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Uremic neuropathy in children encompasses a wide range of central nervous

system (CNS), peripheral nervous system (PNS), autonomic nervous system

(ANS), and psychological abnormalities, which is associated with progressive

renal dysfunction. Clinically, the diagnosis of uremic neuropathy in children is

often made retrospectively when symptoms improve after dialysis or

transplantation, due to there is no defining signs or laboratory and imaging

findings. These neurological disorders consequently result in increased

morbidity and mortality among children population, making uremia an

urgent public health problem worldwide. In this review, we discuss the

epidemiology, potential mechanisms, possible treatments, and the

shortcomings of current research of uremic neuropathy in children.

Mechanistically, the uremic neuropathy may be caused by retention of

uremic solutes, increased oxidative stress, neurotransmitter imbalance, and

disturbance of the blood-brain barrier (BBB). Neuroimmune, including the

change of inflammatory factors and immune cells, may also play a crucial

role in the progression of uremic neuropathy. Different from the invasive

treatment of dialysis and kidney transplantation, intervention in

neuroimmune and targeted anti-inflammatory therapy may provide a new

insight for the treatment of uremia.
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Abbreviations: ESRD, end-stage renal disease; CDK, chronic kidney disease; AKI, acute kidney injury;

CNS, central nervous system; PNS, peripheral nervous system; ANS, autonomic nervous system; GCs,

guanidine compounds; GSA, guanidinosuccinic acid; XO, xanthine oxidase; PTH, parathyroid hormone;

EEG, electroencephalogram; BBB, blood-brain barrier; OTA3, organic anion transporter 3; NMDA, N-

methyl-d-aspartat; ROS, reactive oxygen species; LDL, low-density lipoproteins; AGES, advanced glycation

end products; NOS, nitric oxide synthase; MPOA, medial preoptic area; GABA, gaminobutyric acid; AhR,

aryl hydrocarbon receptor; CAP, cholinergic anti-inflammatory pathway; a7nAChRs, a7 nicotinic

acetylcholine receptors; JAK2-STAT3, Janus kinase 2 signal transducer and activator of transcription 3;

NF-kB, nuclear factor-kappaB; TNF-a, tumor necrosis factor-a; GFR, glomerular filtration rate; PMNLs,

polymorphonuclear leukocytes; TLR2, toll-like receptor; ACE, angiotensin-converting enzyme.
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1 Introduction

Uremia, a term used to describe the presenting syndrome

patients experience in end-stage renal disease (ESRD), is

characteristic for a variety of clinical and metabolic disorders

with progressive kidney failure, which usually caused by chronic

kidney disease (CKD) or acute kidney injury (AKI) (1). It can

cause the accumulation of organic waste products in plasma,

referred to as uremic solutes or uremic toxins, which are not yet

fully identified (2). Besides uremia toxins, oxidative stress and

inflammation also persist in uremia. These risk factors may

involve in generalized organ dysfunction and consequently

result in a significant decrease in quality of life and increased

mortality, which has made uremia rapidly become an urgent

public health problem worldwide. Due to the disturbance of the

internal environment, uremia can cause a series of

complications. Generally, nervous system dysfunction is quite

common in patients with uremia, knowns as uremic neuropathy.

Patients with uremic neuropathy may experience insomnia,

agitation, paranoia, cognitive impairment, and coma for weeks

or months or even years, followed by exacerbation and

ultimately a poor prognosis (3). It has been also reported that

sleep disorders and restless legs syndrome are common in

dialysis patients with neurological complications. The

pathogenesis of uremic neuropathy remains unclear.

Children as a special population are gradually arousing

concern among patients with uremia. Pediatric uremia differs

from adult uremia in that the largest diagnosed group in children

are associated with congenital abnormalities and inherited

disorders, whereas glomerular and renal diseases in the

context of diabetes are relatively rare. At present, the

treatment of children with uremia is still mainly dialysis and

kidney transplantation (4, 5). Additionally, since children are in

a critical period of growth and development, the therapy of

recombinant human growth hormone is required for the

complications of growth retardation caused by uremia (6, 7).

Further, uremia in children can also cause neurological

complications that not only lead to substantial disability and

mortality but also incite medical issues beyond childhood. It is

generally known that the first year after birth is a critical period

for brain development, with the proliferation of glial cells and

the rapid formation of myelin sheaths (8). Therefore, any factor

that interferes with these two processes could have a major

impact on brain development. Multiple neurological and

developmental abnormalities have been identified in children

who develop chronic renal failure during the first year of life.

These abnormalities include microcephaly, retardation, cerebral

edema, recurrent seizures and ataxia (9–11). Moreover,

children between 3 and 16 years old with chronic renal

impairment are more likely to have hearing impairment,

decreased hearing sensitivity (12). Children born by mothers
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with chronic kidney disease are more likely to develop to

cerebral palsy and intellectual disability (13). This may suggest

that the CNS of children is more susceptible to uremia.

However, studies on the epidemiology and corresponding

mechanisms of uremia-induced neuropathic disorders in

children are scarce.

The aim of this review was to investigate the epidemiology,

clinical features, underlying mechanism and possible treatments

of the neuropathic disorders in pediatric uremia, in order to

provide new insights for pediatricians.
2 Epidemiology of pediatric uremia

Epidemiological researches of uremia on growing children

are scarce. Nonetheless, given that uremia is usually caused by

CDK and AKI, the epidemiology of CDK and AKI indirectly

reflects the prevalence of uremia. According to a report from the

United States, the incidence of CDK in adults is approximately

11%, which is 50 times greater than that of ESRD (14). Besides, a

review of 15-year admissions in Nigeria estimated the prevalence

of severe pediatric CKD to be 15 cases per million (15). The

average incidence of CDK in Kuwaiti children was 38.2 cases per

million per year (16). The Swedish national survey reported a

prevalence of advanced CKD was 21 cases per million per year

(17). A population-based data from Italy reported a point

prevalence of CKD of 74.7 cases per million per year (18).

