
Vol. 30 ECCB 2014, pages i356–i363
BIOINFORMATICS doi:10.1093/bioinformatics/btu440

Fiona: a parallel and automatic strategy for read error correction
Marcel H. Schulz1,2,y,*, David Weese3,y, Manuel Holtgrewe3,y, Viktoria Dimitrova4,5,
Sijia Niu4,5, Knut Reinert3 and Hugues Richard4,5,y,*
1‘Multimodal Computing and Interaction’, Saarland University & Department for Computational Biology and Applied
Computing, Max Planck Institute for Informatics, Saarbr€ucken, 66123Saarland, Germany, 2Ray and StephanieLaneCenter
for Computational Biology, Carnegie Mellon University, Pittsburgh, 15206 PA, USA, 3Department of Mathematics and
Computer Science, Freie Universit€at Berlin, 14195 Berlin, Germany, 4Universit�e Pierre et Marie Curie, UMR7238, CNRS-
UPMC, Paris, France and 5CNRS, UMR7238, Laboratory of Computational and Quantitative Biology, Paris, France

ABSTRACT

Motivation: Automatic error correction of high-throughput sequencing

data can have a dramatic impact on the amount of usable base pairs

and their quality. It has been shown that the performance of tasks

such as de novo genome assembly and SNP calling can be dramat-

ically improved after read error correction. While a large number of

methods specialized for correcting substitution errors as found in

Illumina data exist, few methods for the correction of indel errors,

common to technologies like 454 or Ion Torrent, have been proposed.

Results: We present Fiona, a new stand-alone read error–correction

method. Fiona provides a new statistical approach for sequencing

error detection and optimal error correction and estimates its param-

eters automatically. Fiona is able to correct substitution, insertion and

deletion errors and can be applied to any sequencing technology. It

uses an efficient implementation of the partial suffix array to detect

read overlaps with different seed lengths in parallel. We tested Fiona

on several real datasets from a variety of organisms with different read

lengths and compared its performance with state-of-the-art methods.

Fiona shows a constantly higher correction accuracy over a broad

range of datasets from 454 and Ion Torrent sequencers, without com-

promise in speed.

Conclusion: Fiona is an accurate parameter-free read error–correc-

tion method that can be run on inexpensive hardware and can make

use of multicore parallelization whenever available. Fiona was imple-

mented using the SeqAn library for sequence analysis and is publicly

available for download at http://www.seqan.de/projects/fiona.

Contact: mschulz@mmci.uni-saarland.de or hugues.richard@upmc.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Next-generation DNA sequencing (NGS) technologies have

revolutionized genomics and produce billions of base pairs per

day in the form of reads of length �100bp. In this article, we

focus on NGS reads produced by genome sequencing. Owing to

the large range of applications of genome sequencing, the cor-

rection of errors introduced by the sequencer, substitution as well

as insertion or deletion (indels), has recently attracted attention.

Previous studies showed that error correction can improve

de novo genome assembly performance (Salmela and Schr€oder,

2011; Salzberg et al., 2012) and SNP detection (Kao et al., 2011;

Kelley et al., 2010).

Depending on the technology, the most prevalent error type

differs. Illumina technology produces mostly substitution errors

(Minoche et al., 2011), whereas 454 sequencers are prone to pro-

duce runs of larger insertions of the same nucleotide. Ion Torrent

sequencers were shown to have a large amount of indel errors

and a high-sequencing error rate (Quail et al., 2012).

However, current error correction methods suffer a number of

limitations as highlighted in a recent review (Yang et al., 2013).

(i) Most methods cannot correct indel errors because they are

tailored to correct only substitution errors and are therefore only

applicable to Illumina reads. (ii) Most approaches need to be

parameterized depending on the dataset, otherwise their

performance is suboptimal. This either requires in-depth know-

ledge by the user or parameter optimization using downstream

analysis, which often leads to longer running times in practice.

(iii) Because the throughput of NGS technologies is growing

steadily, many approaches are not applicable to larger datasets

because of running time or memory limitations. These caveats

make it hard for users to choose the optimal tool for their dataset

and NGS technology.

Here we introduce a new approach to read error correction,

called Fiona, which addresses all the above mentioned limita-

tions. Fiona provides an accurate and highly parallelized

method for correction, with the ability to correct indel errors,

while it automatically adjusts its parameters.

All read error–correction methods have to perform essential

tasks: (i) computation of read overlaps, (ii) error detection in

reads and (iii) error correction. In a recent review by Yang et al.

(2013), the methods have been classified into k-spectrum based,

suffix tree/array based and multiple sequence alignment (MSA)

based. We will briefly explain the differences and weaknesses of

these approaches but refer the reader to (Yang et al., 2013):

k-spectrum based. k-spectrum based read error correction was

introduced in the Euler assembler (Pevzner et al., 2001). There

exist many variations on the k-spectrum based error corrections

for NGS reads (Yang et al., 2013), for example, approaches that

were designed to select the necessary parameters using mixture

models (Chaisson and Pevzner, 2008; Kelley et al., 2010).

Popular methods are Quake (Kelley et al., 2010), Reptile

(Yang et al., 2010) and the error correction module from the

Allpaths-LG assembler (Gnerre et al., 2010), all of which use

base quality values. To our knowledge, only Allpaths-LG in

this category can correct short indel errors.

