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Background: Cancer patients often display dysfunctional antitumor T-cell responses.

Because noteworthy benefits of immune checkpoint pathway blockade, such as

programmed cell death protein 1 (PD-1) inhibitors, have been achieved in multiple

advanced cancers, the next critical question is which mono-blockade or combinatorial

blockade regimens may reinvigorate antitumor T-cell immunity in those cancer patients

while limiting immune-related adverse effects.

Method: This study recruited, in total, 172 primary cancer patients (131 were

blood-tumor-matched patients) who were treatment-naïve prior to the surgeries or

biopsies covering the eight most prevalent types of cancer. With access to fresh

surgical samples, this study simultaneously investigated the ex vivo expression level

of eight known immune checkpoint receptors [PD-1, cytotoxic T-lymphocyte antigen-4

[CTLA-4], T-cell immunoglobulin and mucin-domain containing-3 [Tim-3], 2B4, killer cell

lectin like receptor G1 [KLRG-1], TIGIT, B- and T-lymphocyte attenuator [BTLA], and

CD160] on tumor-infiltrating T cells (TILs) and paired circulating T cells in blood from a

131-patient cohort.

Results: We found increased an expression of PD-1 and Tim-3 but a decreased

expression of BTLA on TILs when compared with peripheral blood from multiple types

of cancer. Moreover, our co-expression analysis of key immune checkpoint receptors

delineates “shared” subsets as PD-1+Tim-3+TIGIT+2B4+KLRG-1–CTLA-4– and
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PD-1+TIGIT+2B4+Tim-3–KLRG-1–CTLA-4– from bulk CD8 TILs.

Furthermore, we found that a higher frequency of advanced differentiation

stage T cells (CD27–CCR7–CD45RA–) among the “shared” subset

(PD-1+Tim-3+TIGIT+2B4+KLRG-1–CTLA-4–) in bulk CD8 TILs was associated

with poorly differentiated cancer type in cervical cancer patients.

Conclusions: To our knowledge, our study is the first comprehensive analysis of key

immune checkpoint receptors on T cells in treatment-naïve, primary cancer patients from

the eight most prevalent types of cancer. These findings might provide useful information

for future design of mono-blockade/combinatorial blockades and/or genetically modified

T-cell immunotherapy.

Keywords: T cells, inhibitory receptor, tumor-infiltrating lymphocytes, tumor microenvironment, combinatorial

checkpoint blockade

INTRODUCTION

The combinations of co-stimulatory and co-inhibitory receptors
on T cells enable effective T-cell responses to viruses and tumors
while also limiting immunopathology and autoimmunity (1, 2).
However, this homeostasis can be disrupted by persistent antigen
stimulation and immunosuppressive mediators released in the
tumormicroenvironment, leading T cells to a dysfunctional state,
known as T-cell exhaustion, which fails to control viruses, or
cancer (3–5). Intensive studies of dysfunctional T cells in cancers
and in the context of chronic virus infection—for instance, with
hepatitis B virus (HBV), hepatitis C virus (HCV), and human
immunodeficiency virus (HIV)—suggested that exhausted T
cells are characterized by an elevated expression of single or
multiple inhibitory receptors (IRs) along with dysfunctional
production of cytokines and activation of apoptotic signaling
(6–10). However, the fundamental mechanism by which T
cells become dysfunctional in the tumor microenvironment
remains unclear.

In 2011, ipilimumab became the first approved blockade agent
targeting the T-cell inhibitory receptor “cytotoxic T-lymphocyte
antigen-4” (CTLA-4); advanced melanoma patients treated with
ipilimumab demonstrated improved tumor control and survival
(11). More recently, checkpoint blockade immunotherapy

Abbreviations: 2B4, CD244; ALK, Anaplastic lymphoma kinase; BRC, Biomedical

Research Center; BSA, Bovine serum albumin; BTLA, B- and T-lymphocyte

attenuator; CAMS, Chinese Academy of Medical Sciences; CCR7, C-C

chemokine receptor type 7; CTLA-4, Cytotoxic T-lymphocyte antigen-4; EDTA,

Ethylenediaminetetraacetic acid; EGFR, Epithelial growth factor receptor; FACS,

Fluorescence-activated cell sorting; FDA, Federal Food and Drug Administration;

FMO, Fluorescence minus one; HBV, Hepatitis B virus; HCC, Hepatocellular

carcinoma; HCV, Hepatitis C virus; HIV, Human immunodeficiency virus;

IR, Inhibitory receptor; KLRG-1, Killer cell lectin like receptor G1; NDM,

Nuffield Department of Medicine; NIAID, National Institute of Allergy and

Infectious Diseases; NIHR, National Institute for Health Research; NSCLC, Non-

small-cell lung cancer; ORB, Oxford Radcliffe Biobank; ORR, Overall response

rate; OxTREC, Oxford Tropical Research Ethics Committee; PBMC, Peripheral

blood mononuclear cell; PBS, Phosphate-buffered saline; PD-1, Programmed

cell death protein 1; SPICE, Simplified Presentation of Incredibly Complex

Evaluations; TAA, Tumor-associated antigen; TCR, T-cell receptor; TIGIT, T-cell

immunoglobulin and ITIM; TILs, Tumor-infiltrating lymphocytes; Tim-3, T-cell

immunoglobulin and mucin-domain containing-3.

targeting “programmed cell death protein 1” (PD-1) has shown
promise in treating multiple solid tumors, including metastatic
melanoma, non-small-cell lung cancer (NSCLC), kidney cancer,
urothelial cancer, head and neck cancer, and liver cancer (12–
16). Consequently, the Federal Food and Drug Administration
(FDA) in the USA accelerated the approval of clinical trials
of PD-1 blockade in multiple cancers to benefit different types
of advanced-cancer patients (15, 17, 18). Furthermore, PD-L1,
as one of the ligands of PD-1, is capable of binding CD80
on activated T cells mediating inhibitory signaling (19, 20).
Therefore, blocking PD-L1 with or without the co-blockade of
PD-1 is a promising approach to restore the dysfunctional T
cells in cancers (2). In fact, PD-L1 blockade has shown durable
responses to induce tumor regression in patients with multiple
cancers, with an overall response rate (ORR) between 6 and
17% (21).