Taken together, compared with adults, the prevalence of CKD in

children has been reported at 15-74.7 per million, while the

incidence of AKI ranged from 37% to 51% (19). Such variation

in data is likely to be influenced by geography, culture and the

medical resources. Moreover, the prevalence of ESRD in

children is less than 2% of the total ESRD population (20).

Nonetheless, pediatric CKD is a progressive disease, and the

mortality rate among children with ESRD who receive dialysis is

30 to 150 times higher than the general pediatric population

(21). During 2012, the prevalence of ESRD in children treated

with dialysis in a Brazilian cohort was 20 cases per million (22),

while a nation-wide survey from China between the 2007 to 2012

showed that 45.9% children with ESRD were on dialysis (23).

The 1-, 2-, and 5- year overall survival rates of children on

dialysis were 96.9%, 94.5%, 89.5% respectively (24).

Furthermore, uremic neuropathy is quite prevalent in children

with CKD on continuous hemodialysis. The prevalence of

uremic neuropathy in children is not available, however, a

small sample research reported that it was approximately 22%

(25). Thus, the diagnosis and treatment of pediatric CKD and

AKI must emphasize early detection, primary prevention, and

active management to avoid further progression to ESRD

and uremia. A population-based epidemiology of uremia in

children is urgently needed.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1013562
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2022.1013562
3 Uremic neuropathy

3.1 Background

Uremic neuropathy encompasses a wide range of

neurological abnormalities associated with poor renal function.

It can involve the central nervous system (CNS), peripheral

nervous system (PNS), autonomic nervous system (ANS) as well

as psychological abnormalities (Table 1). CNS complications

include cognitive impairment (26), seizures (27, 28), cranial

neuropathy (29, 30), extrapyramidal disorders such as

Parkinson’s disease (31) and chorea (32). Pediatric patients are

more prone to the CNS damage caused by uremia, including

microcephaly, retardation, cerebral edema, recurrent seizures

and ataxia (9–11). Moreover, Hurkx et al. found delayed peak of

brainstem auditory evoked potentials and unusual sensory

evoked potentials in younger children, suggesting unusual

myelination and synapse formation in children with chronic

renal failure (CRF) (39).

The symptoms of peripheral neuropathy include loss of

tendon reflexes and muscle atrophy (33). The ANS

complications is manifested by defective function of sweat

glands (34), abnormal response to the valsalva maneuver (35),

decreased baroreflex sensitivity (36), and hypotension (37).

Psychological abnormalities include depression emotional

changes, disturbing and depression (28, 38). Thus, the

symptoms of uremic neuropathy are very complex and lack

clear clinical, laboratory, or radiographic findings. The diagnosis
Frontiers in Immunology 03
of uremic neuropathy is frequent retrospective, only when

symptoms improve after dialysis or kidney transplantation as

well as other causes of neuropathy have been excluded (40).

Although the prevalence of uremic neuropathy in children is

not available, it has been reported it is quite common in children

with CKD on maintenance hemodialysis (25). Neurologic

complications contribute largely to the disability and mortality

in patients with kidney failure. The age of onset and duration of

CDKmay influence neurocognitive and functional outcomes (41).

Early life is an important period for the rapid proliferation and

myelination of glial cells, and any significant insult can have

enduring effects on neural structure and function (42, 43). Further

knowledge of the potential link between uremia and neurological

symptoms is needed, especially in children, to better understand

this complication and to exert early intervention.
3.2 The general underlying mechanisms
of uremic neuropathy

3.2.1 Uremic toxin accumulation
The development of uremic syndrome is usually caused by

the retention of retained solutes that are filtered by healthy

kidneys and have deleterious effects on biological function,

known as uremic toxins (44). The European uremic toxin

working group proposed a classification of 90 uremic solutes

in 2003 (2). By reviewing the literature, Flore et al. identified 88

uremic toxins (45). According to their physicochemical
TABLE 1 The symptoms of uremic neuropathy.

Category Symptoms Reference

central nervous system cognitive impairment (26)

seizures (27, 28)

cranial neuropathy (29, 30)

extrapyramidal disorders (31, 32)

microcephaly (9–11)

retardation (9–11)

cerebral edema (9–11)

cerebral edema (9–11)

hearing impairment (12)

cerebral palsy
intellectual disability

(13)

peripheral nervous system loss of tendon reflexes (33)

muscle atrophy (33)

autonomic nervous system sweat glands dysfunction (34)

valsalva maneuver disorder (35)

reduced baroreflex sensitivity (36)

hypoesthesia (37)

mental changes emotional changes (28)

disturbing (28)

depression (38)
fro
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properties, uremic toxins can be classified into small water-

soluble compound, middle molecular compounds and protein-

bound compounds (Table 2). Due to the difference in

hydrophobicity, small molecular weight uremic toxins can

exist as a free water-soluble form or reversibly bind to serum

proteins, thereby altering protein function (75). Several studies

suggest that these toxins may originate from diet or microbial

metabolism as they can also be produced in the gut (76, 77).

Recently, mitochondria have been implicated as contributors to

uremic toxin production. Mitochondria may directly impact the

synthesis of uremic toxins, especially the oxidation products or

peroxidation products of cellular components, and uremic

toxins in turn can cause damage to mitochondria, thereby

producing more uremic toxins, forming a positive feedback

loop that leads to increased production of uremic toxins (78).

Studies also have reported that uremic toxins contribute to

uremic neuropathy (79). Understanding the relationship

between uremic toxins and neurological disorders contribute

to better comprehend the pathogenesis of uremic neuropathy.

3.2.1.1 Small water-soluble compounds
3.2.1.1.1 Guanidine compounds

Guanidine compounds (GCs), such as guanidinosuccinic acid

(GSA), guanidine and methylguanidine, are considered to be the

major cause of cognitive dysfunction in uremic syndrome of CKD

(46–48). The accumulation of guanidine compounds can trigger

oxidative stress (49) and lead to neuronal damage (50). Study in

uremic animal models reported that GSA impaired synaptic

function in CA1 region and affected memory process by

blocking gamma aminobutyric acid (GABA) and glycine

receptor-associated ion channels (51). It was also found an

elevation of GSA and methylguanidine in the epileptic brain in

animal models (52). Moreover, methylguanidine may promote
Frontiers in Immunology 04
uremia-related neurodegeneration by enhancing the pro-

apoptotic effects of H2O2 and altering mitochondrial calcium

homeostasis in glial cells (53).

