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ARTICLE

A Prototype QSP Model of the Immune Response to 
SARS-CoV-2 for Community Development

Wei Dai1,†, Rohit Rao1,†, Anna Sher1, Nessy Tania1, Cynthia J. Musante1 and Richard Allen1,*

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires the rapid development of effica-
cious treatments for patients with life-threatening coronavirus disease 2019 (COVID-19). Quantitative systems pharmacology 
(QSP) models are mathematical representations of pathophysiology for simulating and predicting the effects of existing or 
putative therapies. The application of model-based approaches, including QSP, have accelerated the development of some 
novel therapeutics. Nevertheless, the development of disease-scale mechanistic models can be a slow process, often tak-
ing years to be validated and considered mature. Furthermore, emerging data may make any QSP model quickly obsolete. 
We present a prototype QSP model to facilitate further development by the scientific community. The model accounts for 
the interactions between viral dynamics, the major host immune response mediators and tissue damage and regeneration. 
The immune response is determined by viral activation of innate and adaptive immune processes that regulate viral clear-
ance and cell damage. The prototype model captures two physiologically relevant outcomes following infection: a “healthy” 
immune response that appropriately defends against the virus, and an uncontrolled alveolar inflammatory response that is 
characteristic of acute respiratory distress syndrome. We aim to significantly shorten the typical QSP model development 
and validation timeline by encouraging community use, testing, and refinement of this prototype model. It is our expecta-
tion that the model will be further advanced in an open science approach (i.e., by multiple contributions toward a validated 
quantitative platform in an open forum), with the ultimate goal of informing and accelerating the development of safe and 
effective treatment options for patients.

Coronavirus disease 2019 (COVID-19) is caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus, a novel coronavirus that emerged in 2019. 
Similar to other respiratory coronaviruses (such as SARS-
CoV and Middle East respiratory syndrome coronavirus), 
human-to-human transmission is primarily via aerosolized 
respiratory droplets.1 The functional receptor for both 

SARS-CoV and SARS-CoV-2 is believed to be the angio-
tensin converting enzyme 2 receptor. Although the primary 
infectible cell of SARS-CoV-2 is alveolar type 2 cells (AT2), 
their expression of angiotensin converting enzyme 2 is 
relatively low, suggestive of multiple factors driving infect-
ibility of AT2 cells and the potential role of nonrespiratory 
infections contributing to the observed pathogenesis.2
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  The complex interactions between the in-host viral 
dynamics, immune response and tissue damage under-
lying disease heterogeneity in coronavirus disease 2019 
(COVID-19) are not yet fully understood.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Development of a robust quantitative systems pharma-
cology (QSP) model of COVID-19 will bring novel medicines 
to patients faster. Here, we propose a prototype model for 
further development by the scientific community.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  The model qualitatively captures a “healthy” im-
mune response and a pathophysiological uncontrolled 

inflammatory response, characteristic of severe COVID-
19 cases. Exploration of model parameters highlights 
the importance of an appropriate immune response in 
mediating a balance between tissue damage and viral  
clearance.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DE-
VELOPMENT, AND/OR THERAPEUTICS?
✔  A prototype model for community development will 
accelerate the development of a validated QSP model of 
COVID-19 and hence support the development of new 
therapeutics for patients.
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Detailed descriptions of the pathogenesis of COVID-
19 have appeared in recent reviews.1,3 Briefly, the host 
antiviral response can be divided into two categories. 
First, induction of cellular programs that act to suppress 
the virus is regulated by type I and III interferons and 
their downstream genes. Second, a leukocyte response, 
including phagocytosis of the apoptotic debris by anti-
gen-presenting dendritic cells and macrophages, leads to 
T-cell induction via antigen presentation. Infected cells can 
then be killed by antigen presenting cell (APC)-recruited 
CD8+ cytotoxic T-cells (CTLs).

It is suggested that the heterogeneity in response to in-
fection, ranging from asymptomatic to death, could be due 
to a varying and sometimes inappropriate inflammatory re-
sponse driven by limited induction of the type I and type 
III interferons and “exuberant” inflammatory cytokine pro-
duction, including IL-6 and TNF-⍺.4 As a result, alveolar 
epithelial cells undergo inflammatory cell death,5,6 which, 
in turn, compromises lung microvasculature and epithelial 
barrier function leading to pulmonary edema and ultimately 
hypoxia.7

One of the common and potentially fatal comorbidities of 
COVID-19 is acute respiratory distress syndrome (ARDS), 
which can develop secondary to the viral-mediated injury. 
ARDS is characterized by an acute lung abnormality alve-
olar injury produces diffuse alveolar damage, resulting in 
impaired gas exchange, decreased lung compliance, and in-
creased pulmonary arterial pressure.8 The etiology of ARDS 
may include sepsis (most commonly), pneumonia, and over 
60 other causes.9,10