However, PD-1 blocking agents such as pembrolizumab
or nivolumab do not demonstrate antitumor effects in all
cancer patients. For instance, pembrolizumab achieved a 19.4%
ORR in treating advanced NSCLC, just over 20% ORR in
treating advanced urothelial cancer, 22% ORR in treating
advanced gastric cancer, and 18.5% ORR in treating advanced
triple negative breast cancer (13, 14, 22–24). Additionally,
adverse effects have been widely observed in patients treated
with CTLA-4 or PD-1 blocking agents (25–27). In a PD-1
advanced melanoma clinical trial, drug-related adverse effects
were reported in 79% of patients (107/135), and 13% of
patients (17/135) demonstrated grade 3 or 4 drug-related
adverse effects (28). A recent systematic meta-analysis revealed
increased rates of hypothyroidism (odds ratio = 7.56, 95%
confidence interval 4.53–12.61), pneumonitis (odds ratio =

5.37, 95% confidence interval 2.73–10.56), colitis (odds ratio =

2.88, 95% confidence interval 1.3–6.37), and hypophysitis (odds
ratio = 3.38, 95% confidence interval 1.02–11.08) in cancer
patients receiving anti-PD-1 treatments compared with standard
treatments (29).

The discovery of additional immunoinhibitory receptors

on T cells creates more options for mono-blockades or

combinatorial blockades. T-cell immunoglobulin and mucin-

domain containing-3 (Tim-3) was first discovered in 2002
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as an IR on T cells (30). Galectin-9, phosphatidylserine
(PtdSer), high mobility group protein B1 (HMGB1), and
carcinoembryonic antigen cell adhesion molecule 1 (CEASAM-
1) are current known ligands that can interact with Tim-3,
inhibiting effector T-cell function (31–36). “Killer cell lectin
like receptor G1” (KLRG-1) was known as an IR and a T-cell
differentiation marker (37–39). As an IR, KLRG-1 can bind
with e-cadherin, inhibiting T-cell function via Akt signaling
(40, 41). KLRG-1 blockade is able to restore the phosphorylation
of Akt signaling resulting in the enhancement of proliferative
activity of dysfunctional CD8T cells (42, 43). Both B- and
T-lymphocyte attenuator (BTLA) and CD160 are able to
impair antitumor T-cell responses by binding with herpes
virus entry mediator (HVEM) (44–46). CD244 (2B4) can bind
with CD48 and has dual roles as a stimulatory receptor and
an IR (47, 48). The inhibitory function induced through T-
cell immunoglobulin and ITIM (TIGIT) was quite similar to
that of CTLA-4. The binding between CD226 and CD155
could deliver stimulatory signaling in T cells and NK cells
(49). However, TIGIT competitively binds with CD155 with
much higher affinity than with CD226, delivering inhibitory
signaling to T cells and NK cells (50). Given the breadth of
potential immunoinhibitory pathways available in the tumor
microenvironment in addition to PD-1 and CTLA-4, the
next critical questions to tackle include the following: (1)
Which immunoinhibitory pathway blockade regimens should be
combined to enhance and sustain antitumor responses and thus
improve cancer patient outcomes? (2) Which inhibitory pathway
blockade might elicit severe autoimmunity and thus should be
carefully managed?

In this study, we evaluated the potential risks, benefits, and
suitability of potential blockade immunotherapy for eight of
the most prevalent solid tumors. Considering the potential
alteration that radiotherapy or chemotherapy may bring to the
expression of IRs on tumor-infiltrating T cells (TILs), all the
patients recruited in our cohort were treatment-naïve, primary
cancer individuals ranging from the eight most prevalent cancer
types (51). This valuable cohort allows us to comprehensively
evaluate the overall expression of key IRs on T cells in
patients with multiple types of cancer, aiming to provide
useful information for both clinicians who practice blockade
immunotherapy on advanced-cancer patients and scientists who
devote themselves to characterizing the mechanisms of a specific
inhibitory pathway on T cells. We investigated the surface
expression of eight IRs on T cells in peripheral blood and
tumor-infiltrating lymphocytes (TILs). We propose that systemic
infusion of blocking agents that target IRs expressed highly in
peripheral blood, such as BTLA, might trigger autoimmunity
in patients. We observed co-expression of PD-1, Tim-3, and
TIGIT on cytotoxic (CD8) TILs in multiple types of cancer,
which indicates the phenotype of CD8 TILs for future in vitro
analysis of dysfunctional T cells. Furthermore, we found that a
high frequency of Tim-3+ CD8 TILs tended to associate with
poorly differentiated cervical cancer. These data suggest that
cancer differentiation type, a well-established routine clinical test,
represents a potential biomarker for the suitability of Tim-3
blockade immunotherapy.