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first three
authors and the last author should be regarded as Joint First Authors.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://www.seqan.de/projects/fiona
mailto:mschulz@mmci.uni-saarland.de
mailto:hugues.richard@upmc.fr
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
s
 and more
Due
; Kao etal., 2011
1
2
,
3
:
,
XPath error Undefined namespace prefix

The general disadvantage for most of these methods is their
inability to correct indel errors, a severe limitation for 454 or Ion
Torrent sequencers. In addition, for most of these approaches,
parameters need to be optimized by the user to obtain good

performance, for example, Reptile.

Suffix tree/array based. Shrec (Schr€oder et al., 2009) was the first
approach that uses a variable seed length for read overlap and
error-detection computation. It considers for each erroneous read
a set of correcting reads such that all reads share a ðk� 1Þ-mer

left of the error and the set of correcting reads share a k-mer that
ends with the correct base, which outvotes the erroneous base. To
efficiently find erroneous reads and correcting candidates, Shrec

traverses a generalized suffix tree of all reads, in which erroneous
and correcting reads occur as children of branching nodes with
string depth k� 1. Building on a suffix tree representation, the

HybridShrec algorithm extended the ideas to correct indel errors
and sequences in color space (Salmela, 2010). In both methods,
potentially correcting reads are compared with erroneous reads

using hamming distance, seeded by the shared ðk� 1Þ-mers be-
tween reads. Further, both methods are sensitive to the input
parameters and therefore show variable performance when com-
pared in other studies (Ilie et al., 2011; Kao et al., 2011; Kelley

et al., 2010), and the full suffix tree data structure needs large
memory resources.
The HiTEC algorithm introduced automatic parameter selec-

tion using coverage statistics (Ilie et al., 2011). Seed lengths and
coverage threshold are set automatically, given the genome
length and the average error rate. HiTEC uses the suffix array

instead of a suffix tree to save memory. However, HiTEC can
only correct substitution errors and the automatic parameter
selection works only for reads of same length as found for

Illumina data.
Note that these methods do not define explicitly which correc-

tion for an erroneous position is applied when the same error is

encountered multiple times through different seed lengths in the
tree, and in which order errors in a read are corrected.

MSA based. Among the two existing multiple alignment-based
methods ECHO (Kao et al., 2011) and Coral (Salmela and
Schr€oder, 2011), only Coral can correct indel errors. Coral

computes initial read overlaps with hash tables for a fixed
k-mer length and then uses dynamic programming to form mul-
tiple read alignments. This alignment is costly for long reads but
has a clear optimization function, as read errors are corrected by

the best voting correction in the MSA.

2 MATERIALS AND METHODS

We introduce the Fiona algorithm, which combines the strength of suffix

tree-based methods with a clear definition of error correction as in MSA-

based methods. The algorithm uses a suffix tree to detect and correct

substitution and indel errors following Shrec and HybridShrec, but

with enhanced overlap detection of reads with indel errors using edit

distance comparisons. In the implementation, the suffix tree traversal is

emulated using solely a partial suffix array that is presorted up to a fixed

depth to reduce the memory footprint. All steps feature a parallel imple-

mentation to scale with larger datasets. Instead of treating discovered

errors independently, Fiona collects them and solves a new formulation

for optimal error correction inspired by the MSA-based correction meth-

ods. Further, it uses new statistical methods to improve error detection at

different k values and automatically estimates its parameters for reads of

varying lengths as commonly found in 454 or IonTorrent data sets. The

Fiona strategy is outlined in Figure 1.

Notations. Let [i, j] and (i, j) be closed and open ranges of

integers. Further, let S be the DNA alphabet (S=fA;C;G;T;Ng, and N

represents an unknown base) and s a string of jsj characters. The concat-

enation of two strings s and t is denoted by st. A substring of s from

position i to j is the sequence s½i; j�:=sisi+1 . . . sj. s
R and s denote, re-

spectively, the reverse and the reverse complement of a DNA string s. We

correct errors on a set R ðjRj=mÞ of DNA strings of lengths ð‘iÞ
m
i=1,

sampled from a genome G of length n, possibly with sequencing errors.R

denotes the set of reverse-complemented reads. The edit distance ed(s, t)

between two strings s and t is the minimal number of oper-

ations (substitutions, deletions and insertions) required to transform s

into t.

In the following section, we describe how we use a suffix tree and a

statistic on read coverage to find erroneous reads and correct them using

the sequences they overlap. We then introduce our approach for detecting

the type of error and choosing the optimal correction. Instead of imme-

diately correcting errors as they are found, corrections are prioritized

according to the support of their overlapping reads.

Fig. 1. The Fiona strategy illustrated on a toy example. A set of partial

suffix trees are built from the set of reads and their reverse complement

(in fact partial suffix arrays are constructed, see Implementation). The

trees are traversed in parallel to detect and correct errors. Potential

errors in the reads are identified as nodes in the tree according to their

coverage (e.g. the substring GGAC, covered by only one read). The cor-

rection with the highest support is chosen to correct the read at that

position. Owing to the parallel traversal of the tree, all possible correc-

tions on a read are recorded in a linked list, which reports the positions of

corrections as well as their current maximal support. After traversal,

the reads are updated by applying all non-conflicting corrections in

order of decreasing support. Once all reads have been corrected, the al-

gorithm repeats the procedure until the number of corrections have been

achieved

i357

Fiona: automatic read error connection

to
; Kao etal., 2011
tilizes
,

Searching erroneous reads

One essential ingredient in every sequencing error correction method is

the statistic that computes which k-mers are erroneous, i.e. span at least

one sequencing error in the read. Because new k-mers are generated when

an error is introduced, their abundance or coverage is lower compared

with k-mers from the genome. To detect a k-mer with a sequencing error,

we compute the expected coverage assuming a uniform sampling of

genomic positions. We use a hierarchical statistical model to describe

the expected coverage distribution of k-mers resulting from library

preparation and sequencing as follows. Let Xk be the random variable

for the number of occurrences of a string of length k in the population

of sequence fragments before sequencing. Xk is never directly

observed, instead the occurrences of k-mers in the reads R after

sequencing, denoted Yk, are observed with a given number of sequencing

errors z.

