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Abstract: This study used objective Global Positioning Systems (GPS) to investigate the 

relationship between pedestrian and vehicle trips to physical, cognitive, and psychological 

functioning in older adults living in retirement communities. Older adults (N = 279;  

mean age = 83 ± 6 years) wore a GPS and accelerometer for 6 days. Participants completed 

standard health measures. The Personal Activity and Location Measurement System 

(PALMS) was used to calculate the average daily number of trips, distance, and minutes 

traveled for pedestrian and vehicle trips from the combined GPS and accelerometer data. 

Linear mixed effects regression models explored relationships between these transportation 

variables and physical, psychological and cognitive functioning. Number, distance, and 

minutes of pedestrian trips were positively associated with physical and psychological 

functioning but not cognitive functioning. Number of vehicle trips was negatively associated 

with fear of falls; there were no other associations between the vehicle trip variables and 

functioning. Vehicle travel did not appear to be related to functioning in older adults in 

retirement communities except that fear of falling was related to number of vehicle trips. 

Pedestrian trips had moderate associations with multiple physical and psychological 
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functioning measures, supporting a link between walking and many aspects of health in  

older adults. 

Keywords: physical mobility; life-space mobility; older adults; Global Positioning System 

(GPS); physical functioning; psychological functioning; cognitive functioning; health 

 

1. Introduction 

There is a well-documented trend in the increasing number of adults over the age of 65 in the United 

States and worldwide. According to the Administration on Aging (AOA), the number of adults over 65 

is expected to grow from 39.6 million in 2009 to about 72.1 million by 2030, representing 19% of the 

population [1]. Not only are more people turning 65 each day, but people are also living longer than ever 

before [2–4]. Many older adults wish to remain in their homes, but studies have shown that environments 

in retirement communities can also support healthy activities [5]. It is important to understand the impact 

of place on continued mobility in older adults.  

As individuals age, there is a reduction in mobility that has been linked to a number of health 

outcomes [6]. Mobility can be defined as physical mobility, which is highly related to the ability to walk 

and includes an individual’s capability to engage in activities of daily living [7]. Several studies have 

indicated that physical mobility is an important element in quality of life as it allows older adults to 

continue leading dynamic and independent lives [8,9]. Physical mobility delays the onset of disabilities, 

postpones frailty, and contributes to subjective well-being and life satisfaction [6].  

Mobility can also be defined as movement extending from within one’s home to movement beyond 

one’s town or geographic location which is known as life-space mobility [10]. Life-space mobility has 

been linked to physical function with mobility in one’s home and community surroundings highlighted 

as strong predictors of physical disability [11]. The degree of an older adult’s life-space mobility has 

also been found to correlate with his/her social and emotional life. For example, people who  

are more mobile report less loneliness and stronger feelings of community integration [8]. In older 

persons with cognitive decline, maintaining out-of-home life-space mobility is important as it has been 

found to positively impact their enjoyment, feelings of integration, satisfaction, and sense of  

autonomy and identity [12,13]. For the majority of Americans, driving is important for maintaining 

quality of life and independence [13]. Driving cessation is also associated with a number of negative 

consequences including increased social isolation, depression, and a greater risk of long-term  

care placement [13].  

The relationship between physical and life-space mobility is especially important given the increasing 

number of older adults. Most previous studies that have explored the relationship between physical 

mobility and health in an older adult population have relied on measures of functional independence 

including self-report measures of an individual’s ability to participate in activities of daily living 

including bathing or dressing [7]. Other methods have included objective measures of physical 

functioning such as gait [14,15]. The most common measure of life-space mobility is the self-reported 

Life-Space Assessment, which measures mobility based on the distance a participant reports moving 

during the 4 weeks preceding the assessment [16]. Other measurement methods involve travel journals, 
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which ask participants to record a location and travel behavior for 12 h at 5 min intervals [13]. This type 

of data collection can be extremely burdensome and, given the memory impairments associated with 

aging [17], the validity of these self-report measures may be low [18,19].  

