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Abstract 

Background:  Although numerous studies have explored the impact of meteorological factors on the epidemic of 
COVID-19, their relationship remains controversial and needs to be clarified.

Methods:  We assessed the risk effect of various meteorological factors on COVID-19 infection using the distributed 
lag nonlinear model, based on related data from July 1, 2020, to June 30, 2021, in eight countries, including Portugal, 
Greece, Egypt, South Africa, Paraguay, Uruguay, South Korea, and Japan, which are in Europe, Africa, South America, 
and Asia, respectively. We also explored associations between COVID-19 prevalence and individual meteorological 
factors by the Spearman’s rank correlation test.

Results:  There were significant non-linear relationships between both temperature and relative humidity and COVID-
19 prevalence. In the countries located in the Northern Hemisphere with similar latitudes, the risk of COVID-19 infec-
tion was the highest at temperature below 5 ℃. In the countries located in the Southern Hemisphere with similar lati-
tudes, their highest infection risk occurred at around 15 ℃. Nevertheless, in most countries, high temperature showed 
no significant association with reduced risk of COVID-19 infection. The effect pattern of relative humidity on COVID-19 
depended on the range of its variation in countries. Overall, low relative humidity was correlated with increased risk of 
COVID-19 infection, while the high risk of infection at extremely high relative humidity could occur in some countries. 
In addition, relative humidity had a longer lag effect on COVID-19 than temperature.

Conclusions:  The effects of meteorological factors on COVID-19 prevalence are nonlinear and hysteretic. Although 
low temperature and relative humidity may lower the risk of COVID-19, high temperature or relative humidity could 
also be associated with a high prevalence of COVID-19 in some regions.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic 
has caused more than 470 million cases and six mil-
lion deaths across the world as of March 28, 2022 [1]. It 
still constitutes an extraordinary event and continues to 

affect the human health around the world [2]. Like other 
emerging infectious diseases, COVID-19 occurrence 
and spread are affected by a variety of factors, including 
external politics, economy, culture, climate and ecologi-
cal conditions [3] as well as internal human immunity. 
However, compared to most emerging infectious dis-
eases, COVID-19 is more infectious and more challeng-
ing to be contained.

Usually, the spread of respiratory infectious diseases is 
sensitive to seasonal changes [4]. Nevertheless, the rela-
tionship between meteorological factors and COVID-19 
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remains insufficiently definite, although plentiful studies 
on this topic have been published. For example, Lim et al. 
[5] found that the duration of sunshine and ozone level 
were positively correlated with the number of COVID-
19 cases in two regions of the Republic of Korea, while 
temperature variables showed contradictory results. Liu 
et  al. [6] used generalized linear model combined with 
meta-analysis to demonstrate that low temperature, mild 
diurnal temperature difference and low humidity might 
be conducive to COVID-19 transmission. Cacho et al. [7] 
revealed that ultraviolet (UV) radiation and temperature 
played a critical role in the spread of COVID-19 by estab-
lishing a linear regression model. Daneshvar et  al. [8] 
made a comparative analysis between United Arab Emir-
ates and Switzerland and revealed that the climate effects 
on the COVID-19 varied in different countries. Bilal et al. 
[9] proved that the PM2.5, environmental quality index 
and precipitation were important factors in the transmis-
sion of COVID-19 in the United States.

To explore the effects of meteorological factors on the 
COVID-19 epidemic, we explored the COVID-19 epi-
demiological data and meteorological data from eight 
countries, including Portugal, Greece, Egypt, South 
Africa, Paraguay, Uruguay, South Korea, and Japan. 
These countries are located on four continents and sat-
isfy the following criteria: variable climate conditions 
and small country area. Generally, the effects of cli-
mate factors on health are nonlinear [10] and hysteretic 
[11]. Also, the COVID-19 prevalence is associated with 
human activities, such as the policy responses and pub-
lic behaviors [12]. Because prior studies of the relation-
ships between meteorological factors and COVID-19 
prevalence often ignored confounding factors, we used 

the distributed lag nonlinear model (DLNM) to explore 
their relationships by including various confounding 
variables in the model, based on the data from July 1, 
2020, to June 30, 2021, in the eight countries. We also 
explored associations between COVID-19 prevalence 
and individual meteorological factors by the Spear-
man’s rank correlation test in these countries.