Elevations in several coagulation biomarkers also have 
been associated with disease severity and prognosis in pa-
tients with COVID-19.11–13 Whereas the tight coordination 
between hemostatic and inflammatory responses is a part 
of innate immunity, dysregulation in this feedback system 
leads to thrombo-inflammation, as observed in cases of 
sepsis-associated disseminated intravascular coagulation 
(DIC).14,15 Although there are some differences,16 as in DIC, 
coagulopathy in COVID-19 is likely triggered due to injury 
to the endothelial cells by endotoxins or inflammatory cyto-
kines. Endothelial stimulation triggers the activation of the 
coagulation pathway, which is sustained and amplified by 
thrombin generation. Platelet activation and endothelial cell 
stimulation also further lead to production of cytokines and 
growth factors, including IL-6.17

To quantitatively understand the complex interactions 
among in-host viral dynamics, tissue damage, and the 
immune response, a mathematical model is required. 
Quantitative systems pharmacology (QSP) models are 
mechanistic models of pathophysiology and treatment and 
can support decision making throughout the drug discov-
ery and development process.18 Hence, a QSP model of 
the immune response of COVID-19 has clear applications 
for understanding the pathophysiology and supporting 
clinical trial design and analysis for novel treatments.

Specifically, the initial goal of the model presented here 
is to study factors determining the manner in which the 
immune response influences severity and duration of SARS-
COV-2 infection and potentiates the development of a severe 
pathophysiological hyperinflammatory state (e.g., in ARDS) 

observed in certain infected individuals. Accordingly, our 
mathematical model accounts for the interactions between 
processes determining viral infection and shedding, the ac-
tivation of the major host immune response mediators and 
tissue damage and regeneration (Figure 1). In this prototype 
version of the model, we do not consider the response of the 
coagulation pathway.

The disease pathophysiology of viral replication and im-
mune response is complex, making the development of 
therapeutic intervention challenging. One way to overcome 
this is the utilization of QSP models to leverage and incor-
porate existing mechanistic knowledge and data to make 
forward predictions. The typical development time for models 
of this scope is at least a year and probably significantly lon-
ger to fully report.18 To shorten this timeline, we have decided 
to break our traditional cycle for development and publication 
of QSP models. We are publishing a prototype version of this 
model that passes a series of unit tests, outlined below, that 
are designed to demonstrate that the model structure is suffi-
cient for qualitatively capturing a range of plausible responses 
(Figure 2). It is our hope and expectation that researchers 
across academia and industry find this model a useful basis 
for further development and application to the discovery, de-
velopment, and utilization of safe and effective treatments for 
COVID-19. We strongly encourage expedient publication of 
subsequent work based on this. We note that other mecha-
nistic models, with different applications due to their smaller 
or distinct focus, emerged as we reached this stage of de-
velopment.19,20 These alternative approaches present a future 
opportunity for collaboration and sharing of data and findings.

METHODS

Our approach was enabled by significant adaptation of a 
prior model of inflammatory bowel disease.21 The model 
we are proposing is outlined below and in accompanying 
Supplementary Materials. Briefly, the model consists of 
49 state variables and 206 parameters. An exhaustive list 
of the states and parameters of the model is provided in 
the Supplementary Materials. Code is available in full at 
https://github.com/openP fizer/ covid 19-immun e-model.

Viral infection dynamics
We developed a set of ordinary differential equations to 
describe the dynamics of SARS-CoV-2 viral load, based 
on previously published models of influenza infection.22–24 
In our model, uninfected but susceptible AT2 cells are 
infected by SARS-CoV-2 to form productively infected 
cells, which shed viable virus particles that might be 
measured in a sputum sample or nasal wash. In contrast 
to prior models of viral dynamics, which assume a static 
initial pool of susceptible target (AT2) cells that cannot be 
replenished, we account for the regeneration of AT2 cells, 
intended to be a phenomenological representation of the 
activation of wound healing mechanisms upon alveolar 
cell depletion.5

Immune response dynamics
Equations from Rogers et al.25 were adapted to model im-
mune cells that are specifically activated by the presence of 

https://github.com/openPfizer/covid19-immune-model
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virus particles, infected cells, and by alveolar tissue dam-
age due to excessive inflammation. Although the immune 
response to respiratory viral infections involves multiple 
compartments, for simplicity we only consider alveolar and 
plasma compartments.