MATERIALS AND METHODS

Study Subjects and Ethical Statement
Fresh surgical samples with paired peripheral blood of primary
cancer patients were collected in Beijing You’an Hospital, Capital
Medical University, and Xinjiang Tumor Hospital, Xinjiang
Medical University. Written informed consent was obtained
from all cancer patients. All the patients were diagnosed and
confirmed as primary cancer individuals who have not received
any anticancer treatments beforehand. Fresh tumor samples
were collected from either surgeries or biopsies. All methods
were performed in accordance with the relevant guidelines and
regulations, with ethical approval obtained from the Oxford
Radcliffe Biobank (ORB) research tissue bank ethics committee
(OCHRE reference 17/A006; REC reference 09/H0606/5+5),
Oxford Tropical Research Ethics Committee (OxTREC reference
587-16), and the First Affiliated Hospital of Xinjiang Medical
University Ethics Committee and Beijing You’an Hospital
Ethics Committee.

Isolation of Lymphocytes From Blood and
Tumor Tissues
Peripheral blood mononuclear cells (PBMCs) were isolated
from fresh heparinized blood by Ficoll-Hypaque density
gradient centrifugation. Surgical tumor tissues were immediately
transferred to tumor dissociation solution-containing (Miltenyi
Biotec, catalog no. 130-095-929) C tube (Miltenyi Biotec, catalog
no. 130-093-237). The tissues were then dissected into 1- to 3-
mmpieces by sterile surgical scissor (Ethicon, USA). C tubes were
placed on Octo-gentle dissociator (Miltenyi Biotec, catalog no.
130-095-937). Human tumor program-1 was performed for the
dissociation followed by 20-min incubation on the gentle-mix
rotator (Miltenyi Biotec, catalog no. 130-090-753) at 37◦C, 5%
CO2 incubator. A 70-nm cell strainer (Sigma-Aldrich, Dorset,
UK) was then used to purify the intra-tumor or intra-tissue
lymphocytes. Further, cells were washed twice in R10 and
counted by trypan blue staining.

Multichromatic Flow Cytometry Staining
From 2012 to 2014, eight-color panels were designed for an
ex vivo phenotypic analysis. From 2014 onwards, with an
upgraded flow cytometer, a 14-color panel was designed for
the surface analysis of multiple IRs on T cells, which allowed
us to investigate the co-expression of multiple IRs on TILs.
Reviewing the results from the study in the first 2 years, when
we upgraded the panel from 2014 onwards, we decided to
exclude BTLA and CD160 from the updated panel owing to
their low expressions on TILs and to add TIGIT and three
T-cell differentiation markers (CD27, CCR7, and CD45RA) to
the 14-color panel. Subsequently, we conducted a co-expression
analysis in patients with multiple types of cancer. The details
of panels and antibodies are listed in Supplementary Table 2.
Cells derived from paired tumor and PBMC sample were
each initially stained with LIVE/DEAD R© Fixable Aqua Dead
Cell Stain Kit (Thermo Fisher Scientific) for 20min before
surface staining with conjugated antibodies in fluorescence-
activated cell sorting (FACS) washing buffer [phosphate-buffered
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saline [PBS] with 0.5M of ethylenediaminetetraacetic acid
[EDTA] and 7.5% bovine serum albumin [BSA] solution]
for another 20min and fixed with 1 × CellFix solution
(BD Biosciences). Commercial conjugated antibodies used
include CD3-Alexa Fluor 700 (344822, BioLegend), CD4-
FITC (345768, BD Biosciences), CD8-APC-Cy7 (560179, BD
Biosciences), CD160-PE-cy7 (341212, BioLegend), BTLA-APC
(344510, BioLegend), PD-1-BV650 (564104, BD Biosciences),
Tim3-BV421 (345008, BioLegend), TIGIT-PE (12-9500-42,
eBioscience), 2B4-APC (329512, BioLegend), KLRG-1-BV605
(138419, BioLegend), CTLA-4-PE-Cy7 (349914, BioLegend),
CD27-PERCP5.5 (356407, BioLegend), CCR7-BV711 (353227,
BioLegend), and CD45RA-BV785 (304139, BioLegend). The
antibody cocktails were tested in advance with or without
the use of tumor dissociation solution to ensure proper
function. Fluorescence minus one (FMO) controls were applied
accordingly in order to properly position gates. In order to ensure
the quality of FACS data, we ruled out any tumor samples in
which the viable CD3+ TILs were lower than 10,000 cells. The
full gating strategy of two 8-color FACS panels and 14-color FACS
panel is shown in Supplementary Figures 4–8. The exemplary
gates of IRs on T cells are shown in Figures 2A,B, 4A,B.

Statistical Analysis
Mono-expression analysis and correlation analysis graphs were
generated and analyzed in GraphPad v.7 software (Prism). A
co-expression analysis was conducted in Simplified Presentation
of Incredibly Complex Evaluations (SPICE) software [National
Institute of Allergy and Infectious Diseases (NIAID)]. Unless
stated otherwise, data are summarized as median ± s.e.m.
Statistically significant differences between two groups were
assessed using a two-tailed paired t-test, with Wilcoxon
adjustments for non-parametrically distributed variables.
Differences were considered statistically significant at P < 0.05,
(∗P < 0.0332, ∗∗P < 0.0021, ∗∗∗P < 0.0002, and ∗∗∗∗P < 0.0001).