Methods
Data collection and processing
We collected data from July 1, 2020 to June 30, 2021. 
The number of daily new confirmed cases (DNCCs) of 
COVID-19 were obtained from the Center for Systems 
Science and Engineering (CSSE) of Johns Hopkins Uni-
versity [13]. Meteorological data (temperature, precipi-
tation, relative humidity, UV index, NO2 total column, 
and UV aerosol index) were obtained from the Geospa-
tial Interactive Online Visualization and Analysis Infra-
structure (Giovanni) of National Aeronautics and Space 
Administration (NASA) [14]. The data of government 
response stringency index, COVID-19 vaccination, 
Google mobility trends and face coverings policies were 
obtained from the Our World in Data [15]. Because the 
original daily numbers of new confirmed cases showed 
large variability, we took their 7-day moving average 
to reduce the effects of random fluctuations and the 
weekly effect (Fig.  1). We used the processed data for 
subsequent analyses.

Spearman correlation analysis
Because the epidemiological data and meteorological 
data did not follow normal distribution (Shapiro–Wilk 

Fig. 1  7-day moving average of the daily new confirmed COVID-19 cases. For better visualization, the logarithmic Y-axis is used because the large 
order-of-magnitude differences in numbers of daily new confirmed COVID-19 cases among the countries
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test, P < 0.05), we analyzed Spearman correlations 
between numbers of DNCCs of COVID-19 and values of 
meteorological factors and between different meteoro-
logical factors. Considering that the median incubation 
period for COVID-19 is around 7 days [16, 17], we ana-
lyzed the correlation between meteorological factors and 
numbers of DNCCs of COVID-19 with a 7-day lag.

Distributed lag nonlinear model (DLNM)
The DLNM model is based on the concept of cross-basis, 
a bi-dimensional space of functions describing simulta-
neously the shape of the relationship along both the space 
of the predictor and the lag dimension of its occurrence 
[18]. DLNM selects appropriate basis functions for two 
dimensions to generate the cross-basis by taking tensor 
product and transforms the original variables to obtain 
new values included in the model [18]. DLNM is defined 
as follows:

where Yt is the time series responding variable on day t , 
which follows a family of exponential distributions; α is 
the intercept and cb denotes the cross-basis function of 
predictor variable x ; γk represents the confounding vari-
able; η and µtk denote the parameter vector and the coef-
ficient, respectively.

Because the numbers of DNCCs are over dispersed, 
we assumed that they followed a quasi-Poisson distribu-
tion. Because of the correlation between meteorological 
factors, we incorporated variables of individual mete-
orological factors into the DLNM. We set the maximum 
lag period as 21 days, based on previous estimates of the 
incubation period for COVID-19 [19, 20]. We set the var-
iable Time in the model to adjust for long-term trends. 
The model included several confounding variables, 
including cumulative rates of vaccination (VAC), govern-
ment response stringency index (GRSI), Google mobility 

log(E(Yt)) = α + cb(xt; η)+

K
∑

k=1

γkµtk

trends (GMT), and face coverings policies (FCP). GMT 
indicates the number of visitors to specific categories of 
location. We used the logarithmic conversion of DNCCs 
on day t−1 to control for autocorrelation [21]. To avoid 
overfitting, the degree of freedom (df) for the natu-
ral cubic spline functions (ns) of both exposure dimen-
sion, lag dimension, and variable Time were limited to 
less than 6, 6, and 10, respectively. The modified Akaike 
Information Criterion (AIC) was used to determine the 
df [22, 23]. The median value of meteorological data was 
used as a reference to estimate, and the relative risk (RR) 
with a 95% confidence interval (CI) was used to evaluate 
the effect. The model was finally established as follows:

Results
Descriptive statistics
The differences in meteorological data among countries 
are associated with geographical conditions. The mean 
values of meteorological data in the eight countries are 
shown in Table 1.

Correlation analysis
The Spearman correlations between the number of 
DNCCs of COVID-19 and meteorological factors in each 
of the eight countries are shown in Fig.  2 and Table  2. 
Notably, there were discrepancies in the correlations 
among different countries. For example, temperature 
and the number of COVID-19 cases had a significant 
negative correlation in seven countries (Portugal, Greece, 
Egypt, South Africa, Paraguay, South Korea, and Japan), 
while they had a significant positive correlation in Uru-
guay (P < 0.05). UV index was significantly and negatively 
correlated with the number of COVID-19 cases in six 
countries (Portugal, Greece, Egypt, South Africa, South 
Korea, and Japan). Relative humidity and the number of 
COVID-19 cases had a significant positive correlation 

log(E(Yt)) = α + cb(xt; η)+ ns
(

time, df
)

