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Abstract
Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates 
treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facili-
tate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a 
promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver 
metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors’ expression. 
The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR 
results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, 
lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. 
aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our find-
ings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant 
pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.
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Introduction

Pseudomonas aeruginosa is a frequent etiological agent of 
opportunistic and hospital acquired infections (Pang et al. 
2019). P. aeruginosa infection may trigger severe complica-
tions in immunocompromised patients and those suffering 
from respiratory, urinary tract and burn infections, sepsis, 
cystic fibrosis, osteomyelitis and endocarditis (Moradali 
et al. 2017). Several virulence factors mediate the patho-
genicity of P. aeruginosa such as pili, flagella, pyocyanin, 
pyoverdin, elastase, hemolysins, proteases, rhamnolip-
ids, exotoxin A and biofilm formation (Lee and Zhang 
2015; Veesenmeyer et al. 2009). The overuse of antibiot-
ics has contributed to the spread of multidrug resistant P. 

aeruginosa (MDR) infections (Aloush et al. 2006). Synthesis 
of new antibiotics is time-consuming and requires high cost-
effectiveness. Moreover, rapid resistance advances shorten 
their lifetime (Boucher et al. 2013; Fernandes and Martens 
2017). Therefore, new therapeutic approaches are required to 
tackle the problem of MDR organisms. One useful approach 
is anti-virulence therapy using FDA approved drugs (drug 
repurposing). This approach has the advantages of disarm-
ing of pathogens without killing them, and the availability 
of data on their safety and pharmacokinetics. This decreases 
the economic costs as well as the time needed for the process 
of drug development (Finlay and Falkow 1997; Miró-Can-
turri et al. 2019; Mullard 2012; Rasko and Sperandio 2010).

The capacity of P. aeruginosa to form biofilm is a major 
virulence factor. The biofilm forming cells are more toler-
ant to the antibiotics and the host immune system (Whiteley 
et al. 2001). In addition, P. aeruginosa produces pyocya-
nin pigment that interacts with molecular oxygen forming 
hydrogen peroxide  (H2O2) and other reactive oxygen spe-
cies (ROS). This leads to altered redox balance of the host 
tissues leading to the injury of cells and may lead to death 
(Price-Whelan et al. 2006). P. aeruginosa also produces pro-
teases that degrade the host lung elastin resulting in lung 
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damage which occurs during respiratory tract infections, 
particularly in patients with chronic cystic fibrosis (Kipnis 
et al. 2006). P. aeruginosa shows motility in one of three 
forms namely; swimming, swarming in addition to twitching 
motility (Floyd et al. 2016). Swarming cells in P. aerugi-
nosa contribute to biofilm formation, antibiotic resistance 
and overexpression of numerous virulence factors (Coleman 
et al. 2021).

Quorum sensing ‘intercellular signaling network’ is the 
main regulator of bacterial virulence. This can occur through 
bacterial secretion of auto-inducers or signaling molecules, 
their concentration is directly proportional to the bacterial 
cell density. After reaching a maximal concentration, genes 
encoding virulence factors are activated (Davies et al. 1998). 
P. aeruginosa has four interacting QS signaling systems; 
las system and rhl system which depend on the secretion 
and recognition of N-acyl-homoserine lactone autoinducers 
(AHL), in addition to the Pseudomonas quinolone signal 
(PQS) system, and the integrated QS (IQS) system (Lee and 
Zhang 2015). This network of cell to cell communication 
gives P. aeruginosa the capacity to produce extracellular 
virulence factors merely at threshold concentration (Van 
Delden and Iglewski 1998).

The use of nanotechnology is required to overcome 
the global dilemma of bacterial resistance to antimicrobi-
als (Wang et al. 2017). Nanomaterials vary between 1 and 
100 nm in size and display distinct physical and chemical 
properties compared to their bulk matter (Wang et al. 2017). 
The use of materials in nanomeric size leads to greater 
interaction between bacteria and compound, eases their 
penetration into the cell, increases absorption and improves 
bioavailability (Jamil and Imran 2018; Zaidi et al. 2017). 
Nanomaterials can be synthesized by many methods such as 
chemical, physical in addition to biological methods (Kaur 
2018). The radiation induced synthesis of nanomaterials has 
several advantages over the traditional methods, because 
of its simplicity, no need for excess reducing agents and 
no excessive oxidation products. In addition, products are 
completely reduced and present in a highly stable pure state 
(Remita et al. 1996).

Metformin is regarded as one of the most common oral 
hypoglycemics used for treatment of patients with type 2 
diabetes mellitus. Chemically, metformin belongs to the 
biguanide moiety of drugs that is especially useful for obese 
patients (Essmat et al. 2020). Metformin disrupts the mem-
brane permeability of bacteria. In addition, it can compro-
mise bacterial cell walls enhancing the antibacterial activity 
of antibiotics by increasing their intracellular accumulation. 
Moreover, they modify the immune response leading to 
increasing resistance to infection (Coates et al. 2020; Liu 
et al. 2020; Xiao et al. 2020). In addition, it was reported to 
exhibit anti-virulence activity by interfering with quorum 
sensing that regulates the production of virulence factors 

such as biofilm, proteases, pyocyanin, elastase and hemo-
lysin production of P. aeruginosa PAO1 in a study done by 
Abbas et al. (2017).