3.2.1.1.2 Hypoxanthine

Hypoxanthine, a metabolite of purines, has been shown to

have effects on the CNS (54). Hypoxanthine damages rat

hippocampus and striatum. These effects are mediated by

elevated levels of free radicals and uric acid, which lead to

changes in acetylcholinesterase and butyrylcholinesterase

activity (55). Hypoxanthine can be converted to xanthine by

xanthine oxidase (XO) and subsequently to uric acid and have

been shown to be positively associated with lipid peroxidation

(56). Consistent with this result, XO inhibition ameliorates brain

injury and renal dysfunction (57, 58).

3.2.1.2 Middle molecular compounds
3.2.1.2.1 Parathyroid hormone

Excessive parathyroid hormone (PTH) is mainly caused by

hyperparathyroidism due to hyperphosphatemia that occurs in

CDK (59, 60). Elevated parathyroid hormone reduces the

conduction velocity of motor nerve in uremic patients (79).

Hyperparathyroidism increases calcium entry into the brain and

interferes with nerve transmission, thereby inducing

neurotoxicity (61), while removal of parathyroid glands can

prevent calcium excess in uremic brain (62). Furthermore,

parathyroidectomy can prevent electroencephalogram (EEG)

abnormalities in uremic animals, whereas administration of

parathyroid extract to normal animals can induces similar

EEG changes to uremic animals (63). It has also been

suggested a harmful effect of PTH on cognitive function in

CKD patients (64). However, there is still a lack of research

supporting this view, which needs further investigation.
TABLE 2 The uremic toxins affecting neurogoical disorder.

Category Uremic
toxins

Neurogoical disorder Pathologicalmechanisms Reference

small water-soluble
compounds

guanidine
compounds

·cognitive dysfunction
·neuronal damage
·neurodegeneration

·oxidative stress
·block gamma aminobutyric acid and glycine receptor-associated ion
channels
·enhance the pro-apoptotic effects of H2O2 and altering mitochondrial
calcium homeostasis in glial cells

(46–53)

hypoxanthine ·neurological damage ·elevated levels of free radicals and uric acid (54–58)

middle moleculars parathyroid
hormone

·reduce the conduction velocity of
motor nerve
·interfere with nerve transmission
·cognitive dysfunction

·increase calcium entry into the brain (56–64)

b2-
microglobulin

·impair hippocampal cognition
and neurogenesis

·neurotoxicity
·pro-aging

(65, 66)

Protein-bound solutes indoxyl sulfate ·Parkinson’s disease
·emotional disturbance
·neuroinflammation

·expression of organic anion transporter 3 (OAT3) efflux transporter
·oxidative stress
·protein kinase inhibition

(67–70)

homocysteine ·dementia ·activating the glutamate N-methyl-d-aspartate (NMDA) receptors (71–74)
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3.2.1.2.2 b2-microglobulin

Limited information is available on the relationship between

b2-microglobulin and neuropathy. It has been reported that b2-
microglobulin is cytotoxic for the SH-SY5Y neuroblastoma cells

at concentrations readily attainable in the plasma of

hemodialysis patients (65). Despite the potential neurotoxicity

of b2-microglobulin, the concentration of b2-microglobulin in

CSF is maintained at a low level due to the protective effect of the

blood-brain barrier (BBB). However, BBB may be damaged in

uremic patients. Furthermore, b2-microglobulin has been also

identified as a pro-aging factor that impairs hippocampal

cognition and neurogenesis (66).

3.2.1.3 Protein-bound compounds
3.2.1.3.1 Indoxyl sulfate

The serum indoxyl sulfate concentration in uremic patients

was markedly increased (80). The average serum level of total

indoxyl sulfate in patients with uremia was approximately 43

times higher than that in normal subjects (45). The

accumulation of indoxyl sulfate within brain structures may be

related to the expression of organic anion transporter 3 (OAT3)

efflux transporter (67). Indoxyl sulfate involve in human

astrocyte apoptosis through oxidative stress and protein kinase

inhibition (68). Bartłomiej et al. also reported that the level of

indoxyl sulfate in the cerebrospinal fluid of patients with

Parkinson’s disease was higher than expected, which may

affect the progression of Parkinson’s disease (69). Furthermore,

intraperitoneal injection of indoxyl sulfate leads to emotional

disturbance in mice unilateral nephrectomy, which is associated

with altered neuronal cell function and neuroinflammation (70).

3.2.1.3.2 Homocysteine

The serum level of total homocysteine in uremic patients was

significantly higher than that in the healthy people (81).

Homocysteine has been demonstrated to display direct

neurotoxic effects (71). Indeed, homocysteine causes direct

neurotoxicity in cortical neurons by activating the glutamate

N-methyl-d-aspartate (NMDA) receptors (72). Overactivation

of these receptors may mediate ischemic damage in the

brain (73). Thus, homocysteine may be involved not only in

cerebrovascular injury, but also in neurotoxicity. A prospective

cohort study reported plasma homocysteine as an

independent risk factor that may play a persistent role in

dementia (74). Further studies are needed to assess

the impact of hyperhomocysteinemia in uremia-related

neurological damage.

3.2.2 Oxidative stress
Oxidative stress can be regarded as an imbalance between

reactive oxygen species (ROS) production and antioxidant

defense. This disturbance can impact cellular function and

damage nucleic acids, proteins and lipids (82). Numerous

studies have demonstrated increased oxidative stress in uremic
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patients. Low-density lipoproteins (LDL) from uremic patients

are more prone to copper-induced lipid peroxidation than

plasma LDL from healthy subjects in vitro (83). In addition to

lipid peroxidation, uremic oxidative stress is also biochemically

characterized by a state of accumulation of reactive aldehydes

and oxidative thiols and depletion of reductive thiols (84).