New measurement methods have been deployed to reduce the burden on the participant and to capture 

more accurate data based on objective measures. One such method involves equipping participants with 

Global Positioning System (GPS) tracking devices. These devices capture real-time data that can 

objectively track the location of an individual [20]. Additionally, GPS technology overcomes a number of 

limitations associated with previous assessment methods (i.e., travel diaries, self-report surveys) by 

reducing potential for social desirability and reporting fatigue because the device passively captures data 

without burdening the participant. Further it has been found that participants round up travel times and are 

very poor estimators of travel distance [21]. These issues are likely magnified in older adults. The data 

from these devices can be processed and analyzed to detect a variety of transportation variables including 

trips, locations, mode of transportation, and whether a participant is indoors or outdoors [20,22–23].  

These variables can be especially valuable when trying to identify certain patterns related to specific 

populations of interest. Previous studies that have used GPS data have involved different population 

groups such as individuals with Alzheimer’s disease or cognitive impairment [24,25]. Additionally, 

studies have used GPS devices to capture mobility related behaviors (e.g., activity space, out of home 

mobility, and life-space) [26–28]. Studies have yet to relate GPS transportation variables to multiple 

health characteristics. Therefore, the purpose of the current study was to explore the utility of GPS  

data to explore transportation behaviors as related to various health measures in a population of healthy 

older adults residing in retirement communities. Specifically, we evaluated the relation of the (1) number 

of pedestrian and vehicle trips per day; (2) distance traveled per day in pedestrian and vehicle trips;  

and (3) daily minutes spent in pedestrian and vehicle trips, to physical, psychological, and  

cognitive functioning.  

2. Methods 

2.1. Study Design and Procedures  

Data for this study were from baseline assessments in the Multilevel Intervention for Physical Activity 

in Retirement Communities (MIPARC) which was a group randomized controlled trial consisting of adults 

(n = 279) over 65 years of age residing in retirement communities throughout San Diego County [29]. 

Twenty sites that were identified from the county Elder Care database met the criteria for participation 

which included: more than 100 residents, independent living accommodations, and a park or shops 

within walking distance (i.e., one mile). A total of 11 retirement communities completed the study. 

Additional details regarding the study design are described elsewhere [29].  

2.2. Study Participants  

Eligible participants completed an informed consent process and had to meet the following criteria to 

participate in the intervention: (1) ability to read and speak English; (2) ability to provide informed 

consent; (3) no history of falls within the past 12 months that resulted in hospitalization; (4) ability to 

walk 20 m without human assistance; (5) completion of the Timed Up and Go Test in less than 30 s [30]; 
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(6) ability to read survey questions; and (7) completion of a post-consent comprehension test to ensure 

cognitive acuity for participation. The post-consent test asked participants to answer three questions 

regarding the study that were covered during the consent process. Specifically, participants were asked 

to: (1) Name two things he/she would be expected to do as a participant in the study; (2) Identify the 

duration of the study; and (3) Describe what he/she would do if he/she no longer wished to participate 

in the study. Because participants were enrolling into a research study, the post-consent test was used to 

ensure comprehension of study requirements (i.e., wearing the device belt, completing study surveys). 

The exclusion criteria required for safe participation in the intervention study, likely excluded older 

adults with functional impairment that may affect their mobility and the generalizability of these 

analyses. Further only those who could comprehend study procedures were included. This may have 

removed those with severe cognitive decline and also reduced our ability to detect associations with 

cognition. Only 8% of those screened were excluded due to a fall, and less than 2% due to cognitive 

problems or the timed up and go. All study activities took place at the retirement communities and 

participants were compensated $10 for the baseline measurement visit which lasted approximately 90 min. 

Ethical review and approval for the study was obtained from the University of California, San Diego 

Human Research Protections Program. 