Since ancient times, metals have been used as antibacte-
rial agents. Silver is one of the most widely used. This is 
attributed to its powerful antimicrobial activity as well as 
its low toxicity (Chen and Schluesener 2008). Silver nano-
particles (AgNPs) exhibit activity against various type of 
microorganisms such as viruses, bacteria and fungi (Murphy 
et al. 2015). Silver nanoparticles can be seen as the most 
effective nanomaterial that can be used against MDR bac-
teria, however, other metallic NPs like AuNPs, CuONPs, 
 Fe3O2NPs and TiONPs show good activity (Dakal et al. 
2016; Hemeg 2017; Slavin et al. 2017). In addition, several 
studies reported the anti-virulence activity of nanomaterials 
(Li et al. 2020; Loo et al. 2016; Qais et al. 2021).

The cytotoxic effects of AgNPs, documented in vitro stud-
ies in various cell lines, are governed by factors such as size, 
shape, coating, dose and cell type. In addition, toxicity and 
biodistribution studies, in vivo, following various routes of 
exposure, like inhalation, instillation, oral, dermal and intra-
venous, have established Ag translocation, accumulation, and 
toxicity to various organs (Ferdous and Nemmar 2020).

The current study aimed to evaluate the possible quorum 
sensing inhibitory activity of metformin and to determine for 
the first time whether it can be more effective in nanoform 
than in bulk. In addition, investigate if a combination of met-
formin with AgNPs may help in attenuation of P. aeruginosa 
virulence and pathogenicity.

Materials and methods

Media and chemicals

Mueller hinton agar (MHA) and mueller hinton broth 
(MHB), tryptone soya agar (TSA), tryptone soya broth 
(TSB), and MacConkey agar were obtained from Oxoid 
(St. Louis, USA). Other chemicals were of pharmaceutical 
grade. Metformin (MET) and silver nitrate were purchased 
commercially from Sigma Chemical Company, St. Louis, 
Mo, USA.

Bacterial isolates

The standard strain P. aeruginosa ATCC 27853 was used in 
this study. It was provided from the stock culture collection 
of Microbiology and Immunology Department, Faculty of 
medicine, Zagazig University. Six clinical MDR P. aerugi-
nosa isolates (PA1, PA2, PA3, PA4, PA5 and PA10) were 
obtained from the stock culture collection of Microbiology 
and Immunology Department, Faculty of pharmacy, Zaga-
zig University. They were obtained from patients with burn, 
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surgical wound, respiratory tract and urinary tract infections. 
All isolates were maintained in MHB with 10–15% glycerol 
and kept at − 80 °C.

Metformin nano emulsionss and silver metformin 
nano emulsions preparation

In order to prepare both metformin nano emulsion (MET-
NEs) and silver metformin nano emulsions (Ag-MET-NEs), 
the modified ultra-sonication method was used as referenced 
(Laxmi et al. 2015; Mosallam et al. 2021a).

In synthesis of MET-NEs and Ag-MET-NEs (O/W 
30/70), both coconut oil oily phase and tween 80 emulsifier 
were added drop wise to aqueous phase of either MET in 
a concentration of 100 mg/mL or MET and already pre-
pared AgNPs (100–0.05 mg/mL) using homogenizer at 
10,000 rpm for 30 min for continuous stirring. Then, the 
ultrasonic sonicator was used to sonicate the emulsion for 
1 h. For characterization of the prepared nano emulsions, 
different physicochemical parameters such as particle size 
and distribution in addition to zeta potential were measured 
at the National Center for Radiation Research and Technol-
ogy (NCRRT), Cairo, Egypt. The charge of the particles 
determines the stability of the nano emulsions. Zeta poten-
tial was used to quantify the particle charge and it is detected 
by using the electrophoretic motion of the particles in an 
electrical field. DLS Zeta Sizer Technique (PSS-NICOMP 
380-ZLS, USA) was used to measure zeta potential of the 
optimized formulation. The particle sizes of the prepared 
nano emulsions were performed by Transmission Electron 
Microscopy (TEM) using (JEOL electron microscope JEM-
100 CX) at an accelerating speed of 80 kV.

Determination of minimum inhibitory 
concentrations (MICs) of the tested agents

The minimum inhibitory concentrations (MICs) of MET, 
MET-NEs (stock solution of 100 mg/mL, each), Ag-MET-
NEs (100–0.05 mg/mL) and AgNPs (0.05 mg/mL) against 
P. aeruginosa were assessed using the broth micro-dilution 
method using 96-well microtiter plate according to the clini-
cal and laboratory standards institute (CLSI) guidelines 
(Wikler 2006).

Phenotypic assay of P. aeruginosa virulence factors

Bioflm inhibition assay

The capacity of the tested clinical strains to produce biofilm 
was quantitatively assayed according to the method previ-
ously described by Abbas et al. (2017). The standard strain 
P. aeruginosa ATCC 27853 was previously reported to have 
strong biofilm forming capacity (Casciaro et al. 2019).

To test the inhibitory activity of tested agents against 
biofilms, the same procdure was repeated in the presence of 
1/10 MIC of them. The following formula was used in order 
to calculate the biofilm inhibitory percentage (%); 

Pyocyanin inhbition assay

The inhibitory activities of the tested agents against pyocya-
nin was assessed according to the method described by Das 
and Manefield (2012).

Swarming motility inhbition assay

In order to test the capacity of the tested agents to block the 
swarming motility of P. aeruginosa isolates, Krishnan et al. 
method was performed (Krishnan et al. 2012).