Reactive aldehydes can be regarded as end products of various

oxidation reactions, such as the oxidation of alcohol and amino

(85). Several reactive aldehyde compounds, including acrolein,

malondialdehyde, methylglyoxal, glyoxal, and hydroxynonenal

have been demonstrated to be 10-fold higher concentrations in

uremic plasma than that in healthy individuals (86, 87). In

particular, a, b-unsaturated aldehydes are important oxidation

products with capable of forming advanced glycation end

products (AGEs) (88). In uremia, the accumulation of reactive

aldehydes is primarily due to reduced renal catabolism and

increased production by myeloperoxidase-catalyzed activation

of phagocytes (84). Thiols, important antioxidant component,

are found to be depleted in hemodialysis patients and thus is

unavailable to participate in antioxidant defense (87).

Furthermore, plasma glutathione levels decreased in

hemodialysis patients and accompanied by a significant

decrease in glutathione peroxidase function (89). Mitochondria

are also involved in the production of ROS. Impaired

mitochondrial respiratory system in CKD patients is deemed

as a consequence of enhanced oxidative stress, which may

explain the abnormal energy metabolism in this population.

Many uremic toxins such as indoxyl sulfate, p-cresyl

sul fate , kynurenic acid and hippurate can inhibi t

the mitochondrial respiratory chain and lead to the

overproduction of ROS (78).

3.2.2.1 The role of oxidative stress in
uremic neuropathy

Neuronal tissue is quite vulnerable to oxidative stress (90).

Oxidative stress not only causes direct neurotoxicity through

phospholipid membrane peroxidation (91), but also incites

excitotoxicity by promoting glutamate release (92, 93). This

leads to the activation of NMDA and non-NMDA receptors,

resulting in severely elevated intracellular Ca2+ levels, neuronal

nitric oxide synthase (NOS) activation, peroxynitrite formation,

protein nitration, mitochondrial damage, and ultimately causing

neuronal damage or death (84). As mentioned above, lipid

peroxidation, increased AGEs, and mitochondrial dysfunction

are present in uremic patients. Lipid peroxidation can cause

several deleterious effects during the development of

neurodegenerative diseases (94). Since lipid peroxidation can

increase the production of N-carboxymethyl lysine, which is a

major form of AGEs (95). It has reported that the expression of

AGEs receptors increased in human peripheral neuropathy (96).

AGEs induce hypertrophy of the endoneurial microvascular

basement membrane by stimulating pericytes to release TGF-b
and vascular endothelial growth factor (VEGF), thereby
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destroying the BBB (97). In addition, AGEs exert deleterious

effects on cells by upregulating pro-inflammatory cytokines and

triggering inflammation (98). Similarly, reduced energy due to

mitochondrial dysfunction can lead to neuronal damage, death

and neuropathy (99). Additionally, oxidative stress is associated

with an increased inflammatory response. Indeed, oxidative

stress and inflammation can form a feed-forward cycle,

leading to neurodegeneration (100). Oxidative stress can

directly or indirectly induce the production of pro-

inflammatory cytokines by activating tumor necrosis factor-a
(TNF-a) and nuclear factor-kappaB (NF-kB). These factors can
trigger the inflammatory mechanisms in neurodegeneration

(100, 101). As a stimulator, oxidative stress can also cause the

dysfunction of proteasome, thereby enhancing free radical

generation and protein oxidation, as well as inhibiting

ubiquitination. Consequently, unwanted proteins will

accumulate in the cytoplasm and induce the formation of

senile plaques (102), which is closely related to cognitive

impairment and Alzheimer’s disease (103).

3.2.3 Neurotransmitter imbalance
Neurotransmitters are defined as substances that carry

messages between neurons. When neurotransmitters bind to

neurotransmitter receptors, it can transmit either excitatory or

inhibitory signals, thereby triggering a series of responses.

However, when neurotransmitters become dysregulated, it can

result in neurological disorders (104). Franz et al. found that

both the extracellular concentrations of neuroexcitatory and

neuroinhibitory amino acids increased in medial preoptic area

(MPOA) of chronic renal failure rats (105). Moreover, Schaefer

et al. found that basal outflow of synthetic g-aminobutyric acid

(GABA), glutamate and aspartate was increased in the uremic

rat brain (105). Consistent with this result, Biasoli et al.

demonstrated altered transport of amino acids across the BBB

and resulted in a high phenylalanine-tyrosine ratio and low

glutamine level in the brain (106). Similarly, some other

researchers found the phenomenon of plasma/cerebrospinal

fluid amino acid imbalance in infants with CRF. The

accumulation of abnormal amino acids in CSF was

detrimental to the function of Na-K pump in synaptosomes,

and might affect the development of neurons and astroglia,

which may partially explain the potential mechanisms of

impairments caused by CRF in pediatric patients (107).

Glutamine is the main source of synthetic GABA, and low

levels of glutamine in the brain suggest the deficiency of GABA

(108). Perry et al. dissected 10 patients with ESRD and dialysis

encephalopathy and found decreased GABA levels in many

brain regions, with reductions of more than 40% in the cortex

and thalamus. Clinical consequences of GABA deficiency may

be associate with cognitive impairment (109). This may suggest

that cognitive impairment in uremia may be related with
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reduced GABA. As a well-known neurotransmitter,

acetylcholine plays a multifaceted role (110). However, renal

failure results in a disorder of acetylcholine metabolism, which

leads to its accumulation and release in brain synaptosomes.

This is mainly due to decreased activity of choline kinase, to

some extent, mediated by the secondary hyperparathyroidism of

renal failure (111). Thus, behavioral and motor changes in

uremic patients may be due in part to disturbances in

acetylcholine metabolism.