2.3. Measures and Procedures 

2.3.1. Demographics 

Participants completed a self-report survey regarding demographic characteristics at the  

baseline measurement visit. Demographic variables included in the analyses were self-reported age, sex, 

and education. Education attainment was dichotomized (i.e., less than college versus college  

degree or above). 

2.3.2. Physical Functioning 

To objectively measure physical functioning, participants completed the 400 Meter Walk Test 

(400MWT) [31] and Short Physical Performance Battery (SPPB) [32]. Participants were allowed  

to rest (without sitting down) during the 400MWT, but had to complete the task within 15 min. 

Individuals who did not complete the task in the allotted time were omitted from the analyses.  

The SPPB has been shown to predict disability [14,15] and assesses balance, strength (how long it takes 

to rise from a chair 5 times) and time to walk 4 m. We used the SPPB total score for the analyses.  

Pain interference was measured with the 6 item short form of the Patient-Reported Outcomes 

Measurement Information System (PROMIS) [33]. Standard procedures for PROMIS measures 

converted the raw scores into T-scores, with higher t-scores indicating more pain interference. See  

Table 1 for scoring protocols.  
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Table 1. Scoring protocol and descriptive statistics for dependent variables. 

Variable Scoring Protocol Range Sample Mean (SD) 

Physical functioning    

Physical Performance 

Battery (SPPB) 

Sum of scores on the three dimensions (i.e., 

balance, walk, chairs stands) ranging from 0 to 4  
0–12 8.67 (2.74) 

400 Meter Walk Test Time in seconds to complete the 400 m  269–858 444.41 (114.04) 

Pain Interference 

(PROMIS-PI)  
T-score of sum across 6 five-level Likert items 41–64 49.72 (7.90) 

Psychological functioning    

Fear of Falling (FES-I) Sum across 16 five-level Likert items 16–64 25.79 (8.11) 

Depression (CESD-10) Sum across 10 four-level Likert items 0–18 5.51 (4.02) 

Cognitive functioning    

Executive functioning, 

attention, visual search, 

and motor function (Trail 

Making Test) 

Time in seconds to complete Trails B minus the 

time in seconds to complete Trails A 
−13.09–275.78 90.25 (60.24) 

Visual perception and 

information processing 

speed (Symbol search)  

Number correct minus number incorrect within 

2 min 
1–47  19.86 (7.13) 

2.3.3. Psychological Functioning 

To measure depressive symptoms, participants completed the 10-item Center for Epidemiological 

Studies Depression Scale (CES-D-10) [34,35]. Scores ranged from 0 to 30 with scores of 10 or higher 

indicating clinically significant depressive symptoms [34,35]. To measure fear of falling, participants 

completed the 16-item Falls Efficacy Scale International (FES-I) [36–38]. Scores on the FES-I ranged 

from 16 to 64 with scores of 23 or higher indicating a high concern for falling. See Table 1 for details.  

2.3.4. Cognitive Functioning 

Participants completed the Trail Making Test A and B [39,40] and the Symbol Search subtest of the 

Wechsler Adult Intelligence Scale [41] to measure cognitive function (see Table 1). For the Trail Making 

Test, Trails A was completed first, followed by Trails B. Both items were scored using completion time 

in seconds and scores for participants who were unable to complete the test were set to the maximum 

value (180 s for Trails A and 300 s for Trails B). Trails A evaluates visual search and perceptual speed 

while Trails B examines working memory and task switching abilities [39,40]. Based on prior research, 

we estimated cognitive function by subtracting the completion time of Trails A from Trails B (Trails B 

time–Trails A time) [42]. The Symbol Search assesses visual perception and information processing 

speed by presenting participants with two symbols to the left of a set of five symbols aligned in a row [41]. 

Participants were given 2 min to determine row by row if the set of five symbols on the right included 
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either of the two symbols on the left. A summary score was calculated by subtracting the number 

incorrect from the number correct within the 2-min testing period.  