Both free virus particles and infected cells activate the in-
nate and subsequently adaptive components of host immune 
response.26,27 Our model specifically describes the virus and 
infected cell-induced activation/maturation of alveolar-resident 
macrophages, neutrophils, and dendritic cells (DCs). Moreover, 

Figure 1 Model diagram of viral dynamics coupled with immune response. Model diagram of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) dynamics coupled with immune response. The model schematic shows lung/alveolar space where virus 
particles infect healthy alveolar cells (AT2), which results in a positive feedback where infected cells produce additional virus particles. 
The infected cells produce cytokines to activate the innate immunity, which in turn leads to tissue damage of healthy alveolar cells, 
inducing additional innate immunity response. Although the immune response aids the clearance of infected cells and virus particles, 
the neutrophil activation can also damage AT2 and AT1 (not shown). The positive feedback, due to infected and damaged cells 
producing proinflammatory cytokines that enhance immune activation, is closely interlinked with the adaptive immunity. In addition, the 
anti-inflammatory signaling via regulatory T (Treg) cells serves to balance the pro-inflammatory response. A number of physiological 
and clinical biomarkers including surfactant protein D (SP-D), ferritin, C-reactive protein, neutrophils, M1 macrophages, cytotoxic 
lymphocytes, TH17, TH1, Treg and dendritic cells, IFN, TNF and interleukins IL-1, IL-2, IL-6, IL-10, IL-12, and IL-17 are found in the 
systemic circulation. ROS, reactive oxygen species.
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we consider the DCs to be the primary APCs and, as such, 
responsible for the activation of the adaptive immune cell pop-
ulations. The adaptive immune cell populations considered in 
the model include the CD8+ CTLs and the CD4+ Th1, Th17, 
and regulatory T cells. Although the CD8+ CTLs are critically 
involved in the clearance of infected cells, the CD4+ Th1 and 
Th17 cells are assumed to potentiate and sustain their activa-
tion by maintaining a permissive inflammatory milieu through 
the secretion of proinflammatory cytokines together with DCs, 
macrophages, and neutrophils. The CD4+ regulatory T cells are 
assumed to be the primary negative regulators of the immune 
response through the secretion of anti-inflammatory cytokines, 
such as IL-10 and TGF-β. As an example, Eq. 1 describes the 
activation of CD8+ CTLs as considered in the model.

Where,

Type I IFN induction of CTL activation

IL-12 induction of CTL activation potentiated by IL-2

IFNγ induction of CTL activation

IL-10 and TGFβ-mediated inhibition of CTL activation

The production of CD8+ CTLs is activated by viral epi-
tope-responsive mature DCs, and further induced by IL-12, 
IL-2, IFN-γ, type I IFN, and inhibited by IL-10 and TGF-β 
concentrations. Additionally, the ability of IFN-γ and IL-6 to 
negatively regulate each other’s activity is also incorporated.28 
The clearance rate of CTL is determined by a nonspecific 
death/deactivation rate (β), and intercompartmental transport 
rate 

(

ktr[CTL]

)

. Given the uncertainty of viral infection-induced 
differential recruitment, we assumed equal immune cell tran-
sit rates between alveolar and plasma compartments.

Viral clearance and antiviral dynamics
The simulated viral dynamics are influenced by type I 
IFN, released by virus-infected cells and mature DCs, 
which inhibits the generation of infected cells, thus, im-
plicitly accounting for effects of IFN-stimulated gene 
expression products that are known to confer viral resis-
tance.29 Additionally, virus-activated CTLs contribute to 
viral clearance through their cytotoxic effects on infected 
cells, thereby reducing the rate of infectious viral shedding. 
Finally, we assume that DCs, macrophages, and neutro-
phils, upon viral recognition, contribute to overall viral 
clearance through the phagocytosis of viral particles and 
apoptotic infected cells.

Virus and immune-induced damage
As mentioned above, in contrast with most other models of 
the immune response to respiratory viral infections,30 we ex-
plicitly account for damage and inflammatory death of AT2 
cells that might occur due to both viral infection as well as 
the effects of proinflammatory cytokines. Such immune-in-
duced damage is particularly important in facilitating and 
sustaining pathophysiological outcomes associated with 
cytokine storms.31,32

Additionally, we include a population of type I alveolar 
(AT1) cells, which are assumed to be relatively resistant to 
viral infection33 but might perpetuate a hyperinflammatory 
state by undergoing inflammatory cell death (e.g., pyroptosis 

(1)

CTL

dt
= �CTLDC[1 + aIFNβ ] [1 + aIL12 + aIFN� ] [aIL10/TGFβ ] − �CTLCTL - ktr[CTL]CTL

CTL is the number of alveolar CD8 + cytotoxic T cells

[

CTL
]