For every k-mer covered by c reads, we classify it as possessing errors

based on the sign of the log odds ratio (positive value for erroneous

k-mers):

log
PðYk=c j z40Þ

PðYk=c j z=0Þ
+w: ð1Þ

The constant w can be modified to adjust the sensitivity of the detection.

To match the setup of a naive Bayes classifier, we use the log-odds ratio

of the probability that the k-mer has errors compared with the probability

that the k-mer has no error: w=logð1� ð1� "ÞkÞ=ð1� "Þk: As we will

show in the following the user only needs to supply the genome length n

and the average error rate " to the method. The method can then infer the

coverage cutoff and the range of k-mers to explore.

Coverage distribution of k-mers. The counts Xk are drawn

according to binomial sampling along each position in G. If we as-

sume the sampling to be uniform, k5minð‘iÞ; maxð‘iÞ � n and

that any word of length k is unique in G, the expected count of a k-mer

�k is

�k=
Xm
i=1

‘i � k+1

n� ‘i+1
: ð2Þ

As n is usually large, Xk can be approximated by a Poisson distribution of

rate �k. Note that the assumption that a word is unique in G is vital

because repeats in G will have a higher �k. We restrict ourselves to this

hypothesis in the following, as errors derived from repeats are difficult to

infer based exclusively on their coverage. Therefore, we have an add-

itional filter to remove words that originate from repetitive regions (see

Implementation).

If we assume a uniform error rate of " at each base (thus a probability

of "=3 for each substitution), we can derive the expected count for a given

k-mer, given its number of sequencing errors, i.e. the distribution of Yk jz.

The coverage of a k-mer possessing i sequencing errors is distributed

according to a Poisson distribution with an expectation of

�i=�k � ð"=3Þ
i
ð1� "Þk�i: ð3Þ

Note that this formulation does not incorporate cases where errors would

accumulate on other reads in the neighborhood of the k-mer. This effect

can be neglected given the relatively low error rate of current sequencers

(55%).

The distribution of Yk can be obtained by summing over the pos-

sible number of errors, which results in a mixture of Poisson distribu-

tions with rates �i. We denote the proportion of reads with exactly i

errors as

�i=
k

i

 !
"ið1� "Þk�i; ð4Þ

which we call the mixture coefficients. It follows the formulation

for Yk:

PðYk=cÞ=
Xk
i=0

�i � PðYk=c j z=iÞ=
Xk
i=0

�i �
e��i�c

i

�i!
: ð5Þ

Note that without the i=0 term, this formulation denotes the distribu-

tion for reads with at least one error.

Choosing the k-mer range. In our error correction formulation we

seed the alignments with different seed lengths in the interval ½kmin; kmax�.

The minimal value kmin should neither be too small, to reduce influence

from repetitive sequences, nor too large, as many erroneous reads may be

missed otherwise. In Fiona, we extend a technique proposed by the au-

thors of HiTEC (Ilie et al., 2011) to determine the best value for kmin,

balancing the sensitivity of a seed and its accuracy, and modify it to

account for heterogeneous read lengths (Supplementary Section S1).

Note that our use of the [kmin, kmax] values differs compared with

HiTEC because in Fiona we always choose the best corrections in the

interval [kmin, kmax] in each round.

Detecting the type of error

With the statistic described in the previous section we now search

the generalized suffix tree of R[R for nodes � at level k� 1 that

branch into an erroneous and a correct k-mer, let the latter be �x with

x 2 S.

For each read r in the erroneous subtree, we search for possible cor-

rections in the correct subtrees. If i is the position of the error, obviously

r½i� 6¼ x and we can use the set of overlapping correct reads to determine

the type of error at i: substitution, insertion or deletion. We

use the spectrum of the correct k-mer �x to select possible correcting

reads.

The spectrum SðtÞ of a string t is defined as the set of pairs (s, j) such

that s 2 R [R and s½j� jtj+1; j�=t (the set of positions in reads ending

with the string t). For each read s in the spectrum Sð�xÞ, we extend the

seed � to the right with minimal edit distance using an alignment algo-

rithm until the end of either r or s is reached.

We define the right extension of two strings a and b as a pairwise

alignment of one string to a prefix of the other. E(a, b) denotes the

number of errors in an optimal right extension of a and b:

Eða; bÞ=minf min
l2½1;jaj�

edða½1; l�; b½1; jbj�Þ; min
l2½1;jbj�

edða½1; jaj�; b½1; l�Þg :

Considering the three possible types of error, we assume that skipping the

actual error yields an optimal extension of the remaining suffixes. Hence,

for e1

e2

 !
2

1

1

 !
;

1

0

 !
;

0

1

 !()
we skip e1 bases from position i in r and e2 bases

from position j in s and examine which value of e yields an optimal

extension, i.e. a minimal value Eðr½i+e1; jrj�; s½j+e2; jsj�Þ. Figure 2

gives an example where e= 0

1

 !
yields an optimal extension.

