (Table 1). From March to August 2003 colonization

frequency declined by 69%, with 80% of the reduction occurring

between March and May. This reduction was followed by a

substantial increase in colonization frequency in fall 2003. Inter-

annual variation in colonization frequency was also observed (e.g.

Mar02 = 0.63, Mar03 = 0.72, Mar04 = 0.44) (Table 1).

Diversity
Multilocus genotypes were obtained for 211 individuals from

S1, collected between March 2002 and 2004, and 180 individuals

from the 6 additional sites in Illinois and Wisconsin. In some cases

fewer than 30 individuals per collection were genotyped due to the

exclusion of samples that yielded low DNA concentrations and/or

the isolation of fewer than 30 independent isolates (Table 2). We

observed 3 to 18 alleles per marker, with an average of 4.77 alleles

per locus per sample (range 4.13–5.5; Table 2). After rarefaction,

the average allelic richness among all loci and populations was

3.14 (2.60–3.53; Table 2).

Genotypic diversity was very high in all collections (0.961–

0.998; Table 2), regardless of time and site, and no associations

between season or colonization frequency and genotypic diversity

were observed. Nearly every individual in each collection had a

unique multilocus genotype; however, we observed up to 3

identical individuals per collection (Table 2). Identical individuals

were also observed in collections separated by both space and

time, with one genotype observed in 14 individuals over two years,

and 3 genotypes were common to 5 sites.

Differentiation
Population differentiation, based on pairwise comparisons of

FST, was observed over both spatial (Table 3) and temporal scales

(Table 4). Spatially, population structure was only observed at the

largest scale tested, between streams separated by ,450 km, with

no differentiation observed within streams or between streams in

neighboring watersheds. Temporally, moderate differentiation,

0.05–0.15 [70] with statistical support was observed in four

comparisons (Table 3), and indicates differences between the

Dec03 and Mar04 collections and 4 collections in or before July

2003. Analyses of genetic differentiation by leaf type do not

indicate that substrate-specificity influences population structure in

T. marchalianum (Tables S1 and S2).

Genetic structure was also evaluated using Bayesian analyses as

implemented by the software Structure. These analyses support

the existence of two groups (K = 2) for both spatial and temporal

data and both models tested. Both groups identified by Structure

(Group 1 and Group 2) were represented in every collection, but in

different frequencies (Table 2). Among collections from Illinois, an

average of 58% (range 38%–76%) of individuals were identified as

belonging to Group 1. The Wisconsin population was nearly

entirely composed of Group 1 individuals (97%). Analyses of

population differentiation (as above) by group, which yielded

significant results only for Group 1 (Table S3), are qualitatively

similar to the non-partitioned results and do not change the

Table 1. Collection site, sample, and colonization frequency details.

Site ID Date (m/d/y) Latitude (N) Longitude (W) No. leaves Fraction colonized

S1 Mar02 03/04/02 40u13.799 88u22.599 60 0.63

Oct02 10/31/02 70 0.37

Dec02/S1 12/20/02 59 0.51

Mar03 03/02/03 100 0.72

May03 05/04/03 100 0.17

Jul03 07/06/03 100 0.20

Aug03 08/29/03 100 0.03

Oct03 10/25/03 100 0.58

Dec03 12/18/03 100 0.63

Mar04 03/05/04 100 0.44

S2 S2 12/17/02 40u4.139 88u33.929 74 0.59

S3 S3 12/17/02 39u59.969 88u38.999 75 0.55

V1 V1 12/13/02 40u13.609 87u45.329 75 0.49

V2 V2 12/13/02 40u9.149 87u44.259 75 0.53

V3 V3 12/13/02 40u6.929 87u43.529 75 0.47

K K 12/31/02 44u14.659 88u15.849 100 0.47

Details of the 16 collections for this study including location, identifier (ID), date, the number of leaves collected, and the fraction of leaves colonized by T.
marchalianum. For site abbreviations refer to Figure 1. Note that the collection from S1 in December 2002 is used in both spatial and temporal analyses and referred to
as Dec02 or S1 accordingly.
doi:10.1371/journal.pone.0015908.t001
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interpretation of these data. Note that partitioning the individuals

between groups resulted in small per collection sample sizes.

Cryptic species
Based on Maximum Likelihood analysis of partial b-tubulin

sequence data, isolates identified as T. marchalianum based on

morphology represent a single species (Figure 2); there is no

evidence for genetic structure among 19 T. marchalianum isolates.