Total proteases inhbition assay

The effect of the tested agents on inhibition of total proteases 
by P. aeruginosa isolates was carried out using the modi-
fied skimmed milk broth method. P. aeruginosa overnight 
cultures in MHB with and without 1/10 MIC of the tested 
agents were centrifuged to obtain the supernatants. Aliquots 
of 500 μL of bacterial supernatants were incubated with 
1 mL skimmed milk (1.25%) for 1 h at 37 °C. The decrease 
in optical density of skimmed milk was estimated at 600 nm 
using Biotek spectrofluorometer (USA) and considered as 
measure of proteolytic activity. The test was performed 
twice (El-Mowafy et al. 2014).

Assessment of the effect of the tested agents 
on the expression of some virulence genes in P. 
aeruginosa using qRT‑PCR

The ability of the tested drugs to downregulate the expression 
of QS controlled genes; namely lasR, lasI, pqsA, fliC, pslA 
and exoS in the standard strain P. aeruginosa ATCC 27853 
was assessed by qRT-PCR. The total bacterial RNA extract 
was purified using TRIzol Reagent (15596026, Life Tech-
nologies, USA) according to the manufacturer instructions. 
In order to synthesize cDNA, QuantiTect Reverse Transcrip-
tion Kit was used and it was amplified by Thermo Scientific 
Maximas SYBR Green/Fluorescein qPCR Master Mix. The 
primers used are presented (Table 1). The relative expression 
level of the tested genes was normalized to the housekeeping 

% of biofilm inhibition = Abs of control at OD590 nm

− Abs of test at OD 590 nm∕

Abs of control at OD 590 nm × 100
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gene (rpoD) using the  2−ΔΔCt method (Livak and Schmittgen 
2001). The experiment was performed in triplicate.

Evaluation of the efficacy of the tested agents 
on pathogenicity in mice model

The effect of the tested agents on the pathogenicity of P. 
aeruginosa ATCC 27853 was assessed by using mice as 
an infection animal model. The experment was performed 
in compliance to the local guidelines for animal welfare 
approved by the committee of The Institutional Animal 
Care and Use, Zagazig University (ZU-IACUC), Egypt 
(Approval number: ZU-IACUC/3/F/114/2020). The bac-
terial burden in mice was detected as previously reported 
by Deshmukh et al. with some modifications (Deshmukh 
et al. 2009). Overnight cultures of P. aeruginosa in MHB 
with and without 1/10 MIC of the tested agents were pre-
pared. The cultures were centrifuged and the pellets were 
resuspended in buffered saline (PBS) to reach cell den-
sity equal to 2.5 ×  107 CFU/mL. Seven random groups of 
5–6 weeks old healthy albino mice (Mus musculus) with 
equal weights were included in the experiment. Each group 
consists of five mice was used for P. aeruginosa. In group 
1, untreated bacteria in sterile PBS (100 µL) were used for 
intraperitoneal injection of the mice. In group 2, 100 µL 
of bacteria treated with MET were injected in mice, group 
3 was injected with 100 µL of MET-NEs-treated bacte-
ria, while group 4, was injected with 100 µL of Ag-MET-
NEs-treated bacteria and group 5 was injected with 100 µL 
of AgNPs-treated bacteria. Two additional groups were 
used as negative controls; group 6, mice were intraperito-
neally injected with sterile PBS (100 µL), while in group 
7, mice were uninoculated. Normal feeding and aeration 
were given to all groups at room temperature. After 24 h 
postinfection, mice were anaesthetized, sacrificed, livers 

and kidneys were harvested, weighed and homogenized 
for enumeration of live bacterial cells as colony forming 
unit per gram (CFU/g).

Statistical analysis

The inhibitory activity of the tested agents against virulence 
factors was analyzed using GraphPad Prism 8 software (One 
Way ANOVA followed by Dunnett’s multiple comparison 
tests or Bonferroni’s multiple comparison test) at P < 0.05 
for signifcance.

Results

Synthesis and cheracterization of metformin nano 
emulsions and silver metformin nano emulsions

An important idiosyncratic property of nanoemulsion is 
its nanoscale particle size. The size distribution analysis 
of MET-NEs and Ag-MET-NEs was performed using DLS 
Zeta Sizer Technique. The illustration of the comparative 
particle size distribution of initially prepared AgNPs, MET-
NEs and Ag-MET-NEs is shown in Fig. 1a. Figure shows 
size distribution with 23, 40 and 65 nm, respectively. Moreo-
ver, Fig. 1b shows the particle size distribution (DLS) of Ag-
MET-NEs with 65 nm. Figure 2a shows the zeta potential at 
range from − 30 to 30 mV.

Figure 2b shows the TEM image of Ag-MET-NEs that 
confirms the circle shape of particles with average size 
of about 52 nm. The presence of metformin serving as cap-
ping and tween as stabilizing agents controls and prevents 
the aggregation and agglomeration of generated NPs.