We determine the actual error by a majority vote over all correct

reads:

VðeÞ=fðs; jÞ 2 Sð�xÞ
�� e 2 arg min

e02
1

1

 !
;

1

0

 !
;

0

1

 !()Eðr½i+e01; jrj�; s½j+e02; jsj�Þg:

Thus, V(e) is the set of correct reads (or more precisely of correct anchors)

that vote for e, i.e. can be optimally extended incorporating error e. We

choose the error type that maximizes jV(e)j. In case of ties, we prefer

substitutions over indels and deletions over insertions. As an additional

criterion to reduce false positives, we consider only correct reads within a

given overlap error rate.

i358

M.H.Schulz et al.

to
In order
to
,
,
:
,
,
u
in order
SI
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
to
,
,
3

Selecting optimal read corrections

In contrast to other approaches that consider a fixed seed length,

we examine potential errors over a whole range of seed lengths and

therefore need a way to select the overall most probable error

among them. For an error, summarized by the tuple "=ðr; i; eÞ, we

define the support suppð"; �xÞ as the number of matching base

pairs in overlap alignments between r and correct reads voting for e at

position i:

suppð"; �xÞ=
X
ðs;jÞ2VðeÞ

minfi; jg

+minfjrj � ði+e1Þ; jsj � ðj+e2Þg

� Eðr½1; iÞR; s½1; jÞRÞ

� Eðr½i+e1; jrj�; s½j+e2; jsj�Þ:

supp is computed for all reads that vote for error type e, by subtracting

from the total overlapping bases (left and right) the number of errors in

the overlap [given by Eð�; �Þ]. During the traversal we maintain a

data structure that stores the maximal suppð"; �Þ and its corresponding

correction. After tree traversal, we sort for each read r the list of errors

by decreasing support, apply the first correction and continue with

the next non-conflicting correction (a conflicting correction is a

correction which would destroy the seed of one previously applied

correction).

Note that this definition of error correction is different from the cor-

rection approaches in the other suffix tree based algorithms (Ilie et al.,

2011; Salmela, 2010; Schr€oder et al., 2009) because these do not maximize

over a range of seed lengths for one correction and do not maximize the

support of corrections for an individual read. Rather, their algorithms

can detect errors at different seed lengths, but correct an error in read

r for an arbitrary k, solely determined by its first encounter in the suffix

tree. This makes Fiona the only approach to use a definition of optimality

for different seed lengths.

Implementation

We implemented Fiona in C++ using SeqAn (D €oring et al., 2008).

We emulate the suffix tree traversal with a suffix array and exploit a

one-to-one correspondence of suffix tree nodes at string depth ‘ and

‘-intervals in the suffix array (Abouelhoda et al., 2004) where (i) the

suffixes in the interval are the leaves of the node’s subtree and (ii) the

suffix tree path from the root to the node spells out the longest common

prefix of the interval suffixes. We parallelized the construction and

traversal of the suffix array using OpenMP, exploiting the fact that we

do not need to explicitly construct the arrays for suffixes shorter than

kmin. Reticulating the tree this way allows to control memory usage and

to process suffixes step-wise in chunks. In practice we refine a 10-mer

index up to a sorted prefix of length kmax. Seed extension and computa-

tion of the Eð�; �Þ values is done with a banded variant of Myers’ bitvector

algorithm for fast edit distance computation. For parallel access of the

found corrections and their support in each read, we implemented a

concurrent linked list data structure. Finally, repeats are accounted

for by filtering out suffixes with too high coverage or containing

tandem repeats. More implementation details, as well as worst case and

expected time and memory complexities, can be found in Supplementary

Section S2.

3 RESULTS

We performed a comprehensive experimental evaluation of
Fiona and other tools on various real-world read sets. For the
evaluation of read correction quality, the metric gain has been

established in (Yang et al., 2010, 2013) as a good summary
of both sensitivity and precision. The gain can be computed by

ðb� aÞ=b where a and b are the sums over the number of errors
after and before correction over all reads. When more errors are
introduced than corrected over all the reads, the gain takes a

negative value. For the evaluation, we developed a tool compu-
te_gain, which is included in the Fiona distribution

(Supplementary Section S3.2)
To cover most of the use cases nowadays, we evaluated the

accuracy on read sets from 454, IonTorrent and Illumina sequen-

cers that show a varying degree of read lengths (mean values
from 92 to 544bp) and depth of coverage (up to 490�). We

selected datasets for a diverse set of organisms to explore the
impact of genome complexity and repeat content on error cor-
rection performance, from short genomes (Escherichia coli,

Pseudomonas syringae) to longer and more complex ones
(Drosophila melanogaster, Homo sapiens). Further details about

all datasets and the evaluation are given in Supplementary
Section S3.
The only variable parameter besides the input read set given to

Fiona is the estimated genome length (Supplementary Table S1).
Fiona was run with default parameters for all datasets, i.e. the

sequencing error rate was 5% and the presorting q-gram length
was set to 10.