+ VAC

+ GRSI + GMT + FCP + log(Yt−1)

Table 1  Average of meteorological data in different countries

Country Temperature (℃) Precipitation (mm) Relative humidity 
(%)

Ultraviolet index NO2 total column 
(1/cm2)

Ultraviolet 
aerosol index

Portugal 18.42 2.62 53.31 5.50 3.99E+15 1.38

Greece 18.02 3.00 65.77 5.17 3.80E+15 1.48

Egypt 27.71 0.08 26.81 8.62 3.37E+15 1.53

South Africa 22.81 1.57 39.80 8.13 3.74E+15 0.94

Paraguay 28.05 3.37 46.90 8.21 3.17E+15 0.96

Uruguay 20.78 4.06 58.41 6.78 3.47E+15 0.95

South Korea 16.04 3.88 67.42 4.39 7.28E+15 1.38

Japan 15.34 5.20 71.57 4.59 5.20E+15 1.08
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in four countries (Portugal, South Africa, Paraguay, and 
Uruguay), while they had a significant negative correla-
tion in Egypt, South Korea, and Japan. The correlation 
between UV aerosol index and COVID-19 was signifi-
cant and positive in five countries (Portugal, Greece, 
Egypt, South Korea, and Japan), while it was negative in 
Paraguay and Uruguay. The correlations of precipitation 
and NO2 with COVID-19 were dependent on countries, 
being positive, negative, or not significant. In addition, 
there was a strong positive correlation (P < 0.05; ρ > 0.5) 
between temperature and UV index in 7 countries (Por-
tugal, Greece, Egypt, South Africa, Paraguay, Uruguay 
and South Korea) and between relative humidity and 

precipitation in 4 countries (South Africa, Paraguay, Uru-
guay and Japan).

Analysis by DLNM
Based on the results of correlation analyses, we 
included two meteorological factors with relatively 
consistent results (temperature and UV index) and 
one with different results among countries (relative 
humidity) in the DLNM for effect analysis. Figure  3 
shows the contour plots of the RR along temperature 
and lag time on the number of DNCCs of COVID-19. 
In three countries (Portugal, South Korea, and Japan), 
the risk for COVID-19 infection at temperature < 5  °C 
was significantly higher than that at high temperature 

Fig. 2  Pairwise Spearman correlations between the number of daily new confirmed COVID-19 cases and meteorological factors and between 
different meteorological factors in nine countries. The red and blue represent positive and negative correlations, respectively. The color gradient and 
circle size are proportional to correlation coefficient, and the cross indicates that the statistical test is not significant (P ≥ 0.05). a Portugal; b Greece; 
c Egypt; d South Africa; e Paraguay; f Uruguay; g South Korea; h Japan. Cases: daily new confirmed COVID-19 cases; Temp: temperature; Prec: 
precipitation; RelHum: relative humidity; UV index: ultraviolet index; NO2: NO2 total column; Aerosol: ultraviolet aerosol index

Table 2  Spearman correlations between the numbers of DNCCs of COVID-19 and meteorological factors