Table 1  List of P. aeruginosa 
primers used in qRT-PCR

F forward, R reverse

Gene Sequence of primers References

lasI F/5′-CGC ACA TCT GGG AAC TCA -3′
R/5′-CGG CAC GGA TCA TCA TCT -3′

El-Mowafy et al. (2014)

lasR F/5′-CTG TGG ATG CTC AAG GAC TAC-3′
R/5′-AAC TGG TCT TGC CGA TGG -3′

El-Mowafy et al. (2014)

pqsA F/5′-GAC CGG CTG TAT TCG ATT C-3′
R/5′-GCT GAA CCA GGG AAA GAA C-3′

El-Mowafy et al. (2014)

fliC F/5′-GCT TCG ACA ACA CCA TCA AC-3′
R/5′-AGC ACC TGG TTC TTG GTC AG-3′

Roberts et al. (2015)

exoS F/5′-CCA TCA CTT CGG CGT CAC T-3′
R/5′-GAG AGC GAG GTC AGC AGA G-3′

El-Mowafy et al. (2014)

pslA F/5′-TCC CTA CCT CAG CAG CAA GC-3′
R/5′-TGT TGT AGC CGT AGC GTT TCTG-3′

El-Demerdash and Bakry (2020)

ropD F/5′-CGA ACT GCT TGC CGA CTT -3′
R/5′-GCG AGA GCC TCA AGG ATA C-3′

El-Mowafy et al. (2014)
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Minimum inhibitory concentrations (MICs) 
of the tested agents against P. aeruginosa

Minimum inhibitory concentrations (MICs) were determined 
using the broth microdilution method. There was no differ-
ence between the MICs of MET and MET-NEs against the 
tested bacteria. However, the MICs were markedly lowered 
upon using the combination of MET and AgNPs (Ag-MET-
NEs) compared with either MET, MET-NEs or AgNPs alone. 
Considering the increase in sensitivity to either MET or MET-
NEs, the MICs were decreased by 16 to 128 folds, while for 
AgNPs (16–64) folds among the tested isolates (Table 2). The 
activity of the tested agents against quorum sensing and viru-
lence of the tested isolates was evaluated at 1/10 MIC.

Phenotypic inhibition of virulence factors of P. 
aeruginosa by the tested agents

The tested agents inhibited biofilm formation

The biofilm inhibitory activities of the tested agents against 
P. aeruginosa were performed using crystal violet assay. 
The tested agents showed significant reduction in the biofilm 
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Fig. 1  A) Size distribution diagram of AgNPs, MET-NEs, Ag-MET-
NEs and B) DLS image of Ag-MET-NEs

Fig. 2  A) Zeta potential of Ag-MET-NEs and B) TEM image of Ag-
MET-NEs

Table 2  MIC values of the tested agents against P. aeruginosa 

MET metformin, MET-NEs metformin nano emulsion, Ag-MET-NEs 
silver metformin nano emulsion, AgNPs silver nanoparticles

Tested isolates MET 
(100 mg/
mL)

MET-NEs 
(100 mg/
mL)

Ag-MET-NEs 
(100–0.05 mg/
mL)

AgNPs 
(0.05 mg/
mL)

PA1 50 50 1.56 0.025
PA2 50 50 1.56 0.0125
PA3 50 50 1.56 0.025
PA4 50 25 1.56 0.025
PA5 50 50 1.56 0.025
PA10 50 50 1.56 0.025
PA ATCC 

27,853
50 50 0.39 0.0125
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formation compared to the control untreated isolates at 
(P < 0.05) as shown in (Fig. 3). A higher biofilm removal 
efficiency was found with MET-NEs (48.75–68.60%) and 
Ag-MET-NEs (22.09–54.84%) than MET (11.04–41.93%) 
and AgNPs (10.51–30.89%). The biofilm formation capacity 
of AgNPs was not significantly reduced in one isolate (PA5).

The tested agents decreased pyocyanin production

The effect of the tested agents on pyocyanin production of P. 
aeruginosa was estimated spectrophotometrically. The tested 
agents showed significant reduction in pyocyanin production 
compared to the untreated controls at (P < 0.05) as shown 
in (Fig. 4). MET-NEs showed the highest inhibitory activity 

against pyocyanin production (60.01–79.99%). However, 
the inhibitory activities of Ag-MET-NEs, MET and AgNPs 
were lower; 10.59–47.78%, 0.24–44.10% and 13.39–35.28%, 
respectively. No significant reduction in pyocyanin pig-
ment by MET was observed in two isolates (PA1 and PA2). 
AgNPs showed significant increase in pyocyanin production 
in PA3, PA5 as well as the standard strain.

The tested agents reduced swarming motility

The presence of sub-MICs concentration (1/10 MIC) of the 
tested agents significantly affected the swarming motility of 
all treated bacteria as compared to the untreated controls at 
(P < 0.05) as shown in (Fig. 5). MET-NEs showed maximum 

Fig. 3  Inhibition of biofilm 
formation in P. aeruginosa 
by sub-MICs of the tested 
agents. A) Isolates PA1, PA2, 
and PA3, B) Isolates PA4, 
PA5, and PA27853 standard 
strain. Significant reduction 
in the biofilm formation was 
detected with 1/10 MIC of the 
tested agents against the tested 
isolates as compared to controls. 
Optical density was measured 
at 590 nm. The data shown 
represent the means ± standard 
errors. *Significant P < 0.05, ns 
non-significant
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inhibition of swarming motility (88.87–94.16%) followed by 
MET (58.59–92.62%). Whereas, the inhibitory activities of 
Ag-MET-NEs (49.77–56.12%) and AgNPs (43.98–83.82%) 
were more or less similar.

The tested agents decreased total proteases

The ability of the tested agents to inhibit proteolytic 
activity was measured using the modified skimmed milk 

broth method. It was found that the inhibitory activ-
ity of MET-NEs (77.48–99.15%) was higher than MET 
(35.48–66.32%). Also, Ag-MET-NEs (21.76–98.52%) 
exhibited higher proteolytic activity than AgNPs 
(17.90–48.88%). No significant inhibition of protease 
production was observed with either MET or AgNPs in 
some tested bacteria. However, AgNPs increased protease 
production in standard strain (49.19%) as compared to 
controls (Fig. 6).