Optimal error formulation improves correction accuracy

As mentioned in the introduction, the previous suffix tree

based error correction approaches use the correction for
a read that is first encountered during tree traversal

and neither store all possible corrections nor choose the optimal
one.
Although we compare with HybridShrec later, which uses such

a strategy, it is not straightforward to analyze the advantage of
our new formulation of optimal error correction because

HybridShrec further differs in the way errors are detected.
Therefore, we implemented two special versions of Fiona to
illustrate the improvement of our approaches. In the first, for

each read position only the first correction encountered during

T G G C A C C G - A A A C C G

G C A C C G T A A A C C G T A

deletion

T G G C A C C G A A A - C C G

G C A C C G T A A A C C G T A

substitution

T G G C A C C G A A A - - C C G

G C A C C G - T A A A C C G T A

insertion DP traces

(d)(a)

(b)

(c)

Fig. 2. Example for detecting the type of error. Given an erroneous read

r and a correct read s, that share a 3-mer anchor CCG that cannot be

extended to the right. For each possible error type, deletion (a), substi-

tution (b) and insertion (c), we skip 0 or 1 bases in r or s and compute DP

overlap alignments of the remaining suffixes (shaded). The corresponding

DP traces of the three alignments are shown below (d) with colors match-

ing the overlap regions. The error type with the least number of errors in

the overlap, here the deletion with 0 errors, is assumed to be the true error

i359

Fiona: automatic read error connection

st
(
)
,
Ilie etal., 2011
,
-
-
 (LCP)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
:
SI
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
-
x
.
.
.
.
SI
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
,
to
,

traversal is stored, after each round the corrections are executed

in the order they were found. We term this version Fiona-RE, for

random encounter mode. The second, implements a version of

Fiona that does all optimizations but compares two reads using

hamming distance, instead of pairwise edit distance computation

(Fiona-H). Note that Fiona-H does correct indel errors, as found

at branching nodes in the tree, but no further indels are con-

sidered in the pairwise read alignment. We compare Fiona,

Fiona-H and Fiona-RE on data sets with different regimes of

coverage and genome complexity in Figure 3. The results show

that Fiona-H, without edit distance pairwise comparison, usually

shows a drop in gain value of 13–19%. This is due to a loss of

sensitivity, where two reads that have several other indel errors

downstream or upstream are not judged similar enough to be

considered for correction. The optimal error formulation in

Fiona, compared with random encounter mode in Fiona-RE,

shows a pronounced improvement in error correction for more

complex genomes and higher coverages as on the E.coli 163�

and Bordetella pertussis 85� datasets.

Robustness

Fiona uses different statistical formulas to infer the optimal

correction parameters (see Section 2). We analyzed the robust-

ness of error correction results on two datasets by varying the

user-supplied sequencing error rate between 2 and 10%. Fiona

produces corrections of similar quality with difference in gain

value 515%, despite the large range of error rates tested,

which indicates robust automatic parameter selection (see

Supplementary Table S3). Note that the gain is generally better

when the error rate is overestimated. This can be explained by

the variability of read quality observed in the sequencing sample,

i.e. an average error rate does not account for the other reads of

low quality.

Comparison with other methods

We compared the performance of Fiona with state-of-the-art

genome error correction methods for the respective type of

sequencing technology. For 454 and Ion Torrent datasets, we

compared with Coral 1.4, Hybrid-Shrec 1.0 and the error correc-

tion module of Allpaths-LG release 44994, which can correct

indel errors. For Illumina, we add the tools HiTEC 1.0.2 and

Quake 0.3.4.2, which are designed for substitution errors. We did

not include HybridShrec in those evaluations, as it consistently

performed worse than HiTEC. In any case, all programs were

run with eight threads if possible. The detailed parameterization

of the programs is listed in Supplementary Section S5. Except

ECHO and HiTEC, which do automatic parameter selection

similar to Fiona, no other correction method adapts parameters

depending on the data. But whereas Allpaths-LG has a fixed set

of parameters, Coral and HybridShrec expect the user to opti-

mize its parameters for indel-prone datasets, which we did to

allow for a fair comparison. For Coral, we report the results

of two versions, Coral and Coral*, the default version with

error rate set to 7% and the optimized version with the best-

performing gain and error rate set as high as 25%, respectively

(Supplementary Tables S8–S11). Coral* performed better than

Coral on all datasets tested, clearly indicating the need for par-

ameter adjustment for indel-prone datasets. HybridShrec has

three parameters that have substantial influence on its perform-

ance, the strictness parameter for error detection and the

minimum and maximum k-value for suffix tree traversal. As

HybridShrec often terminates with default strictness value we

have varied this parameter between values of 2–7 and took the

best result. Consequently, we report the results as HybridShrec*.

The same was done for HybridShrecF, which uses the same

k value range as determined by Fiona for a dataset. Even with

the optimized set of parameters we explored, HybridShrec some-

times yields negative gain values. The optimized parameters for

HybridShrec*, HybridShrecF and Coral* are listed in

Supplementary, Sections S9 and S8.
We have evaluated all methods on different datasets and list

their relative performance in terms of gain, sensitivity, specificity,

base error rate after correction, running time and memory

in Tables 1 and 2. and Supplementary Tables S4–S7, respectively.

Further, we relate the error correction performance to running

time of a method in Figure 4, where the best method appears in

the upper left corner.

Comparison on 454 data. We have collected four different 454
dataset with different coverage values for D.melanogaster 18�,

E.coli 13�, Staphylococcus aureus 34� and Saccharomyces cere-

visae 16�. These datasets vary in the per-base error rate between

0.6 and 1.76%. Errors are often found in sequence regions with

homopolymer runs, which are hard to correct (Quail et al., 2012).