RESULTS

Differential Surface Expression of
Inhibitory Receptors on T Cells in Blood vs.
Tumors From Cancer Patients
To comprehensively investigate the immunoinhibitory pathways
in T cells, we used FACS to analyze the surface expression of
eight IRs (PD-1, Tim-3, BTLA, KLRG-1, TIGIT, 2B4, CD160, and
CTLA-4) on T cells from peripheral blood and tumors isolated
from 131 cancer patients (Supplementary Table 1, Figure 1).
Having updated the panel in 2014, removing CD160 and BTLA,
and adding TIGIT, the number of patients used for the expression
analysis of BTLA and CD160 and that of TIGIT is different
from that of other IRs. Details of the overlapping of patients for
different IR analyses can be found in Supplementary Table 4. We
observed distinct surface expression of IRs on CD8 (cytotoxic)
T cells compared with CD4T cells from peripheral blood. For
instance, 2B4+ and KLRG-1+ cells displayed a high frequency
in the CD8 circulating T-cell population but an almost five times
lower frequency in the population of CD4 circulating T cells.

In contrast, PD-1+ cells showed a similar and low frequency in
circulating CD4T cells and CD8T cells. We also observed unique
expression patterns in TILs. For instance, although KLRG-1+
cells displayed a relatively low frequency in both CD8 and CD4
TILs, 2B4+ cells accounted for almost 80% of CD8 TILs.

We also compared the mean frequencies of cells expressing
IRs with the mean frequency of PD-1+ cells. Peripheral CD8T
cells showed two-fold higher frequencies of BTLA+, KLRG-1+,
TIGIT+, and 2B4+ cells than did PD-1+. Further, CD8 TILs,
relative to PD-1+, showed two-fold higher mean frequencies of
TIGIT+ and 2B4+ cells. Circulating CD4T cells, relative to PD-
1+, showed higher frequencies of BTLA+ and TIGIT+, but only
TIGIT+ CD4 TILs were more frequent than PD-1+ CD4 TILs.

Generally, the IRs were expressed more frequently on CD8T
cells compared with CD4T cells and on TILs compared with
circulating T cells, the exception being BTLA surface expression,
which showed the highest frequency on circulating CD4T cells
from patients.

Increased PD-1+ and Tim-3+ but
Decreased BTLA+ T-Cell Frequencies Are
Observed in Tumors When Compared With
Peripheral Blood From Individual Patients
Across Multiple Cancer Types
To determine if the IRs are differentially expressed on TILs
vs. peripheral T cells from individual patients, we used
FACS to analyze blood-tumor-matched samples from the 131
primary cancer patients (clinical characteristics are listed in
Supplementary Table 1). We detected significantly higher
frequencies of PD-1+ and Tim-3+ cells in TILs compared
with their counterparts from peripheral blood across eight
types of cancer (Figures 2C–F). In contrast, the frequency of
BTLA+ cells significantly decreased in CD4 and CD8 TIL
populations when compared with the respective peripheral blood
populations across multiple cancer types from 74 of these cancer
patients (Figures 2G,H, where esophageal, gastric, and colorectal
cancers were analyzed together as “digestive tract cancers”).
Further, we discovered that the frequencies of PD-1+ and
Tim-3+ cells in peripheral T cells positively correlated with their
respective frequencies in TILs (Supplementary Figures 1A–D).
In contrast, BTLA surface expression in peripheral T cells
and TILs did not correlate (Supplementary Figures 1E,F).
Similarly, we observed an increased frequency of TIGIT+
cells in both CD4 and CD8 TILs when compared with T
cells in peripheral blood from lung, cervical, gastric, and
colorectal cancer patients; breast and esophageal cancer
patients showed a similar trend, but it was not statistically
significant (Supplementary Figures 2E,F). In contrast, the
frequencies of 2B4+ (Supplementary Figures 2A,B) and
CD160+ (Supplementary Figures 2I,J) T cells were similar
in peripheral blood and tumor; the frequency of 2B4+ cells
was high in both peripheral and tumor-infiltrating CD8T cells
(Supplementary Figure 2A).

KLRG-1+ CD8T cells displayed a lower frequency in tumors
compared with peripheral blood from patients with breast,
cervical, esophageal, gastric, and colorectal cancers but not
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FIGURE 1 | Inhibitory receptors have distinct frequencies in T-cell populations from peripheral blood and tumor tissues from eight types of cancer patients. FACS

analysis reveals the frequency of PD-1+, Tim-3+, BTLA+, TIGIT+, 2B4+, CD160+, and CTLA-4+ cells in peripheral CD8T cells (A), CD8 TILs (B), peripheral CD4T

cells (C), and CD4 TILs (D). T cells were obtained from 131 primary cancer patients, including 38 with breast cancer, 10 with liver cancer, 11 with lung cancer, 9 with

esophageal cancer, 14 with gastric cancer, 15 with colorectal cancer, 14 with kidney cancer, and 20 with cervical cancer. The blue dotted line is the mean frequency of

PD-1+ cells on each graph. The abovementioned IRs were investigated in three different panels (details are shown in Supplementary Table 2). 131 cancer patients

were used for the analysis of PD-1, Tim-3, KLRG-1, and 2B4; 74 cancer patients were used for the analysis of BTLA and CD160; and 67 cancer patients were

investigated for the analysis of TIGIT. Details of the overlapping patients and the number of the patients in each cancer cohort are listed in Supplementary Table 4.

FACS, fluorescence-activated cell sorting; TILs, tumor-infiltrating lymphocytes; PD-1, programmed cell death protein 1; Tim-3, T-cell immunoglobulin and

mucin-domain containing-3; KLRG-1, killer cell lectin like receptor G1; 2B4, CD244; BTLA, B- and T-lymphocyte attenuator.

with kidney, lung, and liver cancers (Supplementary Figure 2C).
Although KLRG-1+ CD4T cells showed a higher frequency in
tumors compared with blood from kidney cancer patients, they
displayed similar frequencies in blood and tumors from patients
with the remaining cancer types (Supplementary Figure 2D).