(cells∕�L) =
CTL

alv_vol
;

alv_vol is the volume of the alveolar compartment

aIFNβ =
kMHCI[IFNβ]IFNβ

kmMHCI[IFNβ] + IFNβ

aIL12 =

(

kCTL[IL12]IL12

kmCTL[IL12] + IL12

)(

1 +
kCTL[IL2]IL2

kmCTL[IL2] + IL2

)

aIFNγ =

(

kCTL[IFNγ]IFNγ

kmCTL[IFNγ] + IFNγ

)(

kCTL[IL6]

kmCTL[IL6] + IL6

)

aIL10/TGFβ =

(

kCTL[IL10]

kmCTL[IL10] + IL10

)(

kCTL[TGFβ]

kmCTL[TGFβ] + TGFβ

)

Figure 2 Past and future development plan. We developed a set 
of ordinary differential equations (ODEs), specified preliminary 
parameters sets and devised qualitative unit tests to assess 
whether the model’s structure captures the required behavior 
(green). The results from these efforts are described in this 
paper. We are building a database for quantitative testing and 
seeking external feedback for critical additions to the model 
(orange). Next, we will incorporate new emerging data, build 
virtual populations, and ensure that updated model passes 
the quantitative tests before applying this quantitative systems 
pharmacology (QSP) model to questions of interest (red).
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and necroptosis/necrosis) as a result of the viral induction of 
the immune response.

Clinical biomarkers
We modeled multiple disease-relevant clinical biomark-
ers.34,35 We incorporate three biomarkers commonly 
monitored in hospitalized cases of COVID-19: CRP, which 
is a general marker of inflammation; and ferritin and SP-D, 
which are leakage products of alveolar cell damage.36,37 In 
our model, we assume IL-6 induces the hepatic production 
of CRP, whereas ferritin and SP-D are produced by the death 
of damaged alveolar cells. All three biomarkers are assumed 
to be released into systemic circulation from their respective 
sites of production.

Model development plan and unit tests
The size and scope of the model is such that for efficient 
development we decided to report its content at a rela-
tively early point in its development (Figure 2). At this stage 
of our workflow, we have refined the model (green boxes, 
Figure 2) such that it passes key qualitative unit tests.

Unit Test 1: Nominal case of healthy response. 
• Unit test 1 (U1) Purpose: Demonstrate engagement of 

the innate immune system and pathogenesis of COVID-
19 that might typically be seen in patients with moder-
ate symptom severity.

• U1 Criteria: Simulated viral peak at approximately 
4  days, viral clearance (viral load  <  100 copies/mL) 
within 30 days, and an engagement of innate immunity. 
Post-viral clearance, alveolar cells, activated immune 
cells, and cytokines return to baseline.

• U1 Simulation Method: The model was calibrated to fit 
the criteria of U1, a physiological representation of a 
“moderate” immune response to COVID-19 infection, 
which resolved upon viral clearance. U1 was used as 
the foundation for the other unit tests.

Unit test 2: No innate immune recognition of virus. 
• Unit test 2 (U2) Purpose: Demonstrate the contribu-

tion of innate and adaptive immune mediators on viral 
clearance by uncoupling the contribution of the im-
mune response from the other clearance mechanisms 
accounted for in the model. This nonphysiological ex-
ample is an important control for model development 
and ensures the functional role of the immune response 
in this model.

• U2 Criteria: Without innate immunity viral load peak is 
higher and clearance is slower than U1.

• U2 Simulation Method: U1 plus silencing of innate im-
mune activation (no activation of dendritic cells, mac-
rophages, or neutrophils and effect of type I IFNs).

Unit test 3: Sterile inflammatory response. 
• Unit test 3 (U3) Purpose: Demonstrate that there is a 

damaged cell-induced inflammatory response inde-
pendent of the virus-induced immune response.

• U3 Criteria: Damaged cells induce a sterile inflamma-
tory response. Post-clearance of damaged cells, the 
alveolar cells, activated immune cells, and cytokines 
return to baseline.

• U3 Simulation Method: U1 with an initial condition of 
damaged AT1 and AT2 cells at the start of the simula-
tion, but no viral inoculum.

Unit test 4: Sustained inflammatory response. 
• Unit test 4 (U4) Purpose: Demonstrate a sustained in-

flammatory response characterized by prolonged im-
mune activation even after the virus is cleared.

• U4 Criteria: Sustained immune response after virus 
clearance that leads to alveolar cell damage.

• U4 Simulation Method: U1 with increased cytokine-
induced damage to healthy alveolar cells at baseline 
and after virus exposure.

Sensitivity and strength of response to infection. 
To determine the sensitivity and strength of response to 
infection, the half-saturation constants 

(

kmV, kmI, kmdAT

)

 
and the maximal innate immune activation rates 

(

kV, kI, kdAT
)

 
of virus, infected cells, and damaged cells were explored. 
The explored sensitivities and strength of response to 
infection were 2 and 1 order of magnitude above and below 
that of the nominal case (U1).