Furthermore, individuals identified as Group 1 or 2 in Structure

are intermixed in the resulting phylogeny. Average sequence

divergence among the 18 T. marchalianum individuals from

Wisconsin and Illinois is very low (0.24%, range 0.00%–0.45%),

and is an order of magnitude lower than that observed between T.

marchalianum and its sister species T. setigerum (4.88%) and T.

maxilliforme (5.52%). These data do not support the existence of

cryptic species within T. marchalianum.

Recombination
Reproduction in T. marchalianum appears to be primarily or

effectively asexual (i.e. if sexual reproduction does occur, it has no

discernable impact on linkage disequilibrium among the 8 loci

employed in this study); the null hypothesis of recombination was

rejected for all collections by the Index of Association (IA and rD;

Table 2). Because the presence of multiple genotypically identical

individuals could bias this metric, clone-corrected datasets were

also analyzed (data not shown). Qualitatively similar results are

obtained from both clone-corrected and uncorrected data, possibly

due to the low frequency of identical individuals in these samples.

However, when the partitioned (Group1 only) data are analyzed

(Table S4) linkage equilibrium is not rejected for the sample from

Konkapot Creek, nor from the Vermilion River (V1, V2, and V3

Group 1 individuals were combined due to small sample size).

Discussion

Aquatic hyphomycetes primarily colonize autumn-shed leaves,

a substrate that is inherently seasonal in abundance. The

abundance of aquatic hyphomycetes in streams fluctuates

seasonally in conjunction with the availability of autumn-shed

leaves. It was previously unknown whether these contemporane-

ous fluctuations influence levels of genetic diversity or genetic

stability over time in populations of aquatic hyphomycetes. In this

study, we repeatedly sampled the population of T. marchalianum

from leaf litter at one site (S1) in the Sangamon River, Illinois,

allowing us to simultaneously track changes in the fraction of

leaves colonized by this species, and the frequencies of microsat-

ellite alleles and multilocus genotypes. The fraction of leaves

colonized by T. marchalianum increased and decreased seasonally as

expected (Table 1). Inter-annual variation in colonization

frequency and the magnitude of the intra-annual changes we

observed are comparable with previous reports for this species and

consistent with observed fluctuations in spore density [17,20,71].

Table 2. Measures associated with diversity, population structure, and mode of reproduction in T. marchalianum.

ID N No. types Max identical Genotypic diversity Alleles per locus Allelic richness Fraction Group 1 IA rD

Mar02 26 22 3 0.982 4.38 2.984 0.65 1.644* 0.236*

Oct02 24 23 1 0.996 4.88 3.413 0.46 1.042* 0.152*

Dec02 30 29 2 0.998 5.25 3.482 0.67 1.281* 0.185*

Mar03 30 24 3 0.982 4.75 3.015 0.53 1.531* 0.221*

May03 17 16 2 0.993 4.50 3.426 0.76 0.874* 0.125*

Jul03 19 18 2 0.994 4.38 3.243 0.74 1.412* 0.204*

Oct03 30 29 1 0.998 5.38 3.421 0.60 1.002* 0.145*

Dec03 30 23 2 0.966 4.75 2.965 0.50 1.387* 0.198*

Mar04 30 27 3 0.984 4.38 2.789 0.67 1.213* 0.176*

S2 30 22 3 0.961 4.13 2.651 0.50 1.888* 0.271*

S3 30 26 3 0.989 5.38 3.366 0.38 1.454* 0.210*

V1 30 28 1 0.995 4.63 3.149 0.63 0.625* 0.090*

V2 30 26 3 0.990 4.75 3.033 0.43 1.601* 0.231*

V3 30 28 2 0.998 5.50 3.533 0.57 1.129* 0.163*

K 30 25 3 0.986 4.50 2.598 0.97 0.502* 0.073*

The number of individuals genotyped (N) from each collection and site, number of distinct multilocus genotypes observed (No. types), maximum number of identical
individuals (excluding individuals with missing data), Nei’s genotypic diversity, mean number of alleles per locus, allelic richness with rarefaction to 16, the fraction of
each population identified as belonging to Group 1 in Structure, Index of Association (IA), and a locus number independent measure of multilocus linkage
disequilibrium (rD).
*p,0.001.
doi:10.1371/journal.pone.0015908.t002

Table 3. Pairwise comparisons of FST between collections of
T. marchalianum from Wisconsin and Illinois, USA.