Notably, we found that cells expressing CTLA-4, the first
approved checkpoint blockade target, displayed a generally low
frequency (<20%) in both CD4 and CD8T cell populations in the
tumor and peripheral blood across eight cancer types. However,
multiple cancers showed an increased frequency of CTLA-4+
CD4T cells, but not CTLA-4+ CD8T cells, in tumors compared
with peripheral blood (Supplementary Figures 2G,H).

Co-expression of Inhibitory Receptors
Identifies Shared Subsets of CD8 TILs in
Multiple Types of Cancer
To investigate the co-expression patterns of multiple IRs on CD8
TILs, we focused on PD-1, Tim-3, TIGIT, 2B4, KLRG-1, and
CTLA-4. We identified PD-1+TIGIT+2B4+Tim-3+KLRG-1–
CTLA-4– and PD-1+TIGIT+2B4+Tim-3–KLRG-1–CTLA-4–

as dominant shared subsets of CD8 TILs in 64 cancer patients (4
with esophageal cancer, 11 with gastric cancer, 12 with colorectal
cancer, 7 with breast cancer, 10 with lung cancer, 10 with
kidney cancer, and 10 with cervical cancer) (Figures 3A–G). Of
note, five liver cancer patients showed a distinct shared subset
of 2B4+TIGIT+KLRG-1+1PD-1–Tim-3–CTLA-4– CD8 TILs
(Figure 3H). Our co-expression analysis appears to underscore
the prominent role of the PD-1, TIGIT, and Tim-3 IRs on CD8
TILs in T-cell exhaustion for multiple types of cancer.

Tim-3 and TIGIT Are Preferentially
Expressed on PD-1+ CD8 TILs in Cancer
Patients
The mono-expression and combinatorial expression analyses
suggested the importance of PD-1, Tim-3, and TIGIT on CD8T
cells. We specifically investigated the co-expression of Tim-
3 with PD-1 on CD8 TILs from the same cohort of cancer
patients as mentioned in the co-expression analysis of IRs on
CD8 TILs. We found that Tim-3+PD-1– CD8 TILs accounted
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FIGURE 2 | Higher frequencies of PD-1 and Tim-3 but lower frequencies of BTLA in T cells from tumors compared with peripheral blood in matched patient samples.

Representative dot plots of eight inhibitory receptors on CD8 (A) and CD4 (B) TILs with FMO controls are shown. The exemplary plots are combined from two 8-color

panels of two breast cancer patients. Full gating strategy of two 8-color panels and the 14-color panel is shown in Supplementary Figures 4–8. FACS analysis of

PD-1 (C,D) and Tim-3 (E,F) in CD8 (left) and CD4 (right) T cells was performed for 131 blood-tumor-matched primary cancer patients (see Figure 1 for details).

Analysis of BTLA+ cells in CD8 (G) and CD4 (H) T cells was performed for 74 blood-tumor-matched cancer patients: 32 breast cancer, 10 liver cancer, 20 cervical

cancer, and 12 digestive tract cancer (five esophageal cancer, four gastric cancer, and three colorectal cancer). Wilcoxon paired t-test was performed to detect the

statistical significance (*P < 0.0332, **P < 0.0021, ***P < 0.0002, and ****P < 0.0001). The fraction of cells expressing PD-1, Tim-3, or BTLA on the surface of T cells

in peripheral blood vs. tumor is shown as %. PD-1, programmed cell death protein 1; Tim-3, T-cell immunoglobulin, and mucin-domain containing-3; BTLA, B-, and

T-lymphocyte attenuator; TILs, tumor-infiltrating lymphocytes; FMO, fluorescence minus one; FACS, fluorescence-activated cell sorting.

for <5% of bulk CD8 TILs (Figure 4C), whereas PD-1+Tim-
3– and PD-1+Tim-3+ CD8 TILs accounted for about 10 and
around 20%, respectively, of CD8 TILs (Figure 4C). We then
investigated the co-expression of TIGIT and PD-1 on CD8 TILs
from the same cohort. Approximately 50% of CD8 TILs were PD-
1+TIGIT+, around 20% were TIGIT+PD-1–, and about 10%
were PD-1+TIGIT– (Figure 4D). Thus, Tim-3 and TIGIT are
preferentially expressed on PD-1+ CD8 TILs.

High Tim-3+ CD8 TILs Frequency
Associates With Cervical Cancer
Differentiation Status but Not Stage
To determine if the expression of IRs on CD8TILs associates with
any clinical characteristics, we investigated 54 cervical cancer
patients of whom 20 are blood-tumor tissue-matched patients
and 34 are tumor tissue-only patients in our clinical cohort. In

the expression analysis of Tim-3 on CD8 TILs from 20 blood-

tumor tissue-matched cervical cancer patients, we detected two

sub-clusters, a Tim-3 high-frequency group and a Tim-3 low-

frequency group (Figure 5A). We used the mean frequency of

Tim-3 as a cutoff value to classify all cervical cancer patients

into two subgroups. Based on the pathological diagnosis, in
54 cervical tumor tissues, the Tim-3 high-frequency subgroup
had a higher percentage (52%, 11/21) of poorly differentiated
cancer types than had the Tim-3 low-frequency subgroup (27%,
9/33) in cervical cancer patients, although we did not detect
statistical significance of Tim-3+ CD8 TIL frequency between
poorly differentiated and moderately differentiated cervical
cancer patients (Figure 5B, Supplementary Figure 3A). When
stratifying all the cervical cancer patients by their cancer stage,
we did not observe a differential frequency of Tim-3+ CD8 TILs
(Supplementary Figure 3B).