Fig. 4  Effect of sub-MICs of 
the tested agents on pyocyanin 
production in P. aeruginosa. 
A) Isolates PA1, PA2, and 
PA3, B) Isolates PA4, PA5, 
and PA27853 standard strain, 
C) A representative image 
showing the effect of tested 
agents on pyocyanin. Pyocya-
nin pigment was measured at 
691 nm, significant decline 
in production of pyocyanin 
pigment was observed in 
treated and untreated cultures. 
The data shown represent 
the means ± standard errors. 
*Significant P < 0.05, ns non-
significant
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The tested agent’s downregulated the expression 
of QS‑regulatory genes using qRT‑PCR

The influence of the tested agents on the relative expres-
sion of the genes that regulates the virulence factors’ pro-
duction in the standard strain P. aeruginosa ATCC 27853 
strain was assessed using qRT-PCR and the results were 
analyzed via the  2−ΔΔCt method. The expression levels of 
lasR, lasI, pqsA, fliC, exoS and pslA were significantly 
decreased after treatment with sub MICs of the tested 

agents compared to controls (Fig. 7). The expression 
level of lasI gene was reduced significantly; 37.58% with 
MET-NEs, up to 50% with either MET or AgNPs, while 
the highest percentage reduction was 65.45% with Ag-
MET-NEs. With regards to lasR gene expression, the 
percentage reduction of MET was somehow compara-
ble to that of AgNPs (34.62% and 40.38%), respectively, 
Ag-MET-NEs exhibited higher reduction (73.08%) than 
MET-NEs (56.62%). In addition, the expression level 
of pqsA gene was also significantly reduced; MET-NEs 

Fig. 5  Inhibition of swarming 
motility in P. aeruginosa by 
sub-MICs of the tested agents. 
A) Isolates PA1, PA2, and 
PA3, B) Isolates PA4, PA5, and 
PA27853 standard strain, C) A 
representative image showing 
the effect of tested agents on 
swarming motility. Significant 
reduction in swarming motility 
of all tested bacteria with 1/10 
MIC as compared to controls. 
The data shown represent the 
means ± standard errors. *Sig-
nificant P < 0.05
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and Ag-MET-NEs showed higher reduction (41.56% 
and 55.41%), respectively than either MET or AgNPs 
that exhibited lower activities approximatey (27%) each. 
Moreover, Ag-MET-NEs showed the highest reduction 
in the expression of fliC gene (49.63%), however, MET-
NEs (28.89%) and AgNPs (14.07%) had lower reduction. 
No significant reduction was observed after MET treat-
ment. Furthermore, significant reduction in exoS gene 
expression was observed with MET, AgNPs and MET-
NEs (41.67%, 43.75%, and 54.17%, respectively) with 
the highest reduction found with Ag-MET-NEs (73.84%). 
Concerning the relative expression of pslA, it was sig-
nificantly diminished with MET-NEs and Ag-MET-NEs 
nearly (40%) each. However, no significant reduction was 
found with MET and AgNPs.

The tested agents decreased the bacterial load 
in liver and kidney tissues

To further study the anti-virulence activities of the tested 
agents, the bacterial load in livers and kidenys were esti-
mated in the presence and absence of sub MICs of the tested 
agents using mice as an infection model. The live bacterial 
counts in the liver and kidney tissues of the mice treated 
groups were significantly lower than those of the untreated 
mice group (P < 0.05). The results were expressed as log 
CFU reduction in viable counts per gram of organ tissue. It 
was found that as compared to MET-NEs that completely 
eradicated bacteria in liver tissues, the mean log CFU reduc-
tions of viable counts decreased from 4.625 in untreated 
group to 3.090 and 3.895 in MET and AgNPs treated groups, 

Fig. 6  Effect of 1/10 MICs 
of the tested agents on levels 
of protease. A) Isolates PA1, 
PA2, and PA3, B) Isolates PA4, 
PA5, and PA27853 standard 
strain.  OD600 was measured 
after overnight culturing of 
bacteria in MHB with and 
without 1/10 MICs of the tested 
agents followed by incubation 
of supernatants with skim milk 
for 1 h at 37 °C. The data shown 
represent the means ± standard 
errors. *Significant P < 0.05, ns 
non-significant
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Fig. 7  RT-qPCR showed reduced expression of A) lasI, B) lasR, 
C) pqsA, D) fliC, E) exoS and F) pslA with the tested agents in 
sub-MICs compared to untreated controls. The data shown are the 

means ± standard errors of three biological experiments with three 
technical replicates each. *Significant P < 0.05, ns non-significant
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respectively, while no significant reduction of the bacterial 
burden was observed with Ag-MET-NEs treated group 
(4.685). Similarly, MET-NEs successfully removed all live 
bacteria from kidney tissues, surpassing MET, Ag-MET-
NEs and AgNPs with mean log CFU reductions from 6.120 
in untreated group to 4.255, 5.265 and 3.080, respectively 
(Fig. 8).

Discussion

Antibiotic resistance has become a major health problem 
(Cegelski et al. 2008; Defoirdt 2018). Additionally, there has 
been a lack of novel antibiotic discoveries in the past decades 
(Ventola 2015). Antibiotic-resistant pathogens cause serious 
infections, this is considered as a major reason of morbidity 
and mortality; therefore new policies are required to tackle 
this problem such as drug repurosing (Prestinaci et al. 2015; 
Rangel-Vega et al. 2015; Thangamani et al. 2015).