2.3.5. GPS and Accelerometer 

For the baseline measurement, participants were asked to wear a BT1000X GPS tracking device 

(Qstartz International Co. Ltd, Tapei, Taiwan) which has an accuracy of 3 m [43]. Participants were 

instructed by study staff how to charge the device every evening to ensure compliance. To measure 

physical activity, participants wore an Actigraph GT3X+ accelerometer (Actigraph, Inc., Pensacola, FL, 

USA), which was affixed to the same belt as the GPS device. Participants were asked to wear the belt 

for 6 days for a minimum of 10 h per day and were asked to re-wear the belt if these criteria were not 

met on at least 4 days based on screening of the accelerometer data. The standard for measuring physical 

activity via accelerometer typically requires a 7 day wear period [44] with five valid days accepted for 

data analysis; however, because the MIPARC population involved a sample of older adults who were 

retired or non-working, the need to include weekend days was not as important because the patterns of 

behavior in this population has been shown to be consistent across days [45]. The device deployment 

was conducted at the sites and on the same day each week to help participants, so only 6 days of wear 

were available. Because the accelerometer and GPS devices were affixed to the same belt, the same  

5 day valid wear period was applied to the GPS data.  

2.4. Data Processing 

Following the wear period, data from the GPS were merged to the accelerometers by time stamp using 

the Personal Activity Location Measurement System (PALMS) software. PALMS is a web-accessible 

service that is used to store, process, and merge time-stamped data from these types of devices [22,46]. 

PALMS aggregated these epoch-based data at the 1-minute level (i.e., each row of data represented  

1 person-minute), with one accelerometer value (i.e., count per minute) and one GPS coordinate noted 

for each minute. PALMS was used to remove potential errors in latitude and longitude coordinates 

caused by indoor jitter (i.e., indoor GPS signal interference) and outdoor multipath reflections (i.e., GPS 

signal interference caused by large urban canyons or high density canopies) [46]. PALMS was used to 

remove non-wear time based on the accelerometer. Non-wear time was defined as 90 consecutive 

minutes of zeros with a two minute threshold [47]. Days when the accelerometer was not worn for at 

least 10 h were excluded from the analyses. Because the GPS device is affixed to the same belt as the 

accelerometer and is difficult to remove from the belt, the same wear criteria for the accelerometer was 

applied to the GPS data.  

For the purposes of this paper, PALMS was used to identify potential trips and transportation mode. 

Trips were defined as groups of sequential GPS coordinates (≥2 fixes) of latitude and longitude 

coordinates that spanned ≥25 m with an average speed across fixes of ≥1.5 km/h [22]. We chose a short 

minimum trip distance of 25 m and trip time of 2 min due to the physical limitations of this population. 

PALMS does not require the origin and destination of a trip to be a different location; therefore, it is 

unknown whether or not a trip is for transportation or leisure. To classify transportation mode, trips with 

a 90th percentile speed of ≥10 km/h were classified as vehicle trips and trips with a 90th percentile speed 

of <10 km/h were classified as walking trips. Because of the potential of misclassification of bicycling 
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with this method, and the very small proportion of participants reporting bicycling, we eliminated 

participants who self-reported bicycling (N = 5). We also performed additional processing to maximize 

trip detection and mode classification accuracy with techniques that have been validated elsewhere [22]. 

Unfortunately PALMS does not employ the accelerometer data in its transportation algorithms and we 

have shown that additional accelerometer criteria improve predictions [22]. The following additional 

criteria were applied: (1) vehicle trips that were falsely identified as trips due to remaining GPS scatter 

(un-detected by PALMS) were removed if the probability of scatter was greater than 60% based on a 

validated algorithm [22]; (2) walking trips that were falsely identified as trips due to scatter (i.e., 

probability greater than 60%) were removed if the accelerometer showed a mean CPM of less than 500 

during the trip (walking CPM was based on counts seen in 400 m walking tests in this population); and 

(3) any walking trips with a mean CPM of less than 250 were also removed (walking CPM was based 

on counts seen in 400 m walking tests in this population). These decisions improved the valid trip 

detection by 30% for the walking trips and 28% for the vehicle trips.  