Frontiers in Oncology | www.frontiersin.org 6 October 2019 | Volume 9 | Article 1066

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. Immune Checkpoint Receptor on TILs

FIGURE 3 | Co-expression analysis identifies shared subsets of CD8 TILs across multiple types of cancer. Simplified Presentation of Incredibly Complex Evaluations

(SPICE) analysis was applied to investigate the co-expression of PD-1, Tim-3, 2B4, TIGIT, KLRG-1, and CTLA-4 on CD8 TILs from 69 cancer patients (4 with

esophageal cancer, 11 with gastric cancer, 12 with colorectal cancer, 7 with breast cancer, 10 with lung cancer, 10 with kidney cancer, 10 with cervical cancer, and 5

(Continued)
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FIGURE 3 | with liver cancer). With six IRs investigated, there are 64 possible combinations/subsets (X axis) on CD8 TILs. Single color lines in each graph represent

the frequency of different subsets of CD8 TILs from each patient, from eight types of cancer (A–H). Red rectangles highlight the dominant subsets in CD8 TILs shared

from 7/8 types of cancer. Co-expression analysis on CD8 TILs was conducted by 14-color panel, utilizing the full gating strategy shown in

Supplementary Figures 8A,B. TILs, tumor-infiltrating lymphocytes; PD-1, programmed cell death protein 1; Tim-3, T-cell immunoglobulin, and mucin-domain

containing-3; 2B4, CD244; TIGIT, T-cell immunoglobulin and ITIM; KLRG-1, killer cell lectin like receptor G1; CTLA-4, cytotoxic T-lymphocyte antigen-4; IR, inhibitory

receptor.

FIGURE 4 | Tim-3 and TIGIT are preferentially expressed on PD-1+ CD8 TILs across multiple types of cancer. Representative dot plots of the co-expression of PD-1

and Tim-3 on CD8 TILs (A) and the co-expression of PD-1 and TIGIT on CD8 TILs (B) from a breast cancer patient are shown. Data were collected utilizing the

14-color panel as mentioned above, with full gating strategy shown in Supplementary Figure 8. (C) FACS analysis of the frequencies of Tim-3+PD-1–,

PD-1+Tim-3–, and PD-1+Tim-3+ cells among CD8 TILs from 69 cancer patients (see Figure 3 for details). (D) FACS analysis of the frequencies of TIGIT+PD-1–,

PD-1+TIGIT–, and PD-1+TIGIT+ cells among CD8 TILs from the same 69 cancer patients. Wilcoxon paired t-test was performed to detect the statistical significance

(*P < 0.0332, **P < 0.0021, ***P < 0.0002, and ****P < 0.0001). Tim-3, T-cell immunoglobulin and mucin-domain containing-3; TIGIT, T-cell immunoglobulin and

ITIM; TILs, tumor-infiltrating lymphocytes; PD-1, programmed cell death protein 1; FACS, fluorescence-activated cell sorting.
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FIGURE 5 | Tim-3 expression on CD8 TILs is associated with poorly differentiated cervical cancer. Association analysis between Tim-3 surface expression on T cells

and differentiation and stage of cervical cancer patients. (A) Frequency of Tim-3 on CD4 and CD8T cells in 20 blood-tumor tissues-matched samples from cervical

cancer patients. (B) Fraction of poorly differentiated and moderately differentiated samples from the Tim-3 high-frequency subgroup and the Tim-3 low-frequency

subgroup in 54 cervical cancer patients (20 blood-tumor tissue-matched patients and 34 tumor tissue-only patients). Mean frequency of Tim-3 was utilized to define

Tim-3 high- and low-frequency subgroups. In the blood-tumor tissue-matched analysis, Wilcoxon paired t-test was performed to detect the statistical significance (*P
< 0.0332, **P < 0.0021, ***P < 0.0002, and ****P < 0.0001). Tim-3, T-cell immunoglobulin and mucin-domain containing-3; TILs, tumor-infiltrating lymphocytes.

Advanced Differentiation of the Shared PD-
1+Tim-3+TIGIT+2B4+KLRG-1–CTLA-4–
CD8 TILs Subset Is Associated With Poorly
Differentiated Cervical Cancer
We further conducted T-cell differentiation analysis of the
identified shared subset, PD-1+TIGIT+2B4+Tim-3+KLRG-
1–CTLA-4– in bulk CD8 TILs from 10 cervical cancer patients.
We stratified 10 cervical cancer patients into two subgroups
by pathology (five poorly differentiated and five moderately
differentiated tumors). CD8 T-cell differentiation stages
are assessed by the differential CD27, CCR7, and CD45RA
expression (Figure 6C). We found that the majority (over 60%)
of PD-1+TIGIT+2B4+Tim-3+KLRG-1–CTLA-4– CD8 TILs
from all (5/5) of the poorly differentiated cervical cancer samples
displayed an advanced T-cell differentiation phenotype and
that only a small fraction (20%) displayed intermediate T-cell
differentiation phenotypes (Figure 6A). Conversely, the majority
(60%) of PD-1+TIGIT+2B4+Tim-3+KLRG-1–CTLA-4–
CD8 TILs from most (4/5) of the moderately differentiated
cervical cancer samples displayed an intermediate T-cell
differentiation phenotype, and a minor fraction (40%) displayed
advanced T-cell differentiation phenotypes (Figure 6B).
These results suggest that the advanced T-cell differentiation
(CD27–CCR7–CD45RA–) of PD-1+TIGIT+2B4+Tim-
3+KLRG-1–CTLA-4– CD8 TILs is associated with poorly
differentiated cervical cancer.