Pseudomonas aeruginosa is a member of ESKAPE path-
ogens that include Pseudomonas aeruginosa, Klebsiella 

pneumoniae, Staphylococcus aureus, Enterococcus faecium, 
Enterobacter spp., and Acinetobacter baumannii, that are 
the leading cause of hospital acquired infections worldwide 
and possess potential drug resistance mechanisms (Santajit 
and Indrawattana 2016). Bacteria possess several virulence 
factors that enable them to infect their hosts and are quorum 
sensing (QS) regulated (Grandclement et al. 2016; LaSarre 
and Federle 2013). As a result, QS is considered as an attrac-
tive target for anti-virulence treatment.

Nanoparticles are widely used in different applications 
among which is treatment of bacterial infections and bio-
films such as silver nanoparticles (Murphy et al. 2015). Sil-
ver nanoparticles (AgNPs) have superior bactericidal activ-
ity over  Ag+ against both Gram negative and Gram positive 
bacteria (Kora and Arunachalam 2011; Kvítek et al. 2008; 
Martínez-Castañon et al. 2008). The likelihood of resistance 
to Ag is assumed to be low. Therefore, silver (Ag)-based 
compounds have seen a revival (Feng et al. 2000). Moreo-
ver, many nanomaterials were found to have anti-virulence 
activity against P. aeruginosa (Pham et al. 2019; Shah et al. 
2019; Singh et al. 2015).

In the present study, the quorum sensing and virulence 
inhibitory activities of the tested agents were investigated 
against P. aeruginosa and using 1/10 MICs to avoid effect 
on bacterial growth and ensure that inhibitory effect on the 
tested bacteria is due to anti-virulence activity rather than 
killing them.

In the current study, the size of Ag-MET-NEs measured 
in DLS technique is larger than that of AgNPs and MET-
NEs. This may be attributed to the hydrophilic properties 
of Ag-MET-NEs and surrounding molecules. This can be 
explained in the light of the fact that the particle size is 
not related only to the metallic NPs’ core, as all adsorbed 
materials on the surface of NPs such as stabilizers also have 
an impact on NPs’ particle size. Moreover, the particle size 
may be affected by the thickness of the electrical bilayer that 
moves along the nanoparticles (El-Batal et al. 2020).

The best approach of testing the nanoemulsion stability 
can be accomplished by validation of the particle size in 
addition to zeta potential along the time. Slight variations 
in these properties can be detected using an applicable tech-
nique, such as DLS.

On testing the Ag-MET-NEs, they were found to be sta-
ble. This can be obtained when the values of zeta poten-
tial are high (above − 30 mV and less than 30 mV). This 
ensures that high energy barriers were created to prevent 
coalescence of the dispersed droplets (Zhao et al. 2010). Our 
results showed no phase separation or other signs that denote 
samples′ instability. It is noteworthy that even the particle 
size changes found in the initially prepared or stored sam-
ples were of no significance. Moreover, the stability of the 
particles of nanoemulsions that are sufficiently small can be 
correlated with the zeta potential. As previously mentioned, 

Fig. 8  P. aeruginosa ATCC 27853 CFUs recovered from mice tis-
sues a for livers and b for kidneys) 24 h post-infection. Bars repre-
sent mean log CFUs per gram of organ tissue. The bacterial load was 
calculated and expressed as means ± standard errors. *Significant 
P < 0.05, ns non-significant
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high zeta potential of nanoparticles confers their stability, 
while low zeta potential denotes that the emulsions will 
break out and flocculate because of the higher attraction 
forces than the repulsive ones of the emulsion (Jadhav et al. 
2015).

The DLS size ranges of Ag-MET-NEs were higher than 
measurements by TEM. This can be explained by the fact 
that DLS measurments are confined or restricted to the NPs′ 
hydrodynamic diameters. The larger size of NPs measured 
may be due to the encasement of amphiphilic nanoparticles 
within water molecules. TEM measures the actual diam-
eters of the nanoparticles (Bendary et al. 2021; El-Batal 
et al. 2021).

In the current study, it was found that MET-NEs showed 
similar antibacterial activity to MET against P. aeruginosa. 
However, the combination of MET and AgNPs (Ag-MET-
NEs) exhibited high synergistic activity that than that of 
MET-NEs or AgNPs alone (Table 2). Similar result was 
observed by Li et al. (2020), who compared between the 
antibacterial activity of biguanide-based polymetformin 
(PMET) and its nanoform FTP NPs which made from 
F-127 surfactant, tannic acid and PMET and found that 
both showed similar activity against the tested bacteria. In 
addition, Polyhexamethylene biguanide (PHMB), a cationic 
biocide functionalized silver nanoparticles were tested for 
their antimicrobial activity against E. coli, it was found that 
PHMB enhanced the antimicrobial properties of AgNPs of 
about 100 times compared to the previous reports of AgNPs 
(Ashraf et al. 2012). Another study done by Yi et al. reported 
better bactericidal effect of AgNPs-PHMB as compared to 
AgNPs and PHMB against S. aureus (Yi et al. 2019).