Data Aggregation 

The aforementioned minute-level data were aggregated using SPSS 21 to create trip-, day-, and 

participant-level datasets which were used to address the study aims. Aggregation proceeded in the 

following three steps: 

First, the data were aggregated to the trip level, where each case represented a unique participant trip 

(N = 6263 trips). Summary variables were created for each trip, including trip time (in minutes), distance 

(in kilometers), and mode (pedestrian or vehicle). Additionally, a physical activity summary of mean 

counts per minute (CPM) from accelerometer data was created for each trip.  

Secondly, this trip level file was aggregated to create a day-level dataset which summarized daily trip 

characteristics for each participant day (N = 1675 participant days). Summary variables included total 

daily number of trips, minutes traveled, and distance traveled, stratified by transportation mode. 

Thirdly, the day-level file was aggregated to create a participant-level dataset which summarized trip 

characteristics for each participant across all of their days of wearing the devices (N = 279 participants). 

Summary variables were (1) mean number of trips per day; (2) mean distance traveled per day; and (3) 

mean minutes traveled per day, calculated separately for pedestrian and vehicle trips.  

2.5. Analyses 

Mean and standard deviation number of trips per day, distance traveled per day, and daily minutes 

for pedestrian and vehicle trips were calculated across all valid days of monitoring using the day-level 

data. Using the participant-level data, separate linear mixed-effects multilevel regression models were 

used to evaluate the relationship between travel behaviors (mean daily number of trips, distance traveled, 

and daily minutes for pedestrian and vehicle trips) and each of the individual health characteristics; 

resulting in 6 independent variables and 7 dependent variables. Site was included as a random effect to 

account for clustering by retirement community. Covariates included age, gender, and educational status. 

To eliminate any potential bias based on participants wearing the accelerometer and GPS devices for 

varying lengths of time, mean daily accelerometer wear-time was included in all models. Participants 

with one or more missing item on a scale were classified as missing on the scale to preserve psychometric 
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properties. Standardized regression coefficients (β) were calculated using z-scores for the independent 

and dependent variables so associations could be compared across models, and are reported in addition 

to unstandardized regression coefficients (B). All data processing and analyses were carried out using 

SPSS v22 software with significance set at p < 0.05. 

3. Results and Discussion 

3.1. Results 

A total of 279 (range 253– 279) participants were included in the analyses. Participant characteristics 

are described in Table 2. On average, participants were 83 ± 6 years old and 71% were female. Participants 

wore the accelerometer an average of 13.6 h per day (1.3 SD) for a mean of 5.1 days (1.9 SD). In the  

day-level data, participants had a mean of 10 min (10.6 SD) in pedestrian trips and 13.2 min (14.6 SD) 

in vehicle trips. The mean daily distance traveled by pedestrian trip was 0.5 km (0.6 SD) compared to a 

mean of 8.7 km (18.8 SD) for vehicle trips. Average accelerometer counts (that represent intensity of 

movement) during pedestrian trips were 1188.8 CPM (714.4 SD) and 219.7 CPM (317.1 SD) for vehicle 

trips. See Table 3 for additional details. 

Table 2. Demographics of participants included in the analyses. 

Demographic Mean (SD)/Frequency (%) 

Age 83 (6.3) 

Gender  

Men 81 (28.7) 

Women 201 (71.3) 

Education  

College and above 180 (64.7) 

Below college 98 (35.3) 

Wear-time (hours/day) 13.6 (1.3) 

Table 3. Day-level descriptives across all wear days. 