S1 S2 S3 V1 V2 V3 K

S1 0.010 0.067 0.002 0.057 - 0.097*

S2 0.205 0.007 - 0.005 - 0.200*

S3 0.014 0.150 0.017 - 0.003 0.267*

V1 0.383 - 0.138 0.009 - 0.149*

V2 0.005 0.081 - 0.157 - 0.248*

V3 - - 0.500 - - 0.169*

K 0.002* 0.002* 0.002* 0.002* 0.002* 0.002*

FST (upper diagonal matrix). Negative FST values are excluded (-). P-values
obtained after Bonferroni corrections (lower diagonal matrix).
*significant at the 5% nominal level.
doi:10.1371/journal.pone.0015908.t003

T. marchalianum over Space and Time
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Colonization frequencies appear to be independent of leaf-type

and variation in the relative proportions of leaf-types collected

(Figure S2, Table 1). Additionally, leaf-type does not influence

genetic population structure in this species (Tables S1 and S2),

which is consistent with findings for another aquatic hyphomycete,

T. elegans [35].

Although the annual reduction in fungal abundance in 2003

was substantial, a decline of more than an order of magnitude, we

did not observe corresponding changes in genotypic diversity or

allelic richness in the S1 population over time (Table 2). Rather,

genotypic diversity was very high throughout the study in all

collections and most of the individuals sampled had unique

Figure 2. Maximum Likelihood tree for 19 isolates of T. marchalianum based on partial b-tubulin gene sequences. The tree resulting
from ML analysis of partial b-tubulin gene sequences (889 unambiguously aligned nucleotides). Support for each branch is shown as the minimum of
the Chi2-based and SH-like support values; only values greater than 0.90, indicating significant support for a node, are reported. The scale bar
indicates the number of nucleotide substitutions per site. The group to which isolates of T. marchalianum were assigned by Structure is identified
when known.
doi:10.1371/journal.pone.0015908.g002

Table 4. Pairwise comparisons of FST between collections of T. marchalianum from S1 between March 2002 and March 2004.

Mar02 Oct02 Dec02 Mar03 May03 Jul03 Oct03 Dec03 Mar04

Mar02 - 0.009 0.001 0.019 0.042 - 0.016 0.001

Oct02 - 0.012 - 0.032 0.048 - 0.038 0.069

Dec02 0.140 0.208 0.012 - - 0.010 0.078* 0.058

Mar03 0.097 - 0.168 0.035 0.045 - 0.037 0.066*

May03 0.078 0.047 - 0.024 0.001 0.035 0.111* 0.093

Jul03 0.018 0.071 - 0.068 0.167 0.028 0.135 0.103*

Oct03 - - 0.231 - 0.018 0.107 0.021 0.027

Dec03 0.011 0.006 0.002* 0.003 0.001* 0.003 0.057 0.009

Mar04 0.147 0.004 0.007 0.001* 0.003 0.001* 0.026 0.294

FST (upper diagonal matrix). Negative FST values are excluded (-). P-values obtained after Bonferroni corrections (lower diagonal matrix).
*significant at the 5% nominal level.
doi:10.1371/journal.pone.0015908.t004
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multilocus genotypes (Table 2). This result is consistent with

previous single time-point reports for other aquatic hyphomycetes

both with [33] and without known sexual states [34,35]. For

example, Laitung and colleagues [35] observed different AFLP

genotypes in 83% to 100% of all isolates of T. elegans collected from

nine streams in France.

From these data, it is clear that allele frequencies in populations

of T. marchalianum can remain stable in spite of dramatic

demographic fluctuations. Although there is evidence of moderate

differentiation (0.05–0.15 [70]) between collections that bracket

late summer/early autumn 2003 (Table 4), suggesting some

variability in genetic structure in T. marchalianum over time, it is not

clear that seasonal or substrate dynamics underlie this variation. A

similar pattern of differentiation was not observed among

collections spanning the summer of 2002. Furthermore, the lack

of differentiation between March collections over three years

(2002, 2003, 2004) illustrates that the population is remarkably

stable over longer time scales. The outstanding question then is

how can this genetic stability be achieved?