Virtual population analysis
One thousand plausible patients were generated using a 
Latin hypercube sampling approach. The immune response 
parameters bounds were one magnitude above and below 
that of the nominal case (U1) to explore a wide range of pa-
rameter space. The viral dynamic parameter bounds were 
50% above and below that of the nominal case (U1) to avoid 
nonphysiological viral dynamics.

RESULTS
Viral and cell damage dynamics
The critical role of viral and immune-induced tissue damage 
in facilitating and sustaining pathophysiological response 
under normal (healthy) immune response, no innate 
immune recognition of virus, sterile and sustained inflam-
matory response conditions (as specified by U1–U4 tests) 
is shown in Figure 3. As required by U1, the viral load peaks 
around 4 days, with a peak of around 10 log10 viral RNA 
molecules/mL and is significantly cleared within ~ 30 days. 
The simulated time to peak in viral load is in qualitative 
agreement with clinical observations, which suggest that 
SARS-CoV-2 achieves peak viral loads relatively quickly, 
roughly coinciding with symptom onset,38 and with an es-
timated incubation period of about 4–7 days.39 Simulated 
viral loads in the nominal unit test are qualitatively compa-
rable to those typically observed in nasopharyngeal swab 
samples in patients with COVID-19, as reported in a recent 
meta-analysis of over 2,200 samples in 315 patients by 
Gastine et al.40 Moreover, peak viral loads are in agreement 
with data that have been shown to range between 8 log10 
and 11 log10 RNA molecules/mL40–42 in severe hospitalized 
cases.

In the case where there is no innate immune response, 
the model simulation results in a higher viral load and slower 
clearance of the virus, as required by U2, which is entirely 
mediated by the complete depletion of infectible AT2 cells 
in the terminal phase of the dynamics. In the sustained 
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inflammatory case (U4), the viral dynamics are similar to 
those of the nominal case; however, in contrast to U1, there 
is a large increase in the damaged AT2 cell population that is 
sustained post-viral clearance.

Immune cell and cytokine response
The degree of immune response across tests U1–U4 is de-
fined by both plasma and lung cytokine dynamics (Figure 4) 
and cell populations (Figure 5). Although there is currently 
much uncertainty regarding the tissue level response, we 
anticipate being able to refine the model once these data 
emerge (either from clinical or representative preclinical ex-
periments). The nominal case simulation (U1) gives rise to 
an immune response that resolves as the virus is cleared. 
Specifically, sufficient virus exposure induces the activa-
tion of innate immune cells, such as macrophages, DCs, 
and neutrophils (Figure 5a,b,e,f), which exhibit a peak in 
activity that aligns with the peak in viral load. The adap-
tive immune cells, activated by APC, peak shortly after the 

peak in innate immune cells (Figure 5c,d,g,h) with CD8+, 
cytotoxic T-cells serving to clear infected cells. In addi-
tion to their clearance mechanisms of virus and infected 
cells, innate and adaptive immune cells also facilitate the 
production of cytokines (Figure 4a–h) that limit the infec-
tion and support the resolution of the immune response. 
For simplicity, we model virus-activated and damage-ac-
tivated immune cells only, which are minimally present 
prior to viral exposure. In order to depict the qualitative 
correspondence of our simulations with clinically reported 
immune cell dynamics over the course of a viral infection 
we superpose plasma immune cell counts that are virus 
induced over corresponding immune cell counts that are 
typically observed in healthy volunteers (Figure 5).43–45 The 
proinflammatory cytokines in the plasma and lungs follow 
a similar time course, with the increased cytokines levels in 
the lungs, reflected in systemic circulation (Figure 4a–h). 
We have superimposed median plasma cytokine concen-
trations measured in patients with severe COVID-19 from 

Figure 3 Viral and cell damage dynamics in unit tests. (a) Viral load with an initial inoculum equivalent to 1 million viral RNA molecules/
mL in a nasal or sputum sample. (b) Infected cells formed from healthy type II alveolar (AT2) cells. (c) Angiotensin converting enzyme 2 
(ACE2)-negative healthy type I alveolar (AT1) cells assumed to be uninfectable. (d) Susceptible AT2 cells in response to viral infection. 
(e) Damaged AT1 cells scaled to the maximum of nominal case of 4.45 million damaged AT1 cells and (f) Damaged AT2 cells scaled 
to the maximum of nominal case of 5.16 million damaged AT2 cells. Median and maximal viral load measurements of nasopharyngeal 
swab samples from patients with coronavirus disease 2019 (COVID-19) from Gastine et al.40 are depicted with green dashed lines. Data 
from Gastine et al. depicted in this figure was published by the authors (at https://github.com/ucl-pharm acome trics/ SARS-CoV-2-viral 
-dynam ic-meta-analysis).