GPS Trip Variables Pedestrian [Mean (SD)] Vehicle [Mean (SD)] 

Daily time in trips based on GPS data (minutes)  10.2 (10.6) 13.2 (14.6) 

Daily distance in trips based on GPS data (km) 0.5 (0.6) 8.7 (18.8) 

Daily activity during trips based on accelerometer data (cpm)  1188.8 (714.4) 219.7 (317.1) 

3.1.1. Pedestrian Travel  

There was a significant positive relationship between the mean daily number, distance, and minutes 

of pedestrian trips with the SPPB indicating that participants who on average had more pedestrian trips, 

and traveled further and spent more time in pedestrian trips had higher scores on the SPPB (see Table 4). 

A significant negative association was found with mean daily number, distance, and minutes of 

pedestrian trips to the 400 Meter Walk Time indicating that those participants with more trips, with a 

further distance and more minutes in the behavior completed the walking task faster. There was a 

significant negative association with mean daily number, distance, and minutes of pedestrian trips to 
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self-reported pain interference. There were significant negative associations with mean daily number, 

distance, and minutes of pedestrian trips to fear of falls and depressive symptoms. Participants who had 

more pedestrian trips and traveled further with more time, reported lower fear of falling and fewer 

depressive symptoms. There were no significant associations for pedestrian trip variables (i.e., number, 

distance, minutes) with Trails A or B or the Symbol Search (see Table 4). 

Table 4. Relationship between number, distance, and minutes of pedestrian trips with health characteristics. 

 

Mean Daily Number of 

Pedestrian Trips 

Mean Daily Distance Traveled 

in Pedestrian Trips (per 10 m) 

Mean Daily Time Traveled in 

Pedestrian Trips (per 10 min) 

B (95% CI) β B (95% CI) β B (95% CI) β 

Physical functioning       

Physical Performance 

Battery (SPPB) 

0.46  

(0.20, 0.72) * 
0.22 

0.01  

(0.00, 0.10) ** 
0.23 

0.35  

(0.20, 0.50) ** 
0.22 

400 Meter Walk ª 
−40.57  

(−51.58, −29.57) ** 
−0.47 

−0.44  

(−0.60, −0.30) ** 
−0.37 

−24.47  

(−32.10, −1.69) ** 
−0.40 

Pain Interference ª 

(PROMIS-PI)  

−1.29 

 (−2.14, −0.44) * 
−0.26 

−0.02  

(−0.03, −0.01) ** 
−0.21 

−1.18  

(−1.8, −0.60) ** 
−0.26 

Psychological 

functioning 
      

Fear of Falling ª (FES-I) 
−1.08  

(−1.90, −0.26) * 
−0.17 

−0.02  

(−0.03, −0.01) * 
−0.18 

−0.80  

(−1.40, −0.20) * 
−0.17 

Depression ª (CESD-10) 
−0.49  

(−0.92, −0.06) * 
−0.16 

−0.01  

(−0.01, −0.00) * 
−0.20 

−0.47  

(−0.80, −0.20) 
−0.20 

Cognitive functioning       

Trail Making Test ª 
−0.46  

(−6.25, 5.30) 
−0.01 

−0.01  

(−0.01, 0.01) 
−0.01 

−0.04  

(−4.10, 4.10) 
−0.00 

Symbol search 
0.15  

(−0.57, 0.88) 
0.03 

0  

(−0.01, 0.01) 
0.01 

0.04  

(−0.50, 0.60) 
0.01 

Notes: * = significant at α < 0.05; ** = significant at α < 0.001. ª Negative associations indicate higher functioning 

and less impairment based on the measures. B = unstandardized regression coefficient; β = standardized 

regression coefficient (indicates a one standard deviation change in IV and DV).  

3.1.2. Vehicle Transportation 

There were no significant associations for the vehicle trip variables (i.e., number/day, distance/day, 

minutes/day) with the SPPB, 400 m walk, or pain interference. There was a significant negative 

relationship between mean daily number of vehicle trips and fear of falling, indicating that those 

individuals who had more daily vehicle trips had a lower fear of falling. There were no significant 

associations for mean daily distance and minutes of vehicle trips with fear of falling or mean daily 

number, distance, or minutes of vehicle trips with depressive symptoms. Additionally, there were no 

significant associations for vehicle trip variables (i.e., number, distance, minutes) with Trails A or B or 

the Symbol Search (see Table 5). 
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Table 5. Relationship between number, distance, and minutes of vehicle trips with health characteristics. 