*P < 0.05

Meteorological factor Country

Portugal Greece Egypt South Africa Paraguay Uruguay South Korea Japan

Temperature − 0.63* − 0.57* − 0.28* − 0.26* − 0.23* 0.17* − 0.45* − 0.52*

Precipitation 0.3* 0.04 − 0.21* − 0.11* − 0.01 − 0.05 − 0.21* − 0.25*

Relative humidity 0.58* − 0.05 − 0.21* 0.15* 0.29* 0.13* − 0.24* − 0.39*

UV index − 0.77* − 0.41* − 0.12* − 0.19* − 0.01 0.07 − 0.18* − 0.38*

NO2 total column − 0.43* − 0.18* 0.02 0.02 − 0.49* − 0.09 0.35* 0.31*

UV aerosol index 0.36* 0.19* 0.13* 0.02 − 0.24* − 0.26* 0.23* 0.33*
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(> 25  °C). Portugal had the highest risk of infec-
tion at 1  °C with a lag of 13  days (RR = 1.666; 95% CI 
1.280 ~ 2.170). South Korea and Japan had the high-
est RR when the temperature was 0.5  °C with a lag of 
21 days (RR = 3.510; 95% CI 1.888 ~ 6.527) and 10 days 
(RR = 1.115; 95% CI 1.067 ~ 1.165), respectively. Inter-
estingly, in all the three countries, there was also a high 
risk of infection when the temperature was above 25 °C 
with a certain lag time (13  days, 10  days, and 21  days 
in Portugal, South Korea, and Japan). In three South-
ern Hemisphere countries (South Africa, Paraguay, and 
Uruguay), the highest RR occurred at around 15 ℃ with 
a lag of long time (0–20 days, 5–21 days, and 0-21 days 
in South Africa, Paraguay, and Uruguay). The RR in 
South Africa reached its maximum value of 1.073 (95% 
CI 1.036 ~ 1.111) at 17 ℃ with a lag of 9  days; the RR 
in Paraguay reached its maximum value of 2.841 (95% 
CI 1.891 ~ 4.269) at 13.5 ℃ with a lag of 16  days; the 
RR in Uruguay reached its maximum value of 1.191 
(95% CI 1.137 ~ 1.248) at 15 ℃ with a lag of 12  days. 
However, in Greece and Egypt, the risk for COVID-19 
infection at high temperature was higher than that at 
low temperature. Greece had the highest RR at tem-
perature of 28.5 ℃ (RR = 1.497; 95% CI 1.275 ~ 1.759), 
and Egypt had the highest RR at temperature of 37.5 ℃ 
(RR = 1.234; 95% CI 1.175 ~ 1.296). Although the lag 
effect of temperature varied from country to country, 
the lag time with a higher risk of infection was likely 
longer than the average incubation period (7 days).

Figure  4 presents the contour plots of the RR along 
relative humidity and lag time on the number of DNCCs 
of COVID-19. Egypt and South Africa had year-round 
low relative humidity. The highest risk in both coun-
tries occurred at their high relative humidity (54% rela-
tive humidity for Egypt and 61% relative humidity for 
South Africa). In particular, the RR reached its peak of 
1.111 (95% CI 1.077 ~ 1.147) when the relative humid-
ity was 61% and 9 days lagged in South Africa. In coun-
tries with a large range of relative humidity, lower relative 
humidity was associated with a higher RR of COVID-19 
infection, and the lag effect generally lasted for a long 
time. In Portugal, the RR was the highest within lag of 
between 5 and 21 days at relative humidity < 30%; the RR 
in Paraguay was the highest within lag of between 0 and 
21 days at relative humidity < 25%. In the other countries, 
although there was a higher risk of infection at low rela-
tive humidity, the high RR at high relative humidity could 
occur. For example, Greece had the highest risk of infec-
tion at relative humidity up to 80.5% (RR = 1.102; 95% 
CI 1.008 ~ 1.206); Uruguay had a high  risk of infection 
at relative humidity > 60%. Moreover, compared to tem-
perature, the lag effect of relative humidity on COVID-19 
lasted for a longer period (median period: 20-day period 
versus 14-day period).

The effect of UV index on COVID-19 infection varied 
across the countries, with the high RR was distributed in 
various regions of UV index values (Fig.  5). The contour 
plots show the characteristics of multiple centers of high 

Fig. 3  Contour plots of the relative risk (RR) along temperature and lag time on COVID-19 infection. The X-axis represents the meteorological value 
and the Y-axis represents lag days ranging from 0 to 21 days. The RR was determined based on the median value of meteorological data. The red 
and blue indicate RR greater than 1 and less than 1, respectively
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RR. Portugal had the highest risk of infection when its UV 
index was 7 (RR = 1.164; 95% CI 1.112 ~ 1.218) with a lag 
of 5 days. Nevertheless, there were several centers of high 
infection in the regions of low UV index and high UV 
index. Similar nonlinear relationships were observed in 
Egypt, South Africa, Paraguay, Uruguay, and Japan.

Discussion
The impact of meteorological factors on the epidemic of 
COVID-19 remains controversial. Most of previous stud-
ies reported that cold and dry climate conditions were 

conducive to the transmission of COVID-19 [24–26], 
while some showed that high temperature could not 
inhibit the transmission of COVID-19 [27] or that there 
was no significant correlation between temperature 
and COVID-19 infection [28, 29]. There are several rea-
sons to explain these contradictory results. First, differ-
ent research subjects may lead to different results, such 
as regional studies versus global studies. Second, many 
previous studies failed to cover all meteorological condi-
tions. In addition, different research methods may lead to 
different results [27]. In this study, we aimed to capture 