We observe that the optimized version of Coral* always outper-

forms the default parameters (Coral) on 454 data sets. Similarly,

HybridShrecF mostly outperforms the optimized HybridShrec*,

owing to adapted k-mer levels for each dataset. Similar to

Yang et al. (2013), we observe that HybridShrec sometimes

yields negative gain values, i.e. that more errors are introduced

than corrected. As Figure 4 (right) shows Fiona has the highest

gain among all methods except for the S.aureus dataset, where

Coral* performs best. However, Coral* runs �10 times longer

than Fiona on this dataset. Allpaths-LG generally is the fastest

or among the fastest methods, but with a loss in gain perform-

ance between 90 and 50% compared with Fiona. Fiona shows a

fast running time for all datasets, and is also memory efficient

compared with the Coral and HybridShrec versions.

Comparison on Ion Torrent data. We next compared the per-

formance of the different methods on the eight Ion Torrent

 20

 40

 60

 80

 100

B.pertussis (85x) S.aureus (109x) E.coli (160x)

ga
in

 (%
)

Fiona-RE
Fiona-H

Fiona

Fig. 3. Comparison of gain values after error correction with new

optimality criterion introduced in Fiona and corrections without opti-

mization (Fiona-RE), or without edit distance overlap computation

(Fiona-H) as performed by other suffix treebased methods. The results

are for three different datasets with varying coverage values: B.pertussis

(85�), S.aureus (109�), E.coli (160�) (see Supplementary Table S2).

Optimal corrections always lead to higher gain values

i360

M.H.Schulz et al.

 to
to
x
.
x
section
%
below
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
to
to
to
,
,
8
are
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
that
in order
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
 to
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
x
x
.
x
,
.
x
%
due
,
about
-
to
very
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1

datasets. On seven of eight datasets, Fiona significantly outper-

forms the other methods in terms of gain. Fiona shows an in-

crease in gain to the second best method ranging from 10 (E.coli

163�) to 56% (Plasmodium falciparum). For the human dataset,

only Allpaths-LG and Fiona could be run with the available

memory, with a gain improvement of 35% for Fiona. Only for

the E.coli (156�) dataset Fiona and Coral* have comparable

gain values, although Fiona runs approximately six times

faster. Except for Fiona, all methods show a large variation in

their ability to correct errors as shown in fluctuations of their

gain values. For example, all datasets with an error rate43.3%

are poorly corrected when using Coral default parameters.

In these evaluations, Allpaths-LG uses the lowest amount of

memory. Fiona’s memory usage scales linearly with the dataset

size (Supplementary Table S2), which is in line with the expected

memory consumption (Supplementary Section S2.6).

Comparison on Illumina data. To show that Fiona is on par

with methods that are optimized for Illumina data, we made

comparisons on seven datasets. We compared Fiona-H, the

Table 1. Performance on 454 (top) and IonTorrent (bottom) datasets

Original Allpaths-LG Coral Coral* Fiona HybridShrec* HybridShrecF

Dataset e-rate e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain

D.melanogaster 18� 1.17 1.07 8.87 0.72 38.81 0.55 53.30 0.42 64.62 4.46 –279.51 0.73 38.17

E.coli K-12 13� 1.06 0.74 30.68 0.54 49.42 0.38 63.79 0.25 76.88 0.64 40.05 0.70 34.28

S.aureus 34� 1.76 1.34 23.85 1.76 0.00 0.44 74.90 0.53 69.87 1.59 9.62 1.40 20.50

S.cerevisae 16� 0.95 0.78 18.45 0.95 0.56 0.92 2.99 0.61 36.04 0.90 5.48 0.73 23.11

B.pertussis 85� 3.71 2.22 40.13 3.71 0.02 2.57 30.60 1.01 72.83 12.44 –235.48 4.07 –9.68

E.coli K-12 8� 0.62 0.28 54.46 0.33 46.86 0.30 51.86 0.06 90.52 0.36 41.81 0.37 40.26

E.coli K-12 163� 1.46 1.23 15.99 0.59 59.70 0.38 73.72 0.27 81.24 1.73 –18.90 1.46 0.00

E.coli K-12 156� 1.11 0.75 31.98 0.43 61.07 0.28 74.70 0.29 74.06 1.38 –24.15 1.11 0.00

E.coli O104:H4 32� 5.19 3.09 40.53 5.19 0.00 3.44 33.82 1.59 69.33 4.39 15.36 4.31 16.76

H.sapiensa 11� 1.62 1.44 11.52 —b —b 0.87 46.68 —b —b

P.falciparum 3D7 13� 5.06 3.97 21.39 5.05 0.03 3.80 24.94 2.33 54.12 7.67 –51.29 4.63 8.50

S.aureus 109� 3.32 2.83 14.89 3.32 0.24 1.44 56.91 1.17 64.94 3.77 –13.44 3.31 0.32

Note: aThe programs were run on machine with 16 physical and 32 virtual cores and 370GB of RAM. bOut of memory—The table shows the base error rate (e-rate, in

percent) before and after correction with the methods as well as the gain statistic. For each dataset, the results with the best gain value are highlighted in bold. The results are

separated by sequencing technology, the 454 results are above the IonTorrent results.