3.2.4 Blood brain barrier disruption
BBB is a highly complex and dynamic structure involving

endothelial cells, basement membranes, astrocyte foot processes,

and pericytes that separates the CNS from the peripheral blood

circulation (112). The BBB can tightly regulate the exchange of

substances such as molecules and ions between the blood and the

CNS. This is critical for strictly controlling the CNS homeostasis,

as well as protecting the CNS from pathogens, inflammation,

toxins, injury and disease (113). Recent studies have shown that

BBB disruption play an essential role in neurodegenerative

processes (114, 115). Meanwhile, some animal models of acute

and chronic renal failure show BBB disruption in the context of

uremia, but the mechanism remains unclear (116, 117). It has

been reported that uremia increases the permeability of BBB as

assessed by radioisotopes (118). Some uremic toxins, such as

indoxyl sulfate, has been reported to mediate the activation of

the transcription factor aryl hydrocarbon receptor (AhR) to

induce BBB disruption and uremia-related cognitive

impairment. Uremia activates inflammatory and oxidative

pathways and inhibits antioxidant and cytoprotective systems,

which erode the brain’s capillary-junction complexes (119). This

suggests a possible disruption of the integrity of the blood-brain

barrier in uremic patients.
3.3 The alteration of neuroimmune

Recent studies have uncovered the interaction between the

nervous and immune systems, which can modulate immune

function and inflammation, known as neuroimmune (120). One

of the well- explored neuroimmune pathways is the cholinergic

anti-inflammatory pathway (CAP). Chemicals released in the

inflammatory bind to receptors on sensory nerve terminals and

transmit neuronal signals to the brain via the afferents of vagus

(121). This signal activates the vagal efferent nerve through the

nucleus of the solitary tract and the dorsal vagus motor nucleus.

The activated efferent vagal nerve stimulates the splenic nerve,

although whether there is a direct connection between the

efferent nerve of vagus and the splenic nerve remains

controversial (122). Subsequently, norepinephrine is released

from splenic nerve terminals and bind to b2-adrenergic
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receptors expressed by CD4+T cells in the spleen to mediate

acetylcholine release from these cells (123). Acetylcholine

interacts with the a7 nicotinic acetylcholine receptors

(a7nAChRs) expressed on macrophages, which are key

mediators to the regulation of neuroimmune, thus leading to

inhibition of NF-kB and activation of Janus kinase 2 signal

transducer and activator of transcription 3 (JAK2-STAT3)

pathway, and ultimately inhibiting the production of pro-

inflammatory cytokines, such as TNFa, and suppressing

inflammation (124–126). Notably, the neuroimmune cross-talk

between the nervous system and the kidney to maintain a

normal physiological state. However, pathological state, such

as uremia, can disrupt this interaction, further leading to

disturbances in homeostasis that may ultimately result in

neuropathy (127).

3.3.1 Inflammatory cytokines and cells
Multiple factors can contribute to immune dysregulation

and inflammatory activation in uremic patients. Uremia exhibits

a persistent low-grade inflammatory environment, involving

impaired inflammatory cell function and dysregulated cytokine

networks. Some of these factors may be related to the primary

disease, and some may be due to the highly proinflammatory

oxidative stress generated by the uremic environment (128).

Indeed, a feed-forward loop is formed between oxidative stress

and inflammation, which lead to neurodegeneration (100).

Oxidative stress can induce production of pro-inflammatory

cytokines directly or indirectly via activating TNF-a and NF-kB
(129–131). Available data suggest that the anti-inflammatory

cytokine interleukin-10 (IL-10) and the major pro-inflammatory

cytokines IL-6 (IL-6) and TNF-a may play critical roles in

uremia (132). The cerebrorenal interactions suggested that IL-

6 and TNF-a are likely to have an effect on the CNS, although

the mechanisms are yet to be identified (133). NALP3, the best

characterized inflammasome, act as a connection between

inflammation and immunity. The NALP3 is activated in

immune peripheral cells isolated from uremic patients. These

cells show higher levels of mRNA of NALP3, IL-1b and IL-18

compared to healthy subjects (134). Interestingly, metabolic

acidosis is another cause of inflammation among chronic

hemodialysis patients, which develop with a decrease in

glomerular filtration rate (GFR) (135, 136). Uremic toxins may

contribute to gut dysbiosis in CKD and facilitate the

translocation of gut bacteria, which in turn activates systemic

inflammatory responses (137). Furthermore, protein-bound

uremic toxins, such as indoxyl sulfate exert a proinflammatory

effect by stimulating crosstalk between leukocytes and blood

vessels, resulting in vascular injury (138). In addition, leukocyte

oxidative burst, that is, the production of large amounts of ROS

via the nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase complex (139), may further aggravate the inflammatory

response (140, 141).
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3.3.2 Immune cells
3.3.2.1 Innate immune system
3.3.2.1.1 Polymorphonuclear neutrophils

Polymorphonuclear neutrophils (PMNLs), named after their

lobulated nuclei, contain multiple granules in their cytoplasm

and are particularly important in nonspecific cellular immunity

(142). In patients with ESRD, the expression of toll-like receptor

2 (TLR2), TLR4 and integrins on PMNLs is increased (143). This

increased expression is a key mediator of oxidative stress and

inflammation associated with renal failure, which contribute to

tissue damage in this population (144). The level of ROS

production, degranulation, and extracellular trap formation in

PMNLs from dialysis patients are significantly elevated,

suggesting spontaneous activation (145). Synergistic

elimination of activated PMNLs is critical for resolution of

inflammation (146).

3.3.2.1.2 Monocytes and macrophages

Monocytes are produced in the bone marrow and

distributed in all body tissues as macrophages (147).

Circulating monocytes were widely expanded in ESRD

patients, especially CD14+CD16+ subsets (143). This may be

due to the increased expression of integrins, TLRs and

proinflammatory cytokines in uremic condition. The

possibility therefore might lead to the release of CD14+CD16+

monocytes from the bone marrow (148). These abnormalities

suggest spontaneous activation of monocytes and contribute to

the prevailing oxidative stress and inflammation in ESRD. Thus,

the number of circulating monocytes in ESRD patients,

particularly the CD14+CD16+ subsets might be related to the

degree of systemic inflammation and/or uremia.