https://github.com/ucl-pharmacometrics/SARS-CoV-2-viral-dynamic-meta-analysis
https://github.com/ucl-pharmacometrics/SARS-CoV-2-viral-dynamic-meta-analysis
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studies by Lucas et al.46 and Vanderbeke et al.47 to show 
that simulated cytokine profiles in the nominal case (U1) are 
in qualitative agreement with a range of reported obser-
vations (Figure 4a–d). Furthermore, cytokine levels in the 
alveolar compartment are substantially higher than those 
in the plasma compartment, in agreement with reports 
comparing sputum, bronchoalveolar lavage, and plasma 
samples in patients with severe respiratory infections.43–45 
Finally, the acute activation of the immune response leads 
to a sharp increase in CRP levels, whereas damage of al-
veolar cells by infection and immune mediators results in 
an increase in ferritin and SP-D. Similar to the immune re-
sponse dynamics, biomarker levels return to baseline upon 
resolution of the immune response.

Conversely, if there is no innate immune recognition of the 
virus the simulations show an absence of activation of im-
mune cells and release of cytokines (as required by U2). The 
response to sterile damage (U3) shows a mild induction of 
immunity; however, as expected, the response is a function 
of the extent of damage (not shown). The hyperinflammatory 
response shows a prolonged engagement of the immune 
response that extends beyond virus clearance (passing the 
criteria for U4). Specifically, the increase in proinflammatory 

cytokines, such as IL-6 (Figure 4a,e), results in the increased 
accumulation of damaged alveolar cells (Figure 3e,f), which 
perpetuates a prolonged immune response (in contrast 
to the resolving immune response observed in U1). This 
prolonged immune engagement and increased immune-in-
duced alveolar apoptosis leads to substantial elevation of all 
simulated biomarkers, which is in semi-quantitative agree-
ment with clinical observations in patients with COVID-19 
with hyperinflammatory ARDS.34,48

Sensitivity and strength of response to infection
To explore the behavior of the model further, we performed 
parameter sweeps across the sensitivity and strength 
of the innate immune response to the virus (Figure 6). It 
has been observed that severe pathogenesis of COVID-
19 can be related to an escape of innate immunity and 
associated poor IFN response.4,49 Our model qualitatively 
matches this observation, with increased viral-load and 
increased infection time as the strength and sensitivity of 
the response is reduced (Figure 6a,b). Interestingly, and 
with potential relevance for identification of at-risk pa-
tients for putative treatment, we note a bimodal response 
in IL-6 and hence CRP (Figure 6c,d). Our finding suggests 

Figure 4 Cytokine response in unit tests. (a) Increase in damage inducing IL-6 levels in plasma in response to viral infection, commonly 
used as a marker of inflammation. (b) Type I IFN levels in plasma indicative of endogenous antiviral response. (c) IFNγ levels in plasma, 
indicative of CD8+ cytotoxic T-cell (CTL) activation. (d) Immune suppressive IL-10 levels in plasma indicative of regulatory T (Treg) 
activation. Corresponding levels of (e) IL-6, (f) type I IFN, (g) IFNγ, and (h) IL-10 at alveolar site of infection. Median cytokine levels from 
patients classified as having severe/critical COVID-19 from Lucas et al.46 and Vanderbeke et al.47 are depicted with the dashed green 
lines. Raw data depicted in this figure from Lucas et al. was published by the authors, whereas data from Vanderbeke et al. Figure S2 
was digitized from their publication using DigitzeIt (https://www.digit izeit.de/). U1, unit test 1; U2, unit test 2; U3, unit test 3; U4, unit 
test 4.

https://www.digitizeit.de/
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that a high level of inflammation can be induced both by 
a virus-mediated innate immune cell activation that is too 
weak (bottom left corner, Figure 6c,d) or too strong (top 
right corner, Figure 6c,d). In the case of weak innate ac-
tivation, the resulting low-level of immune-mediated viral 
clearance leads to high levels of intrinsic IL-6 production by 
virus-infected cells, caused by the elevated viral load and 
prolonged virus-induced stimulation. Importantly, weak in-
nate immune activation and delayed viral recognition by the 
immune system is hypothesized to lead to poor outcomes 
of COVID-19.4,50 Interestingly, the model predicts that the 
hyperinflammatory response to strong innate immune acti-
vation is triggered by an overly sensitive immune response, 
due to extensive alveolar cell damage despite enhanced 
viral clearance. Future work will investigate these dynam-
ics and will explore how model and parameter uncertainty/
variability, sufficient to explain observed clinical variability, 
affect these findings.

Pathophysiological heterogeneity
To evaluate the ability of our model to support the construc-
tion of a virtual population,51 we examined the response to 
resampling a subset of parameters that describe the rela-
tive strength of virus infectivity and the immune system (see 
Supplementary Materials).