 

Mean Daily Number of 

Vehicle Trips 

Mean Daily Distance Traveled 

in Vehicle Trips (per 10 km) 

Mean Daily Time Traveled in 

Vehicle Trips (per 10 min) 

B (95% CI) β B (95% CI) β B (95% CI) β 

Physical functioning       

Physical Performance 

Battery (SPPB) 

0.20  

(−0.05, 0.45) 
0.09 

0.04  

(−0.10, 0.10) 
0.04 

0.09  

(−0.03, 0.20) 
0.08 

400 Meter Walk ª  
−8.74  

(−20.28, 2.80) 
−0.09 

−0.30  

(−5.0, 4.40) 
−0.01 

−2.01  

(−7.30, 3.20) 
−0.05 

Pain Interference ª 

(PROMIS-PI)  

−0.11  

(−0.95, 0.74) 
−0.02 

−0.13  

(−0.50, 0.20) 
−0.05 

−0.13  

(−0.50, 0.30) 
−0.04 

Psychological 

functioning 
      

Fear of Falling ª (FES-I) 
−0.89  

(−1.70, −0.09) * 
−0.13 

−0.05  

(−0.40, 0.30) 
−0.02 

−0.22  

(−0.60, 0.10) 
−0.07 

Depression ª (CESD-10) 
−0.23  

(−0.65, 0.19) 
−0.07 

−0.04  

(−0.20, 0.10) 
−0.03 

−0.06  

(−0.30, 0.10) 
−0.04 

Cognitive functioning       

Trail Making Test ª 
0.43  

(−5.27, 6.12) 
0.01 

−1.61  

(−4.0, 0.70) 
−0.08 

−1.45  

(−4.1, 1.10) 
−0.06 

Symbol search 
0.36  

(−0.35, 1.07) 
0.06 

0.12  

(−0.20, 0.40) 
0.05 

0.22  

(−0.10, 0.50) 
0.08 

Notes: * = significant at α < 0.05; ** = significant at α < 0.001. ª Negative associations indicate higher functioning 

and less impairment based on the measures. B = unstandardized regression coefficient; β = standardized 

regression coefficient (indicates a one standard deviation change in IV and DV). 

3.2. Discussion 

This study is among the first to assess transportation mode objectively with GPS devices and relate 

this to important multiple health characteristics in older adults. Greater life-space mobility (i.e., 

travelling further in the community) which might be achieved through vehicle travel, did not appear to 

be related to functioning in older adults in retirement communities. Fear of falls was the only health 

characteristic related to number of vehicle trips. Physical mobility, as measured by walking trips, had 

moderate associations with multiple physical and psychological functioning indicators. It is possible that 

providing supportive environments and programs that support walking could benefit multiple aspects of 

health in older adults. Furthermore, the association between walking and health, particularly functioning, 

is likely cyclical, so supporting improved functioning through multiple mechanisms (e.g., walking, 

muscle strengthening) is likely needed to maximize health.  

There was no association between pedestrian trips and cognitive functioning. However, education 

status has been shown to be highly correlated with cognitive ability [48] which may limit our ability to 

identify such a relationship in this highly educated cohort. There were significant associations with 

pedestrian transportation (i.e., number, distance, minutes) and physical functioning which may be a 

result of the physical activity involved in walking. This association was also likely due to individuals 

with better functioning being physically able to walk more, though our inclusion criteria resulted in 
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eliminating those with severe physical impairments. There was also a strong negative association with 

greater pedestrian transportation and less fear of falls and depression. Previous research has highlighted 

the physical benefits of walking in older adult populations and the results from this study used a new 

measurement method with evidence of validity to further explore the relationship between physical 

health and specific metrics of walking trips. All three metrics, number of trips, distance and minutes 

were associated with trip variables. While longer trips would be expected to be related to health, a greater 

number of trips, which could also include short trips, was also important. 