3.3.2.1.3 Dendritic cells

Dendritic cells are considered to be the major professional

antigen presenting cell in the immune system (149). Uremia has

a negative effect on dendritic cells. Study have shown that

monocyte-derived dendritic cells from CKD patients are less

able to stimulate T cells than healthy controls (150). This may be

related to the decreased expression of the key costimulatory

molecule CD86 in the uremic situation (151). Dendritic cells are

also present in the renal and involve in the progression of kidney

failure by binding to glomerular antigens (152).

3.3.2.2 Adaptive immune cells
3.3.2.2.1 T cells

Exposure of naive T cells to antigen leads to clonal expansion

and differentiation of memory T cells and effector T cells, which

play a central role in cell-mediated immune responses (152).

Patients with ESRD showed significantly reduced naïve and

CD4+ and CD8+ T cells (153). Furthermore, the proliferation

of T cell in ESRD patients have been reported to be impaired

when detect in uremic serum (154). This is associated with
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increased sensitivity to apoptosis in both naive and memory T

cells from uremic patients (155).

3.3.2.2.2 B cells

B lymphocytes are mainly produced by hematopoietic stem

cells in the bone marrow and mediate humoral immunity by

producing antigen-specific antibodies (156). Similar to T cells, B

cell lymphopenia in ESRD patients is associated with progressive

loss of renal function (157). Additionally, CD5+ innate B cells

and CD27+ memory B cells are reduced in childhood chronic

renal failure (158). Fernández et al. reported that uremic

environment may sensitize B cells to apoptosis in ESRD

patients (159). Madeleine et al. reported that the uremic

environment may interfere with the differentiation and

survival of B cells by down-regulating the BAFF receptor in

transitional B cells in ESRD patients (157). Thus, the deficiency

and dysfunction of B cells in advanced CKD may be mediated

simultaneously by increased B cell apoptosis and impaired

differentiation and maturation of transitional B cells.
4 Potential treatment for uremia

Hemodialysis and renal transplant are two common

treatments for uremia. Efficient solute removal usually

improves CNS symptoms over multiple dialysis sessions.

However, dialysis is relatively effective only for some small

water-soluble solutes, and some protein-bound solutes cannot

be effectively removed. Kidney transplants are also effective at

removing uremic toxins. Patients with kidney transplant are

given immunosuppressants and prophylactic antibiotics, which

cause changes in the gut microbiota (160).
4.1 Anti-inflammatory therapy

As mentioned above, pro-inflammatory factors play an

important role in uremia, therefore, targeted anti-

inflammatory therapy is recommended for these patients.

Statins, a typical lipid-lowering drug, has been demonstrated

to have an anti-inflammatory effect in hemodialysis patients

(161). Angiotensin-converting enzyme (ACE) inhibitors can

suppress TNF-a in advanced chronic renal (162). In patients

with chronically uremia, pentoxifylline was confirmed to

reduce the whole-body proteolysis, a characteristic of systemic

inflammation activation (163).
4.2 Neuroimmunomodulatory therapy

Besides, neuroimmunomodulation of organ function has

attracted extensive attention as a new treatment for diseases.

Considering the anti-inflammatory effect of CAP pathway,
Frontiers in Immunology 08
stimulation of vagal nerve, has been shown to protect the kidney

from AKI (164). However, electrical stimulation of the vagus nerve

requires invasive surgery. In clinical application, ultrasound, a non-

invasive imaging technique, can be used as a candidate for the

activation of CAGigliotti et al. reported that ultrasound can

suppresses inflammation in renal by stimulating the CAP

pathway (165). This result might lead to a powerful

nonpharmacological approach to block the inflammation of

kidney and preserve function. Further studies are needed to

explore the underlying mechanisms of neuroimmunomodulatory

in inflammation and organ damage.
5 Limitations of current researches
and perspectives

The paucity of data on pediatric uremia is a thorny problem.

Due to the differences in region, culture and detection methods,

the heterogeneity of the existing data is relatively high. For this

reason, we discuss a general underlying mechanism of uremia.

Therefore, a unified standard is urgently needed to register and

follow up these patients. Besides, the association between uremic

toxins and uremic neuropathy has not been fully elucidated,

especially in children, which may require large prospective

studies. Finding biostatistical associations between specific

clinical signs and solute concentrations by combining high-

throughput analytical methods with clinical databases

represents an intriguing but underexplored track to unravel

the pathophysiology of uremic neuropathy.

Moreover, the roles of immune cells and inflammatory

factors in the uremic immune microenvironment and the

inflammatory microenvironment remain to be explored, and

the temporal and spatial distribution of immune cells and

inflammatory factors needs to be further investigated. New

methods such as single-cell sequencing and temporal-

spatial omics need to be used to further explore the

underlying mechanisms. In addition, non-invasive treatments,

neuroimmune interventions, and targeted anti-inflammatory

treatments in uremia, such as dose gradients or time gradients,

need to be further explored.

Going forward, technological innovations and the combined

efforts of the global scientific community may help elucidate

some fundamental questions about the causes and treatment of

uremic neuropathy in children, and provide new insights for this

disease that can help pediatricians prescribe tailored treatment

for children.
6 Conclusion

Pediatric uremic neuropathy is an extremely complex

complication that leads to morbidity and mortality in children.

In this review, we discuss the epidemiology of childhood uremic
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neuropathy, the underlying mechanisms, possible treatments,

and current research gaps (Figure 1). Uremic neuropathy is

associated with accumulation of toxins, oxidative stress,

neurotransmitter imbalance, and disturbance of the blood-

brain barrier. Among them, neuroimmune, including the

change of inflammatory factors and immune cells, play a

crucial role in the progression of uremic neuropathy. Different

from traditional dialysis and kidney transplantation, treatments

that focus on anti-inflammation and neuroimmune intervention

show promising prospects.
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FIGURE 1