DISCUSSION AND CONCLUSIONS

We have comprehensively investigated the surface expression of
eight IRs on T cells from a valuable clinical cohort comprising
only recruited primary cancer, treatment-naïve patients from
China and the UK. We demonstrated distinct surface expression
of IRs on T cells between peripheral blood and tumor tissues
across multiple cancer types, and across CD4 vs. CD8T cells.
PD-1+ and Tim-3+ T cells were increased in tumors compared

with peripheral blood across eight cancer types. These results
are in line with previous studies of breast cancer, esophageal
cancer, lung cancer, and liver cancer (52–55). Our study also
found that BTLA+ T cells were decreased in tumors vs. blood,
which is consistent with a recent breast cancer study (52).
However, it has been reported in a previous melanoma study
that the tumor microenvironment upregulates the expression of
BTLA on CD8 TILs and that the co-expression of BTLA and
PD-1 marks tumor-specific TILs in melanoma patients (56). In
addition, we did not observe any differential expression of any
individual IR on TILs in patients among different clinical stages
in each type of cancer (data not shown). This is possibly due
to the limited number of patients in each stage of an individual
cancer type.

Releasing the brakes of IRs can be a double-edged
sword: restoring T-cell antitumor responses but inducing
immunopathology and breaking self-tolerance (57, 58). Patients
in clinical trials of nivolumab and pembrolizumab to treat

multiple types of cancer showed significantly higher risk

of pneumonitis, colitis, hypothyroidism, hypophysitis, and

hepatitis (15, 27, 59). These findings raise concerns about
autoimmunity and immunopathology during the development
of new blockade immunotherapies. On the basis of our results,
we would categorize IRs into four groups, which are summarized
in Table 1: group 1 IRs show a lower frequency on T cells in the
circulation vs. tumors, such as PD-1 and Tim-3. The immune-
related adverse effects generated by blocking these inhibition
pathways are predicted to be manageable. Group 2 IRs show a
higher frequency on T cells in the circulation vs. tumors, such
as BTLA and KLRG-1. BTLA is linked with T-cell differentiation
and is predominately expressed on naïve T cells (60). A recent
functional study of KLRG-1 in animal models also revealed that
after receiving stimulatory and inflammatory signals, KLRG-1+
CD8T cells downregulated KLRG-1 and differentiated into
different memory T-cell linages, with distinctive antivirus and
antitumor capacities (61). Group 2 IRs may have less value in
checkpoint blockade owing to the likelihood of immune-related
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FIGURE 6 | Advanced T cell-differentiated subset in the “shared” subset of CD8 TILs is linked to poorly differentiated cervical cancer. Having gated on

PD-1+Tim-3+TIGIT+2B4+CTLA-4–KLRG-1–CD8+ TILs from 10 cervical cancer patients, Boolean combination gating strategy was then used to determine different

T-cell differentiation stages by the surface expression of CD27, CCR7, and CD45RA. The frequency of each stage of TILs in the “shared” subset of CD8 TILs was

depicted between five poorly differentiated cervical cancer samples (A) and five moderately differentiated cervical cancer samples (B). Five T-cell differentiation stages

(C) are “naïve” T cells (CD27+CCR7+CD45RA+), “early” differentiated T cells (CD27+CCR7+CD45RA–), “intermediate” differentiated T cells

(CD27+CCR7–CD45RA–), “advanced” differentiated T cells (CD27–CCR7–CD45RA–), and “late” differentiated T cells (CD27–CCR7–CD45RA+). Representative dot

plots of CD45RA, CD27, and C-C chemokine receptor type 7 (CCR7) on CD8 TILs with FMO controls are shown in Supplementary Figure 8B. The frequency of five

different T-cell differentiation stages was then calculated by the function of Boolean Combination Gates in Flowjo software. TILs, tumor-infiltrating lymphocytes; FMO,

fluorescence minus one.

adverse effects resulting from their relatively high expression
on peripheral T cells. However, they may be suitable for genetic
manipulation of antigen-specific T cells, which might limit the
immune-related adverse effects caused by non-tumor-specific
T cells. Furthermore, local injection of the group 2 IR-blocking
agents into the tumor may reduce the immune-related adverse
effects when compared to those in systemic infusion. Group
3 IRs show a high frequency on T cells in both peripheral
blood and tumors, such as TIGIT and 2B4. Blocking these
inhibition pathways might cause severe immune-related adverse
effects, given their expression in peripheral blood T cells.
Similarly to BTLA, these may not be ideal targets for checkpoint
blockade that is administered via systemic infusion to patients.
However, local injection rather than systemic infusion of
blocking agents targeting the TIGIT or 2B4 pathways might
minimize the immune-related adverse effects but still benefit
patients. Of note, a previous study has shown that 2B4 could
act as the ligand rather than receptor on target cells, which
interact with CD48 expressing NK cells, activating human
NK cells’ cytotoxic functions (62). In chronic HCV and HBV
infection, it was found that 2B4 was co-expressed with PD-1

on virus-specific CD8T cells eliciting dysfunctional cytotoxic
functions (6, 63). TIGIT has been revealed to be upregulated
on peripheral T cells in elderly people, compared with young
people, marking exhausted or senescent T cells in aging-related
immunosuppression (64). Therefore, our interpretation is that
the high expression level of TIGIT observed in patients from
our cohort additively resulted from the presence of cancer and
the average ages of patients (56.4 years old, details shown in
Supplementary Table 1). Group 4 IRs show a low frequency on
T cells from both peripheral blood and tumors, such as CTLA-4
and CD160. These results are consistent with previous reports
that CTLA-4 and CD160 have soluble forms circulating in the
blood (65, 66). As such, surface staining alone may not identify
all CTLA-4+ or CD160+ T cells. In a lung cancer study, a higher
frequency of CTLA-4 was found by intracellular staining in
CD4T cells when compared with those of surface staining in
CD4T cells from the same patients (67). Therefore, it is advisable
to intracellularly stain CTLA-4 in T cells. It is also true that
we are not sure about the expression of CTLA-4 on T cells in
lymphatic organs such as the spleen or lymph nodes in various
locations where T cells are primed. Furthermore, our study

Frontiers in Oncology | www.frontiersin.org 10 October 2019 | Volume 9 | Article 1066

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. Immune Checkpoint Receptor on TILs

TABLE 1 | Summary of four categories of key inhibitory receptors, its expression features, autoimmunity concerns, and clinical implication.