The combined action of the O/W MET-AgNEs, we rec-
ommend that, the silver nanoparticles entered into the oily 
phase and coated by metformin moiety through physical 
interaction  improves release of drug into the target site, 
and the nano emulsion improved the antibacterial and anti-
biofilm activities against different organisms (Prakash et al. 
2020) and inactivated the microorganisms more than the 
standard (Pathania et al. 2018). The nano emulsion systems 
promote their interaction with the microbial cell membranes 
by four main routes (Mosallam et al. 2021b); (1) the aug-
mented extent and transport through the outer plasma mem-
brane that increases the interaction with the cytoplasmic 
membranes; (2) the fusion of the emulsifier droplets with the 
phospholipid bilayer of the cell membrane that likely pro-
motes the targeted release of the essential oils at the required 
sites; (3) the sustained release over time of the essential 
oils from the nano emulsion droplets, driven by essential 
oils partition between the oil droplets and also the aqueous 
phase, that prolongs the activity of essential oils; and (4) the 
electrostatic interaction of charged nano emulsions droplets 
with charged microbial cell walls that increases the concen-
tration of essential oils at the positioning of action.

Pseudomonas aeruginosa has the capability to form 
biofilm that confers resistance to antibiotics by up 
to one thousand fold more than planktonic cells which 
has a major role in bacterial resistance and pathogenesis 
(Loo et al. 2014; Mah and O’Toole 2001). The incapabil-
ity of the antimicrobials to penetrate the biofilm matrix 
(one of the main causes of bacterial resistance) could be 
overcome via using nanostructures showing anti-biofilm 
activity (Ansari et al. 2014; Shah et al. 2013). In the pre-
sent study, it was found that MET-NEs or Ag-MET-NEs 
demonstrated synergistic activities as they were more 
effective than either MET or AgNPs alone. Abbas et al. 
(2017) reported higher percentage reduction of PAO1 
biofilm by metformin (67.9%). Metformin also enhanced 
gold nanoparticles′ antibacterial activities and biofilm 
eradication (Rasko and Sperandio 2010). A study done by 
Li et al. (2020) reported that FTP NPs surpassed PMET 
with ∼ 100-fold (∼  2log10) greater reduction of MRSA 
USA300 biofilm bacterial cell counts. In addition, several 
studies reported antibacterial and anti-biofilm activities 
of Polyhexamethlene biguanide (PHMB) against a variety 
of bacterial species (Kamaruzzaman et al. 2017; Lefebvre 
et al. 2018). Moreover, the studies on another biguanide 
compound chlorhexidine showed contradictory results. 
Abdallah and Abakar (2017) reported that chlorhexidine 
significantly reduced S. aureus biofilm depending on the 
contact time and concentration used, while in another 
study, chlorhexidine showed no bactericidal effect on S. 
aureus biofilm (Vestby and Nesse 2015). Furthermore, 
biosynthesized AgNPs reduced the P. aeruginosa PAO1 
biofilm by < 70% as reported (Hussain et al. 2019; Qais 
et al. 2020, 2021). On the other hand, Yang and Alvarez 
(2015) reported that exposure of P. aeruginosa PAO1 to 
non-lethal polyvinylpyrrolidone-coated silver nanopar-
ticles concentration led to increased biofilm formation, 
enhanced extracellular polymer substances, lipopolysac-
charide biosynthesis, and upregulation of antibiotic resist-
ance genes.

The redox active pyocyanin pigment enables P. aeruginosa 
to penetrate host cell membranes and interfere with host cel-
lular functions leading to cellular damage (Hall et al. 2016). 
In the current study, the lowest inhibition of pyocyanin pig-
ment was found with MET. However, the activity was greatly 
enhanced using their nanoform. No significant difference 
between Ag-MET-NEs and AgNPs was observed. This can 
be attributed to some kind of chemical interaction between 
MET and AgNPs in the combination (Ag-MET-NEs). Sur-
prisingly, AgNPs increased pyocyanin production in some 
tested bacteria. Metformin showed higher reduction in pyo-
cyanin pigment in a study reported by Abbas et al. (2017). 
Several studies showed much higher inhibition by biosynthe-
sized AgNPs than the current study such as Qais et al. (2020, 
2021)However, Ellis et al. (2018) reported that P. aeruginosa 
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can resist AgNPs by producing phenazine pigments (pyocya-
nin, pyoverdine, and pyochelin). Pyocyanin can reduce  Ag+ 
to  Ag0, thus it protects the bacteria from the damage caused 
by silver ions emitted from nanoparticles. Similarly, this result 
was also in good agreement with Muller and Merrett (2014).

Quorum sensing-controlled swarming motility is essential 
for P. aeruginosa pathogenesis as well as biofilm formation 
(Pamp and Tolker-Nielsen 2007). In the current study, MET-
NEs was the most potent inhibitor of swarming motility as 
well as biofilm formation, suggesting a role of swarming 
motility in the biofilm interruption, which is in agreement 
with Shah et  al. (2019). MET-NEs successfully blocked 
swarming motility more than MET, whereas Ag-MET-NEs 
and AgNPs similarly impaired bacterial swarming. Hussain 
et al. (2019) reported higher inhibition of P. aeruginosa PAO1 
swarming motility using biosynthesized silver nanoparticle.

Proteases degrade immunoglobulins and fibrin as well as 
they disrupt epithelial tight junctions (Kipnis et al. 2006). 
In the current study, the inhibition of proteolytic activity 
using MET-NEs surpassed that of MET alone. Similarly, the 
inhibitory activity of Ag-MET-NEs was more than AgNPs 
alone. In a study reported by Abbas et al. (2017), metformin 
was capable of reducing the proteolytic activity, which was 
consistent with the current study. In recent studies done 
by Qais et al. (2020, 2021), biosynthesized AgNPs caused 
higher percentage reduction of P. aeruginosa PAO1 exopro-
tease activity than the present study.