The model is capable of representing cases of robust 
viral clearance, with viral loads decreasing to 100 RNA 
molecules/mL within 20  days postinfection, as well as 
cases where the viral infection is sustained indefinitely 
(Figure 7a). Similar to the viral dynamics, we also identi-
fied cases of AT2 recovery and the clearance of damaged 
cells, as well as sustained viral infection and cell damage 
(Figure 7b–d). Preliminary virtual population analysis show 
the Type I IFN and proinflammatory IL-6 response corre-
spond to the viral and cell damage dynamics (shown in 
Figure 7e,f). To compare the temporal dynamics of the sim-
ulated species depicted in Figure 7a,e,f against clinically 
reported dynamics, we have superimposed published data 
on longitudinally obtained nasopharyngeal viral load mea-
surements, plasma IL-6, and IFN-⍺ measurements from a 
cohort of patients moderate and severe COVID-19.46 We 
note that whereas we depict the simulated trajectories 
with respect to time since viral infection, clinical data are 
almost always characterized with respect to the time since 
reported symptom onset. Despite substantial uncertainty in 
the relation between reported time since clinical symptom 
onset and time since viral infection (i.e., the incubation pe-
riod), our preliminary virtual population simulations are in 
qualitative agreement with range of clinically reported ob-
servations. In future iterations, we will explicitly calibrate 

Figure 5 Immune cell response in unit tests. (b) Increased levels of total dendritic cells (DCs) in response to detection of viral particles. 
(b) Time course of total neutrophil (N) levels in plasma indicative of innate immune activation. (c) Total CD4+ T cells in plasma, 
composed of Th1, Th17, and regulatory T (Treg) subsets. (d) Total CD8+ cytotoxic T-cells (CTLs) in plasma. Nominal plasma levels  
of each cell type are superimposed in b–d to depict change in respective total cell count. Corresponding levels of (e) DC, (f) N,  
(g) CD4 + T cells, and (h) CTL at alveolar site of infection.
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the model response to longitudinal studies characterizing 
both viral load and immune mediators, which will enable 
us to better align simulated trajectories with the observed 
temporal dynamics of these species. Moreover, we will 
more comprehensively tune the variability in the parameters 
used to generate virtual populations in order to better differ-
entiate between mild and severe cases of COVID-19 based 
on available data. Furthermore, our results are consistent 
with recent studies, which suggest that type I IFN activity 
in response to viral infection may be correlated to disease 
progression.52–54 The variability of type I IFN and IL-6 re-
sponse indicates that the current framework is capable of 
capturing an antiviral response ranging from mild to critical.

For completeness, the response range of all model spe-
cies to variability in model input parameters is included in 
the Supplementary Materials.

DISCUSSION

We present a prototype QSP model of the pathogenesis of 
COVID-19. QSP models often serve as evolving repositories 

of our current quantitative biological and pharmacological 
knowledge, and have been applied to improve the quality, 
cost, and speed of clinical development.55,56 However, given 
the urgency in finding treatment options amidst continuously 
emerging data coupled with the typically slow development 
time for a QSP model, we deliberately modified our stan-
dard workflows and timelines in order to publish this model 
as a prototype for feedback and continued development by 
the scientific community in an open forum.

The presented prototype model is capable of simulating 
moderate (resolving) and severe (sustained inflammatory) 
responses to SARS-CoV-2 infection. We associate this sus-
tained inflammatory response and damage with an ARDS-like 
phenotype. By varying the strength and sensitivity of the re-
sponse to infection, the model demonstrated that variability 
in response to infection could contribute significantly to the 
heterogeneous response in terms of viral and immune dy-
namics. Furthermore, by varying a small subset of model 
parameters, we confirmed the model will support develop-
ment of a virtual population for close matching of clinical 
data. For this purpose, we include key clinical biomarkers, 

Figure 6 Model outcomes are sensitive to the strength of the innate immune response. Strength and sensitivity are defined as the 
maximum rate and the inverse of half-saturation constant of immune activation relative to the nominal response (outlined in black), 
respectively. (a) Maximum viral load. (b) Time postinfection for viral road to reduce to 50% of peak. (c) Maximum circulating IL-6. (d) 
Maximum circulating CRP. t1/2, terminal half-life.
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such as CRP and IL-6, to link clinical observations to disease 
state at the tissue level, particular in response to treatment.