The potential mechanisms of uremic neuropathy and the cholinergic anti-inflammatory pathway. Uremic neuropathy is associated with
accumulation of toxins, oxidative stress, neurotransmitter imbalance, and disturbance of the blood-brain barrier. These factors may lead to the
release of inflammatory factors and stimulate the sensory afferent vagus nerve endings. The cholinergic anti-inflammatory pathway is starting
with vagal activation. Signals transmits to the brain via the afferents of vagus. The activated efferent vagal nerve stimulates the splenic nerve and
release norepinephrine. The norepinephrine binds to b2-adrenergic receptors expressed by CD4+T cells in the spleen and mediate the of
release acetylcholine. Acetylcholine interacts with the a7 nicotinic acetylcholine receptors (a7nAChRs) expressed on macrophages, and
ultimately inhibiting the production of pro-inflammatory.
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JA, Valenzuela-Silva CM, Ramı ́rez-Nuñez O, et al. Tnf-Alpha and Il-10
Downregulation and Marked Oxidative Stress in Neuromyelitis Optica. J
Inflammation (Lond) (2009) 6:18. doi: 10.1186/1476-9255-6-18

131. Schweikl H, Birke M, Gallorini M, Petzel C, Bolay C, Waha C, et al. Hema-
Induced Oxidative Stress Inhibits Nf- k b Nuclear Translocation and Tnf Release
from Lta- and Lps-Stimulated Immunocompetent Cells. Dent Mater (2021) 37
(1):175–90. doi: 10.1016/j.dental.2020.10.029

132. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella
M, et al. Il-10, Il-6, and Tnf-Alpha: Central Factors in the Altered Cytokine
Network of Uremia–the Good, the Bad, and the Ugly. Kidney Int (2005) 67
(4):1216–33. doi: 10.1111/j.1523-1755.2005.00200.x

133. Watanabe K, Watanabe T, Nakayama M. Cerebro-Renal Interactions:
Impact of Uremic Toxins on Cognitive Function. Neurotoxicology (2014)
44:184–93. doi: 10.1016/j.neuro.2014.06.014

134. Granata S, Masola V, Zoratti E, Scupoli MT, Baruzzi A, Messa M, et al.
Nlrp3 Inflammasome Activation in Dialyzed Chronic Kidney Disease Patients.
PloS One (2015) 10(3):e0122272. doi: 10.1371/journal.pone.0122272

135. Ori Y, Bergman M, Bessler H, Zingerman B, Levy-Drummer RS, Gafter U,
et al. Cytokine Secretion and Markers of Inflammation in Relation to Acidosis
among Chronic Hemodialysis Patients. Blood Purif (2013) 35(1-3):181–6.
doi: 10.1159/000346689
frontiersin.org

https://doi.org/10.1007/s11064-004-6871-3
https://doi.org/10.1016/0378-4274(95)03490-0
https://doi.org/10.1016/0378-4274(95)03490-0
https://doi.org/10.1002/ana.410380304
https://doi.org/10.1196/annals.1333.062
https://doi.org/10.1021/bi00034a021
https://doi.org/10.1021/bi00034a021
https://doi.org/10.1002/brb3.176
https://doi.org/10.1002/brb3.176
https://doi.org/10.1007/s00125-011-2107-7
https://doi.org/10.1007/s007020050069
https://doi.org/10.1007/s007020050069
https://doi.org/10.1016/j.freeradbiomed.2012.11.014
https://doi.org/10.1155/2015/610813
https://doi.org/10.1016/j.redox.2018.11.017
https://doi.org/10.1016/j.redox.2018.11.017
https://doi.org/10.1038/nrn1434
https://doi.org/10.1016/0165-1781(93)90029-g
https://doi.org/10.1016/0165-1781(93)90029-g
https://doi.org/10.1016/j.cub.2005.02.037
https://doi.org/10.1681/asn.V1261218
https://doi.org/10.1055/s-2007-973531
https://doi.org/10.1055/s-2007-973531
https://doi.org/10.1111/j.1471-4159.2007.05065.x
https://doi.org/10.1111/j.1471-4159.2007.05065.x
https://doi.org/10.1038/s41386-021-01116-0
https://doi.org/10.1038/sj.bjp.0706474
https://doi.org/10.1038/ki.1993.291
https://doi.org/10.1016/j.nbd.2009.07.030
https://doi.org/10.1002/ana.23648
https://doi.org/10.3389/fnagi.2020.00185
https://doi.org/10.1016/j.neuint.2021.105018
https://doi.org/10.1681/asn.2007080901
https://doi.org/10.1681/asn.2019070728
https://doi.org/10.1038/s41577-019-0247-z
https://doi.org/10.1038/s41577-019-0247-z
https://doi.org/10.1016/j.autneu.2004.11.012
https://doi.org/10.1113/expphysiol.2011.061531
https://doi.org/10.1113/expphysiol.2011.061531
https://doi.org/10.1126/science.1209985
https://doi.org/10.1126/science.1209985
https://doi.org/10.1038/nature01339
https://doi.org/10.1038/nm1124
https://doi.org/10.1038/ni1229
https://doi.org/10.1016/j.kint.2019.10.032
https://doi.org/10.1152/ajprenal.00421.2009
https://doi.org/10.3390/ijms141224438
https://doi.org/10.1186/1476-9255-6-18
https://doi.org/10.1016/j.dental.2020.10.029
https://doi.org/10.1111/j.1523-1755.2005.00200.x
https://doi.org/10.1016/j.neuro.2014.06.014
https://doi.org/10.1371/journal.pone.0122272
https://doi.org/10.1159/000346689
https://doi.org/10.3389/fimmu.2022.1013562
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2022.1013562
136. Mihai S, Codrici E, Popescu ID, Enciu AM, Albulescu L, Necula LG, et al.
Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction,
Progression, and Outcome. J Immunol Res (2018) 2018:2180373. doi: 10.1155/
2018/2180373

137. Anders HJ, Andersen K, Stecher B. The Intestinal Microbiota, a Leaky Gut,
and Abnormal Immunity in Kidney Disease. Kidney Int (2013) 83(6):1010–6.
doi: 10.1038/ki.2012.440

138. Pletinck A, Glorieux G, Schepers E, Cohen G, Gondouin B, Van
Landschoot M, et al. Protein-Bound Uremic Toxins Stimulate Crosstalk between
Leukocytes and Vessel Wall. J Am Soc Nephrol (2013) 24(12):1981–94.
doi: 10.1681/asn.2012030281