Pseudomonas aeruginosa possesses a unipolar flagellum, 
which is composed of a polymer of flagellin protein subunits, 
encoded by the fliC gene. It is responsible for mobility and 
chemotaxis, in addition to helping in the attachment of the 
bacterium to host cells and non-living surfaces, which aug-
ments the ability to colonize and invade during the earlier 
stages of infections (Haiko and Westerlund-Wikstrom 2013). 
P. aeruginosa also produces exoS, a major cytotoxin impli-
cated in stages of colonization, invasion and dissemination 
during infection (Bradbury et al. 2010). The three exopolysac-
charides namely; Pel, Psl, and alginate have important roles in 
surface attachment, biofilm formation and stability. The pslA 
gene encodes psl (Billings et al. 2013; Ghafoor et al. 2011).

In the current study, the genes tested are the quorum sens-
ing encoding genes. quorum sensing is the mechanism of 
cell-to-cell communication. Each cell secretes a molecule 
of autoinducers, so the concentration of the autoinducers is 
proportional to the cell density. When, the concentration of 
autoinducers reaches a certain threshold value, this reflects 
that the cell density or population reaches the quorum. At 
this point, the virulence genes are activated. The decrease 
in the expression of quorum sensing genes means that the 
tested agents downregulated these genes, and as a result, 
the production of virulence factors will be reduced. This is 
a confirmation of the results of the phenotypic investigation.

The expression levels of QS regulating genes lasR, lasI, 
pqsA, fliC, exoS and pslA were assessed by qRT-PCR. It was 
found that the tested inhibitors significantly downregulated 
the expression levels of such QS regulatory genes (Fig. 7). 
Ag-MET-NEs was the most potent inhibitor against QS reg-
ulatory genes followed by MET-NEs, and both were more 
effective than either the bulk MET or AgNPs, which had 
relatively similar QS inhibitory activity. This confirms that 
the quorum quenching activity of the nanoform surpassed 
that of its bulk one and also suggests some kind of syner-
gism between MET and AgNPs in the combination (Ag-
MET-NEs). Hegazy et al. (2020) reported that the expres-
sion levels of rhlI/R, lasI/R and pqsA/R was decreased using 
sub-MIC of metformin. Silver nanoparticles downregulated 
the expression of rhlI/R and lasI/R through inhibition of rhlR 
and lasR (Singh et al. 2015). Also, Mahnaie and Mahmoudi 
(2020) discovered that glutathione-stabilized silver nano-
particles exhibited antibiofilm activity in P. aeruginosa via 
lowering the lasI/R expression. In addition, Abdelraheem and 
Mohamed (2021) found that, except for the toxA gene, all 
biofilm and virulence genes of P. aeruginosa clinical isolates 
were significantly downregulated after ZnO NPs treatment. 
On the other hands, Costabile et al. (2015) reported that the 
QS inhibitory activity of the anthelmintic drug niclosamide 
(NCL) formulated as nanosuspensions (T80_10 or T80_10 
DP) was equivalent to that of the unformulated NCL predis-
solved in DMSO. However, there are other systems required 
for P. aeruginosa virulence such as two compartment system 
(Francis et al. 2017).

For the  in vivo study, it was found that drugs with anti-
virulence activity reduced the colonization rates of invading 
pathogens as it aided the immune system in eradicating the 
infection. Regarding the log CFU reduction in viable counts, 
mice group treated with MET-NEs completely eliminated the 
living bacteria from livers and kidneys of sacrificed mice, 
being the most potent among the tested inhibitors; its bulk 
form (MET), AgNPs and even Ag-MET-NEs combination 
which may require further research. In addition, the formu-
lation of metformin in nanoform has much lower accumula-
tion than its bulk form or metal nanoparticles, thus reducing 
cytoxicity that occurs after exposure. Similarly, NCL for-
mulated as nanosuspensions had lower toxicity in a rat lung 
infection model involving P. aeruginosa (Costabile et al. 
2015).

In the current study, on the contrary to MET that caused 
approximately 30% clearance of P. aeruginosa ATCC 27853 
infection from collected mice tissues, Hegazy et al. (2020), 
reported that metformin failed to protect mice from P. aerug-
inosa PAO1 (ATCC BAA47B1). Escárcega-González et al. 
(2018) reported the capability of AgNPs to reduce CFUs in 
a murine skin infection model in rats caused by a clinical 
strain of P. aeruginosa as compared to the untreated group.
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Conclusion

In conclusion, targeting bacterial virulence and QS offers an 
alternative strategy because it curbs the bacterial ability to 
harm the host rather than affecting their growth, and reduces 
the emergence of MDR pseudomonal infections. This benefit 
can be maximized via repurposing of FDA approved medi-
cations. Metformin is FDA approved antidiabetic drug with 
QS inhibitory activity against MDR P. aeruginosa. In the 
present study, it was found that the formulation of metformin 
in nanoform was promising because it exhibited distinct 
physical, chemical and bioligical properties as compared to 
its bulk. In addition, the combination between MET and 
AgNPs showed synergistic antibacterial effect as well as it 
greatly inhibited the QS regulatory genes of P. aeruginosa.
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