Group of IRs Group 1 Group 2 Group 3 Group 4

IR PD-1, Tim-3 BTLA, KLRG-1 2B4, TIGIT CTLA-4, CD160

Expression in

peripheral blood in

cancer patients

+ +++ +++ Express at a negligible level on T

cells owing to soluble forms

Expression in tumor

tissues in cancer

patients

+++ + +++ Express at a negligible level on T

cells owing to soluble forms

Concerns of

autoimmunity

Manageable Probably capable of inducing

strong immune-related adverse

effects

Probably capable of inducing

strong immune-related adverse

effects

CTLA-4 induces strong

immune-related adverse effects.

The potential immune-related

adverse effects of CD160

blockade are unknown

Implication for

blockade drug

administration

Systemic IV infusion or local

injection

Local injection Local injection CTLA-4 has been administered

via systemic infusion to patients

Other applications Genetic manipulation of tumor

associated antigen (TAA) specific

T cells

Genetic manipulation of

TAA-specific T cells

Genetic manipulation of

TAA-specific T cells

Neutralizing antibodies targeting

soluble forms

only measured the frequency of CTLA-4 on bulk CD4 TILs,
but not in different CD4 subsets in the tumor. It was reported
that Tregs in the tumor have higher expression of CTLA-4 than
have conventional CD4 TILs (8). More importantly, numerous
CTLA-4 blockade animal experiments and human clinical trials
have suggested that blocking CTLA-4 can lead to high-grade
immune-related adverse effects, which are of a more severe
magnitude, compared with those of PD-1/PD-L1 blockade (68).
Therefore, even though high expression of CTLA-4 was not
observed on TILs, the vigor of T-cell responses resulting from
CTLA-4 blockade may still elicit potent antitumor responses
against cancers.

The co-expression of IRs on CD8 TILs in individual cancer
patients may inform the design of effective combinatorial
blockade regimens. Our co-expression analysis of IRs delineates
the shared subset of bulk CD8 TILs as PD-1+TIGIT+2B4+Tim-
3+KLRG-1–CTLA-4–, supporting the rationale of combinatorial
blockade against PD-1, Tim-3, and TIGIT inhibitory pathways.
Of note, our interpretation is that in the combinatorial
blockade of PD-1, Tim-3, and TIGIT, it is advisable to
administer the blocking agents of TIGIT by local injection
but not systemic infusion in order to limit the potential

immune-related adverse effects. TIGIT has been reported as

a co-regulator of the expansion and function of tumor-
specific T cells in advanced melanoma patients, suggesting

that co-blockade of PD-1 and TIGIT might elicit potent
antitumor responses (69). In 2018, a phase II clinical trial
of anti-TIGIT combined with or without PD-L1 blockade in
advanced NSCLC patients without epithelial growth factor
receptor (EGFR)mutation or anaplastic lymphoma kinase (ALK)
translocation was approved (NCT03563716). Further, Tim-3
blockade reinvigorated antitumor T-cell responses in lung cancer
patients who developed adaptive resistance to PD-1 blockade
(70). From 2015 onwards, the safety and toxicity of anti-
Tim-3 agents such as TSR-022, Sym023, and MBG453 were

evaluated in several phase I clinical trials in multiple types of
cancer (NCT02817633, NCT03489343, and NCT02608268) (71).
Recently, the combinatorial blockade of PD-1 and Tim-3 in a
phase II clinical in liver cancer and multiple solid tumors was
initiated in 2018 (NCT03680508 and NCT03744468).

Both our data and a lung cancer study found that Tim-
3 and TIGIT are preferentially expressed on PD-1+ CD8
TILs in multiple types of cancer, suggesting that combined
blockade of these pathways could be effective to treat diverse
tumors (72). One liver cancer study indicated that co-blockade
of PD-1, CTLA-4, and Tim-3 pathways additively restores
the functionality of exhausted CD8 TILs against cancer (54).
Another hepatocellular carcinoma (HCC) investigation showed
that combinatorial blockade of PD-1 and Tim-3 significantly
enhanced the proliferative capacity of CD8 TILs from PD-1
high-expressers (73).

We found that Tim-3+ CD8 TILs might associate with poor
cervical cancer differentiation but not stage. Our data further
suggest that advanced T-cell differentiation of the shared subset
from CD8 TILs in cervical cancer patients also associates with
poorly differentiated cervical cancer. In clinical practice, poorly
differentiated cancer correlates with poor prognosis. Our findings
suggest that cancer differentiation status, which is routinely
tested, might be a biomarker to identify cervical cancer patients
who would respond to Tim-3 blockade.

To our knowledge, our study represents the first
comprehensive analysis of IRs on T cells in blood and tumors
from diverse cancer patients. Our findings illuminate the
potential risks and benefits of future checkpoint blockades, or of
genetic modified T-cell immunotherapy.
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