Fig. 4  Contour plots of the RR along relative humidity and lag time on COVID-19 infection

Fig. 5  Contour plots of the RR along UV index and lag time on COVID-19 infection
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common patterns or discrepancies of the relationship 
between meteorological factors and the COVID-19 epi-
demic among individual countries. A climate-dependent 
epidemic model showed that meteorological variables 
were unlikely to be dominant transmission risk factors 
in the early stages of the COVID-19 pandemic due to the 
high population susceptibility [30]. Besides, in order to 
minimize the influences of the variation of SARS-CoV-2 
[31] and to obtain the maximum range of meteorological 
data, we analyzed data from July 1, 2020, to June 30, 2021, 
in eight countries from four continents. Spearman’s cor-
relation analysis showed that temperature and UV index 
were negatively correlated with COVID-19 prevalence in 
7 and 8 countries, respectively. The correlation between 
relative humidity and COVID-19 prevalence showed 
positive correlation in 4 countries and negative correla-
tion in 3 countries. Thus, we included the three mete-
orological factors (temperature, relative humidity, and 
UV index) in the DLNM for risk analysis, respectively. 
Our results showed a significant non-linear relationship 
between temperature and COVID-19 prevalence. Portu-
gal, Greece, South Korea, and Japan are in the Northern 
Hemisphere and have similar latitudes. Three of them 
(Portugal, South Korea, and Japan) had a higher risk of 
COVID-19 infection at low temperature (< 5 ℃), and all 
the four countries also had a higher risk of infection at 
high temperature (> 25 ℃) with certain lag days. South 
Africa, Paraguay, and Uruguay are all in the Southern 
Hemisphere with similar latitudes, and their highest risk 
of infection occurred at around 15 ℃. In addition, there 
was a significant lag effect of temperature on COVID-19 
prevalence, with the lag time for the occurrence of the 
highest RR longer than the estimated mean incubation 
period of COVID-19 in all the eight countries. We also 
proved that the pattern of risk effects of relative humid-
ity on COVID-19 infection largely depended on the 
variation range of year-round relative humidity in coun-
tries. Lower relative humidity was associated with higher 
COVID-19 prevalence in countries with a wide range of 
relative humidity, while the relative  risk of COVID-19 
infection in high relative humidity could be high in coun-
tries with overall high relative humidity. Moreover, the 
lag effect of relative humidity generally lasts for a long 
time. Nevertheless, the non-linear effects of UV index 
on COVID-19 prevalence were polycentric and varied 
across countries. The potential reason could be that our 
UV index data only represented the outdoor air condi-
tions, while epidemiological tracing reports indicated 
that the infection rate indoors was much higher than that 
outdoors [32].

Since the first launch of COVID-19 vaccines in December 
2020, around 65%  of the world population has received at 
least one dose of a COVID-19 vaccine. The protective effect 

of vaccines can slow down the COVID-19 transmission 
[33, 34]. Besides, the adjustment of government prevention 
and control policies has played a crucial role in containing 
the spread of COVID-19 [35]. In addition, wearing masks 
and social distancing have a direct effect on controlling the 
spread of COVID-19 [36, 37]. Therefore, our model included 
the related variables, such as cumulative vaccination rate, 
government response stringency index, face coverings poli-
cies, and Google mobility trends. Although we controlled 
the above factors, there are still some limitations. First, the 
number of DNCCs of COVID-19 notified by the official 
authorities may be omitted. Second, meteorological data 
were measured by remote sensing, which represented the 
average meteorological value of a country. The larger the 
country area, the less likely the meteorological data are accu-
rate. Finally, we only included one meteorological factor at 
a time in constructing the DLNM, while the real exposure 
condition was a combination of various meteorological fac-
tors. As a result, the dominant meteorological factor cannot 
be identified.

Conclusions
The effects of meteorological factors on COVID-19 
transmission are nonlinear and hysteretic. Lower tem-
perature and lower relative humidity were associated 
with a higher risk of COVID-19 infection. However, the 
non-linear effects of meteorological factors on COVID-
19 transmission should not be ignored. In some coun-
tries, high temperature or high relative humidity may 
also enhance the risk of COVID-19 infection. It is neces-
sary to consider the meteorological factors into the risk 
assessment of COVID-19 transmission, but the impact 
of meteorological factors on the transmission of COVID-
19 may be weaker compared with other factors, such as 
virus mutations, vaccination, social distance, and govern-
ment prevention and control policies.
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