The model has been designed so that putative therapies, 
including anti-inflammatory or antiviral therapies, are rel-
atively straight forward additions to the model; however, 
we have refrained from inclusion of pharmacological inter-
ventions at this early stage to emphasize that this model 
requires further development and evaluation/validation 
prior to these applications. For instance, a preliminary 
incorporation of antiviral therapies based on an under-
standing of their mechanisms of action could be performed 
by accounting for their influence on several parameters 
influencing viral dynamics in the model (e.g., the rate of 
productive infection of AT2 cells by virus, the rate of viral 
shedding, or the endogenous viral clearance rate might be 
appropriately modified to capture the effects of antiviral 
therapies on viral entry, viral translation, and viral protein 
cleavage, respectively). However, if required, the model can 

be further expanded to incorporate additional mechanisti-
cal detail in order to more appropriately model antiviral or 
anti-inflammatory therapies based on their specific mech-
anisms of action.

There are several areas where emerging data will lead to 
model refinements. In particular, quantitative tissue dynam-
ics and concentrations are yet to be elucidated in literature. 
For instance, despite several clinical reports of lymphopenia 
in severe cases of COVID-19,57 we do not explicitly account 
for the emergence of this phenomenon in our model, pri-
marily due to a high degree of uncertainty around the causal 
mechanisms.57 Future work could include model evaluation 
of hypothetical causes of lymphopenia, including differential 
immune cell recruitment to the site of infection, and infec-
tion-induced or excessive inflammation-induced immune cell 
apoptosis.57 Moreover, although we account for adaptive 
immune CD4+ and CD8+ T cells, we have not explicitly in-
cluded a virus-specific antibody response, given that there is 

Figure 7 Preliminary virtual population captured variability of viral dynamics to evaluate mild and severe cases of coronavirus disease 
2019 (COVID-19). Shaded grey regions indicate 20th percentile—80th percentile interval, with nominal response (unit test 1 (U1)) 
superimposed (blue). Simulated time-course of viral load with an initial inoculum ranging from 100 thousand to 10 million viral RNA 
molecules/mL in a nasal or sputum sample. (b) Time course of susceptible type II alveolar (AT2) cells in response to viral infection. (c) 
Time course of infected cells formed from AT2 cells. (d) Time course of infection-resistant AT1 cells. (e) Time course of damaged AT1 
cells due to immune activation and (f) damaged AT2 cells due to viral infection and immune activation. Red dots depict the 20th–80th 
percentile interval for viral load, type I IFN, and IL-6 levels in patients classified as having moderate or severe COVID-19 from Lucas et 
al.46 Raw data depicted in this figure from Lucas et al. was published by the authors as online Supplementary Material.
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significant uncertainty around the time to onset and duration 
of such a response. We anticipate that accounting for an anti-
body response will enable further refinement of viral clearance 
to better match clinically observed dynamics.38,41 However, 
we will note that the most severely ill patients at their time 
of hospitalization appear to have significant viral load—indi-
cating they have not, as yet, mounted a successful antibody 
response. In this model, we have assumed well-mixed com-
partments suitable for modeling with ordinary differential 
equations. However, spatial effects could lead to different con-
clusions about certain aspects of COVID-19 pathophysiology. 
As such, a future direction for this work is to adapt this model 
into other frameworks that describe the pathophysiology of 
COVID-19 at this level.58 Incorporating spatial effects could, 
for instance, provide additional insight into whether the clini-
cal presentation of ARDS in COVID-19 is atypical compared 
with other virus-caused ARDS (as suggested by emerging and 
controversial data,59 there appears to be two types of ARDS, 
with decreased and nondecreased lung compliance).

The next stage of model development is quantitative unit 
testing to constrain the model using, ideally, clinical data. 
The existing data reported in the literature presents several 
challenges. First, it is biased toward hospitalized patients, 
which limits a comparison with milder pathophysiology. 
Second, for hospitalized cases, it is not always clear how to 
compare across groups because the time of infection onset 
is generally unknown (only the day of admittance). Hence, 
a future area of work is the development of virtual patients 
with variable admittance time relative to infection time.

Key model outputs capturing the viral and immune dy-
namics are clearly sensitive to parameters that control 
recognition of the virus and the strength of the response 
to it (Figure 6). Furthermore, varying a small subset of 
key parameters (such as viral shedding, clearance, and 
endocytosis rates; the activation rate of innate immune 
cells by virus and infected cells, the rate of cell damage 
from cytokines, and the clearance rate of infected cells 
by CD8+ T cells) was able to drive a significant amount 
of the observed clinical heterogeneity (Figure 7). Further 
data, and model development, will be required to validate 
the mechanistic sources of the heterogeneity in COVID-19 
pathogenesis.

There are a myriad of potential adaptations and ex-
tensions to this model. In particular, other distinct 
components of the pathogenesis could be included. In 
particular, the complex feedback between the coagulation 
and inflammation responses is beyond the scope of the 
modeling presented here, but quantitative studies of this 
coordination form an interesting future direction for better 
understanding of the pathophysiology of COVID-19 and 
DIC.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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