Table 2. Running time and memory consumption for 454 (top) and IonTorrent (bottom) experiments

Allpaths-LG Coral Coral* Fiona HybridShrec* HybridShrecF

Dataset Gbp time mem time mem time mem time mem time Mem time mem

D.melanogaster 18� 2.2 145.0 11 496.1 59 1414.1 60 240.7 18 333.2 41 499.5 42

E.coli K-12 13� 0.06 1.0 0 0.8 3 0.9 3 2.5 1 4.8 5 5.0 12

S.aureus 34� 0.1 3.0 1 5.5 5 112.2 5 12.3 1 12.0 14 13.6 15

S.cerevisae 16� 0.19 6.5 1 7.1 5 19.6 5 13.1 2 22.5 15 30.5 15

B.pertussis 85� 0.3 6.0 2 13.5 9 81.2 9 32.0 3 58.3 17 54.0 21

E.coli K-12 8� 0.04 2.6 0 3.4 3 4.4 3 3.1 1 7.1 5 9.2 8

E.coli K-12 163� 0.8 14.2 4 243.0 13 373.8 13 118.3 9 111.3 19 160.2 6

E.coli K-12 156� 0.7 15.0 7 249.1 12 290.1 12 49.2 8 111.4 18 111.0 6

E.coli O104:H4 32� 0.2 3.8 1 5.3 8 12.6 8 15.2 2 21.7 15 28.7 16

H.sapiensa 11� 31.5 572.8 129 —b —b 1187.1 244 —b —b

P.falciparum 13� 0.3 5.6 1 11.0 11 24.8 11 20.5 3 38.9 16 49.7 20

S.aureus 109� 0.31 4.4 1 12.0 13 175.8 13 43.7 3 51.1 18 53.8 29

Note: aThe programs were run on machine with 16 physical and 32 virtual cores and 370GB of RAM. bOut of memory—Time (in minutes and fractions thereof) and memory

(in GB, rounded to the next GB) for the read correction runs from Table 1. For each dataset, the results with the lowest running time and memory are given in bold. The

results are separated by sequencing technology; the 454 results are above the IonTorrent results.

i361

Fiona: automatic read error connection

out
%
x
.
x
∼
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1
In order

version that corrects indels but only considers hamming pairwise

read distance (Fiona-H) to Coral, Allpaths-LG, HiTEC and

ECHO. On all datasets, Fiona-H and Allpaths-LG are the best

two methods in terms of gain, with Fiona always being among

the two first-ranked methods (Table 3). Fiona-H outperforms

Allpaths-LG with a significant increase in gain of 17% on the

D.melanogaster 5� and P.syringae 41� datasets. Conversely,

Allpaths-LG ranks first, with a gain increase of 1–3.5% over

Fiona-H on D.melanogaster 28�, E.coli 30� and the

Caenorhabditis elegans dataset. Of the remaining methods,

Quake ranks second two times and third five times. In

Supplementary Table S5, we list the runtime and memory con-

sumption for these comparisons. Fiona-H scales well with

dataset size and has lower memory consumption than HiTEC

and Coral. Allpaths-LG and Quake were the fastest methods in

our comparisons, with Fiona-H ranking third most of the time.

Of the remaining methods, Quake ranks second two times and

third five times. This can be explained by the fact that Fiona

examines an error at various seed lengths, whereas fixed-length

seed methods examine it at most once.

4 DISCUSSION

In this study, we introduced Fiona, a new algorithm for the

correction of sequencing errors without the need for a reference

sequence. Fiona builds over existing strategies to accurately cor-

rect errors, accounting for indels with automatic parameter

selection. One of the main advantages of Fiona is the use of vari-

able seed lengths, combined with a global optimization criterion

to choose the best correction for a read. Our experiments show

that Fiona outperforms other methods on datasets from different

sequencing technologies.

●

●

●

●

●
●
●

●●

●

●

●

●

●

B. pertussis E. coli

P. falciparum S. aureus

0

20

40

60

0

20

40

60

80

0

20

40

0

20

40

60

20 40 60 80 0 100 200 300

10 20 30 40 50 0 50 100 150

time [min]

ga
in

 [%
]

Ion Torrent

●

●

●

●

●

●

●

●

D. mel E. coli

S. aureus S. cerevisae

0

20

40

60

40

50

60

70

80

90

0

20

40

60

0

10

20

30

500 1000 4 6 8

0 30 60 90 10 15 20 25 30

time [min]

ga
in

 [%
]

454

Fig. 4. Scatterplots that show achieved gain and running time for Allpaths-LG (orange filled circles), Coral (dark yellow filled circles), Coral* (green

filled squares), Fiona (turquoise filled dimonds), H-Shrec (blue filled triangles), and H-Shrec* (green filled triangles) on the various datasets for Ion

Torrent (left) and 454 (right) technologies. The best-performing method appears in the upper left corner of a plot. Gain values below zero were arbitrarily

reassigned a value of –1. In the case of E.coli, values for the four datasets for each tool are connected by a line

Table 3. Performance on Illumina datasets

Original Allpaths-LG Coral ECHO Fiona-H HiTEC Quake

Dataset e-rate e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain e-rate gain

C.elegans 30� 0.4404 0.3152 28.42 0.5173 –17.45 —a 0.3292 25.24 —b 0.3881 14.02

D.melanogaster 5� 1.3244 0.8900 32.80 0.7187 45.73 0.7652 42.22 0.6587 50.26 1.0080 23.89 0.7342 46.95

D.melanogaster 28� 1.1065 0.7509 32.13 0.7727 30.16 —a 0.7592 31.39 —b 0.8005 29.09