To our knowledge, direct estimates of aquatic hyphomycete

population sizes, census sizes as opposed to relative measures, do

not exist in the literature. However, if one considers that the late

summer standing crop of coarse particulate organic matter

(CPOM), which includes leaf litter, in North American headwater

streams is about 20g C m22 (ash-free dry mass [14]) and the

average wet mass per intact leaf is approximately 1g (determined

from autumn-shed oak and maple leaves submersed in water for 1

week) it is obvious that even when leaves are relatively least

abundant, the number of leaves or leaf fragments remaining in

streams could be very high and support large populations of T.

marchalianum. This is especially true given that multiple genetically

distinct aquatic hyphomycete individuals can occupy a single leaf

[34]. As such, even 3% survival through a population decline

could leave a considerable number of genotypically diverse

individuals for population recovery the following year, facilitating

the maintenance of high levels of diversity and preventing

population differentiation over time.

The colonization of alternative substrates on land and in water

might also foster the maintenance of genetic diversity and stabilize

allele frequencies over time [72]. Aquatic hyphomycetes are

known to colonize a variety of substrates including wood, which

might serve as an important long-term source of fungal inoculum

due to slower decomposition rates [9,73]. Aquatic hyphomycetes

are also known to have at least limited survival in substrates under

dry conditions [74–78] and there is a growing understanding that

some aquatic hyphomycetes function as saprotrophs in the aquatic

environment and as endopyhtes in the terrestrial environment

[72,79,80]. The introduction of fungal inoculum into streams from

dried leaves or other colonized plant material could reduce the

influence of fluctuating in-stream leaf litter availability on local

genotypic diversity.

Aquatic hyphomycetes are primarily dispersed as spores in river

currents; however, this mode of dispersal does not explain the

global distributions of many aquatic hyphomycetes, including T.

marchalianum. Thus, dispersal by alternative modes must occur.

Neither the importance of alternative modes of dispersal, nor the

frequency of gene flow between populations of aquatic hyphomy-

cetes is currently known. Although unidirectional dispersal and

gene flow can generate hierarchical population structure within

and between rivers [39,40], we do not observe this pattern.

Rather, the collection of genotypically identical isolates of T.

marchalianum from streams in neighboring and distant watersheds

can be interpreted as evidence of overland gene flow (see also

[35]). Furthermore, we did not observe genetic differentiation

between any collections from the Sangamon and Vermilion Rivers

(Table 3), even though collection sites were separated by up to

30 km within a single stream and by more than 60 km between

streams (Figure 1). In contrast, differentiation between populations

in neighboring streams has been reported for T. elegans in the more

topographically diverse Montagne Noire region of France [35].

The lack of population differentiation within and between streams

in Illinois suggests that regional gene flow substantially influences

the structuring of genetic diversity among these populations of

T. marchalianum.

Although we did not observe genetic differentiation between

populations of T. marchalianum in Illinois, we did observe differen-

tiation between the population of T. marchalianum in Konkapot

Creek, Wisconsin and the Illinois populations (Table 3). Unlike the

Illinois populations, the Konkapot Creek population appears to be

composed almost entirely of individuals belonging to Group 1, as

identified by Structure (Table 2). Note that individuals from

Group 1 and Group 2 are intermixed in the phylogeny resulting

from analysis of partial b-tubulin sequence data (Figure 2); thus,

these groups do not signal the existence of cryptic species within

T. marchalianum. Overall, we find no evidence of cryptic species in

T. marchalianum; this finding is supported by published phylogenies

based on 18S and internal transcribed spacer (ITS) rDNA [54,81].

The results of this study, in combination with the work of

Laitung and colleagues [35], suggest that gene flow frequencies for

aquatic hyphomycetes are governed by extrinsic factors such as

distance between streams and physical barriers to dispersal. By this

reasoning, we might predict that isolation by distance maintains

the genetic differentiation we observed between Konkapot Creek

and the Illinois sites. It is also possible that the population in

Konkapot Creek was founded from a more southern population

following the retreat of the Laurentide Ice Sheet at the end of the

last ice age. Additional studies of a phylogeographic nature will be

necessary to identify and interpret the geographic distribution of

genetic diversity in T. marchalianum and other aquatic hyphomy-

cetes.

Fungi known only in an asexual state are generally assumed to

have a corresponding sexual state. In this study, statistically

significant results for IA suggest that T. marchalianum is effectively

asexual (Table 2). The basis of this metric is linkage disequilibrium

(the non-random association of loci), which is expected in

asexually reproducing organisms, and breaks down quickly in

response to recombination [47,82]. However, high genotypic

diversity is frequently interpreted as an indication of sexual

recombination (e.g. [83,84]). For T. marchalianum, high genotypic

diversity, the relatively rare observation of individuals with

identical multilocus genotypes (Table 2), and the non-significant

results for IA in two populations when only Group 1 individuals are

analyzed (Table S4) could suggest that this species undergoes

sexual reproduction.