139. Harbort CJ, Soeiro-Pereira PV, von Bernuth H, Kaindl AM, Costa-
Carvalho BT, Condino-Neto A, et al. Neutrophil Oxidative Burst Activates Atm
to Regulate Cytokine Production and Apoptosis. Blood (2015) 126(26):2842–51.
doi: 10.1182/blood-2015-05-645424

140. Ward RA, McLeish KR. Polymorphonuclear Leukocyte Oxidative Burst Is
Enhanced in Patients with Chronic Renal Insufficiency. J Am Soc Nephrol (1995) 5
(9):1697–702. doi: 10.1681/asn.V591697

141. Neirynck N, Glorieux G, Schepers E, Dhondt A, Verbeke F, Vanholder R.
Pro-Inflammatory Cytokines and Leukocyte Oxidative Burst in Chronic Kidney
Disease: Culprits or Innocent Bystanders? Nephrol Dial Transplant (2015) 30
(6):943–51. doi: 10.1093/ndt/gfu409

142. Lahoz-Beneytez J, Elemans M, Zhang Y, Ahmed R, Salam A, Block M, et al.
Human Neutrophil Kinetics: Modeling of Stable Isotope Labeling Data Supports
Short Blood Neutrophil Half-Lives. Blood (2016) 127(26):3431–8. doi: 10.1182/
blood-2016-03-700336

143. Gollapudi P, Yoon JW, Gollapudi S, Pahl MV, Vaziri ND. Leukocyte Toll-
Like Receptor Expression in End-Stage Kidney Disease. Am J Nephrol (2010) 31
(3):247–54. doi: 10.1159/000276764

144. Sela S, Shurtz-Swirski R, Cohen-Mazor M, Mazor R, Chezar J, Shapiro G,
et al. Primed Peripheral Polymorphonuclear Leukocyte: A Culprit Underlying
Chronic Low-Grade Inflammation and Systemic Oxidative Stress in Chronic
Kidney Disease. J Am Soc Nephrol (2005) 16(8):2431–8. doi: 10.1681/
asn.2004110929

145. Kim JK, Hong CW, Park MJ, Song YR, Kim HJ, Kim SG. Increased
Neutrophil Extracellular Trap Formation in Uremia Is Associated with Chronic
Inflammation and Prevalent Coronary Artery Disease. J Immunol Res (2017)
2017:8415179. doi: 10.1155/2017/8415179

146. Bratton DL, Henson PM. Neutrophil Clearance: When the Party Is over,
Clean-up Begins. Trends Immunol (2011) 32(8):350–7. doi: 10.1016/
j.it.2011.04.009

147. Norden DM, Faw TD, McKim DB, Deibert RJ, Fisher LC, Sheridan JF, et al.
Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in
Local and Remote Regions after Thoracic Spinal Cord Injury. J Neurotrauma
(2019) 36(6):937–49. doi: 10.1089/neu.2018.5806

148. Lim WH, Kireta S, Leedham E, Russ GR, Coates PT. Uremia Impairs
Monocyte and Monocyte-Derived Dendritic Cell Function in Hemodialysis
Patients. Kidney Int (2007) 72(9):1138–48. doi: 10.1038/sj.ki.5002425

149. Collin M, Bigley V. Human Dendritic Cell Subsets: An Update.
Immunology (2018) 154(1):3–20. doi: 10.1111/imm.12888

150. Verkade MA, van Druningen CJ, Vaessen LM, Hesselink DA, Weimar W,
Betjes MG. Functional Impairment of Monocyte-Derived Dendritic Cells in
Frontiers in Immunology 13
Patients with Severe Chronic Kidney Disease. Nephrol Dial Transplant (2007) 22
(1):128–38. doi: 10.1093/ndt/gfl519

151. Verkade MA, van Druningen CJ, Op de Hoek CT, Weimar W, Betjes MG.
Decreased Antigen-Specific T-Cell Proliferation by Modc among Hepatitis B
Vaccine Non-Responders on Haemodialysis. Clin Exp Med (2007) 7(2):65–71.
doi: 10.1007/s10238-007-0127-x

152. Kitching AR. Dendritic Cells in Progressive Renal Disease: Some Answers,
Many Questions. Nephrol Dial Transplant (2014) 29(12):2185–93. doi: 10.1093/
ndt/gfu076

153. Yoon JW, Gollapudi S, Pahl MV, Vaziri ND. Naïve and Central Memory
T-Cell Lymphopenia in End-Stage Renal Disease. Kidney Int (2006) 70(2):371–6.
doi: 10.1038/sj.ki.5001550

154. Meier P, Dayer E, Ronco P, Blanc E. Dysregulation of Il-2/Il-2r System
Alters Proliferation of Early Activated Cd4+ T Cell Subset in Patients with
End-Stage Renal Failure. Clin Nephrol (2005) 63(1):8–21. doi: 10.5414/
cnp63008

155. Meier P, Dayer E, Blanc E, Wauters JP. Early T Cell Activation Correlates
with Expression of Apoptosis Markers in Patients with End-Stage Renal Disease. J
Am Soc Nephrol (2002) 13(1):204–12. doi: 10.1681/asn.V131204

156. Mauri C, Bosma A. Immune Regulatory Function of B Cells. Annu Rev
Immunol (2012) 30:221–41. doi: 10.1146/annurev-immunol-020711-074934

157. Pahl MV, Gollapudi S, Sepassi L, Gollapudi P, Elahimehr R, Vaziri ND.
Effect of End-Stage Renal Disease on B-Lymphocyte Subpopulations, Il-7, Baff and
Baff Receptor Expression. Nephrol Dial Transplant (2010) 25(1):205–12.
doi: 10.1093/ndt/gfp397

158. Bouts AH, Davin JC, Krediet RT, Monnens LA, Nauta J, Schröder CH,
et al. Children with Chronic Renal Failure Have Reduced Numbers of Memory B
Cells. Clin Exp Immunol (2004) 137(3):589–94. doi: 10.1111/j.1365-
2249.2004.02571.x

159. Fernández-Fresnedo G, Ramos MA, González-Pardo MC, de Francisco
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