E.coli K-12 30� 0.2070 0.0015 99.29 0.0178 91.40 0.0184 91.12 0.0043 97.91 0.0141 93.18 0.0094 95.55

E.coli K-12 490� 0.2070 0.0036 98.24 0.0084 95.69 —b 0.0028 98.66 0.0128 93.81 0.0077 96.35

P.syringae 42� 0.5984 0.1531 74.41 0.1491 75.08 0.0533 91.09 0.0517 91.36 0.1351 77.42 0.1219 79.65

S.cerevisae 22� 0.4101 0.1803 56.04 0.2713 33.86 0.2777 32.30 0.1686 58.89 0.5045 –23.00 0.1963 52.15

Note: This table shows the same metrics as Table 1. aThe program ran too long—The problems were Coral and HiTEC produced a segfault, requiring more than 72GB of

memory. bThe program crashed. ECHO was killed after running more than 4 days in the case of C.elegans andD.melanogaster datasets and the subprogram NeighborJoin

crashed on the full E.coli dataset;

i362

M.H.Schulz et al.

,
x
x
x
x
,
.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu440/-/DC1

For the evaluation of the different error correction methods

we chose to use the gain statistic that is commonly used for this

task. However, evaluating the accuracy of nucleotide corrections

based on the available reference sequence can be misleading, as

haplotype variants may be penalized and therefore the number of

false-positive/negative corrections inflated. Despite this disad-

vantage, the comparison should not favor any method because

all compared methods work exclusively on the read set without

alignment to the reference sequence.
We introduced a new statistic for error detection that uses a

hierarchical model for the stepwise process of first selecting a

subset of reads from a genome and then introducing errors

during sequencing. This formulation provides an easily extend-

ible framework and can be extended to accommodate more gen-

eral scenarios, like the presence of heterozygous positions in

diploid genomes, coverage overdispersion or the distribution of

repeat elements, as well as base quality values.
For our experiments, we fixed the error rate estimate to 5%

for indel-prone datasets and show that reasonable variations to

this value lead to minor performance differences. In principle, the

error rate could be estimated from the base-calling procedure

of the sequencer. Alternatively, it could be estimated from the

raw sequencing data in a preprocessing step as was recently

shown by Wang et al. (2012) for Illumina data. Further research

on how to determine sequencing error rates in the context of de

novo assemblies, where no reference sequence is available, is

necessary.
In conclusion, Fiona is a reliable method that automatically

determines parameters, corrects indels and scales well to large

datasets. We believe that users will improve their downstream

analysis by using Fiona in their pipelines and made it publicly

available at http://www.seqan.de/projects/fiona.

ACKNOWLEDGEMENT

The authors thank Enrico Siragusa for his partial suffix array

implementation.

Funding: The initial part of the project for M.H.S. was funded by

the IMPRS-CBSC Berlin. M.H. and D.W. were supported by the

BMBF [16V0080]. H.R. was partly funded by a JSPS [PE11014]

fellowship.

Conflict of interest: none declared.

REFERENCES

Abouelhoda,M. et al. (2004) Replacing suffix trees with enhanced suffix arrays.

J. Discrete Alg., 2, 53–86.

Chaisson,M.J. and Pevzner,P.A. (2008) Short read fragment assembly of bacterial

genomes. Genome Res, 18, 324–330.

D €oring,A. et al. (2008) SeqAn an efficient, generic C++ library for sequence

analysis. BMC Bioinformatics, 9, 11.

Gnerre,S. et al. (2010) High-quality draft assemblies of mammalian genomes from

massively parallel sequence data. PNAS, 108, 1513–1518.

Ilie,L. et al. (2011) HiTEC: accurate error correction in high-throughput sequencing

data. Bioinformatics, 27, 295–302.

Kao,W. et al. (2011) ECHO: a reference-free short-read error correction algorithm.

Genome Res., 21, 1181–1192.

Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of sequen-

cing errors. Genome Biol., 11, R116.

Minoche,A. et al. (2011) Evaluation of genomic high-throughput sequencing data

generated on Illumina HiSeq and Genome Analyzer systems. Genome Biol., 12,

R112.

Pevzner,P.A. et al. (2001) An eulerian path approach to dna fragment assembly.

PNAS, 98, 9748–9753.

Quail,M. et al. (2012) A tale of three next generation sequencing platforms: com-

parison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.

BMC Genomics, 13, 341.

Salmela,L. (2010) Correction of sequencing errors in a mixed set of reads.

Bioinformatics, 26, 1284–1290.

Salmela,L. and Schr€oder,J. (2011) Correcting errors in short reads by multiple

alignments. Bioinformatics, 27, 1455–1461.

Salzberg,S.L. et al. (2012) GAGE: a critical evaluation of genome assemblies and

assembly algorithms. Genome Res., 22, 557–567.

Schr€oder,J. et al. (2009) SHREC: a short-read error correction method.

Bioinformatics, 25, 2157–2163.

Wang,X.V. et al. (2012) Estimation of sequencing error rates in short reads. BMC

Bioinformatics, 13, 185.

Yang,X. et al. (2010) Reptile: representative tiling for short read error correction.

Bioinformatics, 26, 2526–2533.

Yang,X. et al. (2013) A survey of error-correction methods for next-generation

sequencing. Brief. Bioinform., 14, 56–66.

i363

Fiona: automatic read error connection

,
:
http://www.seqan.de/projects/fiona