Analyses of reproductive mode, such as those performed in this

research, commonly indicate that species do recombine in nature

[83]. Ideally, consensus among multiple metrics occurs and is used

to infer reproductive mode [51]. However, conflicting results are

not uncommon nor is resolution of these conflicts standardized

[35,84,85]. Unfortunately, both linkage disequilibrium and high

genotypic diversity can result from processes unrelated to mode of

reproduction, such as physical linkage, genetic drift, and

population admixture in the case of linkage disequilibrium, and

large population size, establishment of a population by a diverse

founder population, immigration [86], somatic recombination

[47] and mutation in the case of genotypic diversity. It is unlikely

that physical linkage can explain the results of IA in this study

because qualitatively similar results are also obtained from
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analyses based on 57 AFLP loci [43], which should provide

coverage over the entire genome (the locations of the SSR markers

in the T. marchalianum genome are as yet unknown). Furthermore,

large population sizes (inferred from sampling success), lack of

population differentiation over time or among sites, and evidence

that cryptic species were not sampled in this study make related

explanations for linkage disequilibrium in T. marchalianum unlikely.

However, it remains difficult to decide whether high genotypic

diversity is sufficient evidence to override the weight of the IA

results presented here which indicate that T. marchalianum is

effectively asexual in these populations.

There is a growing trend to use the distributions, presence/

absence, and sequence variation of mating types and mating type

alleles as evidence in determining reproductive mode [87–91];

research along these lines would complement the work presented

here. This information could explain the apparent asexuality of

the populations we sampled (for example, only one mating type

may be present), or suggest that asexual reproduction is dominant

at broader geographic scales if both mating types are co-occurring

but no evidence of recombination is observed. It is also possible

that T. marchalianum reproduces sexually in only some populations;

different modes of reproduction can dominate different parts of a

species range [92,93].

Conclusions
Seasonal fluctuations in the abundance of autumn-shed leaves

and the corresponding changes in aquatic hyphomycete abun-

dance are doubtlessly ecologically important for energy flow and

nutrient spiraling in streams. However, these dynamics do not

appear to influence the genetic make-up of T. marchalianum

populations. The work presented here clearly shows that

T. marchalianum populations can maintain high genotypic diversity

and stable genetic structure regardless of annual boom-bust cycles.

Both temporal stability and high genotypic diversity could indicate

that populations of this fungus are very large, ensuring yearly

population recovery and the maintenance of many genetically

different lineages over time. Alternative habitats such as the roots

and aerial leaves of living plants and woody debris in streams are

also potentially important for the maintenance of diversity in

populations of T. marchalianum and should be investigated further.

Spatially hierarchical sampling of T. marchalianum populations

revealed a lack of genetic differentiation at all but the largest scale

(streams separated by ,450 km), suggesting that overland

dispersal and gene flow may be important drivers of diversity

and genetic structure in this fungus, homogenizing populations

within and between streams regionally. Thus, although the passive

downstream dispersal of spores is the primary mode of aquatic

hyphomycete dispersal, alternative modes of dispersal and their

frequencies require attention. High genotypic diversity could

indicate that T. marchalianum reproduces sexually in nature;

however, genotypic diversity can be influenced by factors other

than mode of reproduction. Thus it is not clear that high genotypic

diversity should outweigh the results of analyses based on linkage

disequilibrium, which indicate that this species is effectively

asexual. We suggest that additional studies, including determina-

tion of the presence/absence, distribution, and sequence variation

of mating types and mating type alleles, be undertaken before firm

conclusions about the reproductive mode(s) employed by T.

marchalianum are made.

Supporting Information

Figure S1 The asexually produced spore of T. marcha-
lianum. Three branches radiate from the central axis, one

originates from the side of a shorter branch (right). Both this short

branch and the central axis terminate in globose cells. This

photograph was taken using Nomarski optics, measure

bar = 10mm.

(TIF)

Figure S2 The relative proportions of leaf types sam-
pled in each collection (A, B) and colonized by T.
marchalianum (C, D). Leaf data is not available for the

Oct03 collection. In Aug 03 only three isolates were obtained.

(TIF)

Table S1

(PDF)

Table S2

(PDF)

Table S3

(PDF)

Table S4

(PDF)
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