No significant associations were found with vehicle transportation and physical and cognitive 

functioning. There was a small and significant negative association between the number of vehicle trips 

and fear of falling, but not vehicle distance or minutes traveled. Those who had more vehicle trips had 

less fear of falling. Fear of falling has been previously associated with walking but not vehicle travel. 

This indicates that falls may affect life-space mobility as well as physical mobility. Avoiding falls 

through safe environments, medication surveillance and balance training should be a priority for older 

adults [49,50]. The lack of an association between vehicle transportation and cognitive functioning could 

have been due to the fact that GPS cannot determine if the participant was the driver or passenger of the 

vehicle, which may require different cognitive abilities. Future research could further elucidate this 

relationship with the use of person worn cameras in combination with GPS data to determine 

participants’ driving behavior [18,19]. 

Our findings differ from some previous studies using GPS. For example, Wettstein et al. found that 

cognitive status did affect the complexity of mobility activities [26]. In addition self-reported Life-Space 

has been associated with cognitive impairments [51,52]. These studies, however, likely included older 

adults with greater cognitive decline than participants in our study. 

3.3. Strengths and Limitations 

This study was among the first to assess the relationship between GPS measured transportation 

behavior and physical, cognitive and psychological functioning in older adults living in retirement 

communities. Our study sample, while very old (average 84 years) were functionally mobile based on 

falls and timed up and go assessments required for participants in the study intervention and cognitive 

capable of participating in complex study. Our findings may not generalize to a more mobile population 

or those with severe cognitive impairments. While we employed validated algorithms in a two-step 

process, some error in GPS trip classification may still occur. Our study is strengthened by the inclusion 

of accelerometer data and counts derived from observed walking tests in this population and person worn 

camera data of acceleration observed in vehicle trips [22]. It is also possible that some trips were missed 

when participants were not wearing the study belt. However, our ability to assess whether the GPS was 

worn is much improved by the validated wear time criterion for the accelerometer which was on the 

same belt as the GPS. The cross-sectional data from this study do not shed light on the causal relationship 

between transportation behaviors and health characteristics. It is likely that the relationships are  

bi-directional and this could be assessed in future studies using longitudinal designs. For example, 

participants with higher physical and psychological functioning may be better able to engage in pedestrian 

travel or those with more pedestrian travel may have better functioning. Therefore, supporting functional 

and cognitive health in older adults likely requires strategies to support walking (e.g., improving access to 
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walkable environments) as well as strategies (e.g., correct medication, vision and hearing testing etc.) that 

support health across all domains (i.e., physical, psychological, and cognitive functioning).  

4. Conclusions  

Significant relationships were found with pedestrian transportation behaviors and health characteristics. 

These significant relationships may be due to the increased physical activity associated with walking 

transportation and the cyclical link between physical functioning and walking mobility. Increasing 

opportunities for walking and improved functioning in older adult populations may be especially 

valuable for health. This study used novel GPS techniques to evaluate these relationships and 

demonstrated the utility and construct validity of GPS data to explore transportation behaviors.  

Acknowledgments 

This study was funded by the National Heart, Lung, and Blood Institute, NIH. (R01 10152583). 

Jordan A. Carlson received funding from NIH grant T32 HL79891. 

Author Contributions 

Jacqueline Kerr conceived and designed the experiments; Jacqueline Kerr, Kevin Moran, Katie Crist 

performed the experiments; Michelle Takemoto, Jordan A. Carlson, Suneeta Godbole analyzed the data; 

Jordan A. Carlson contributed reagents/materials/analysis tools; Jacqueline Kerr, Michelle Takemoto, 

Jordan A. Carlson, Kevin Moran, Katie Crist, Suneeta Godbole wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. ACL. Aging Statistics. Available online: http://www.aoa.gov/Aging_Statistics/ (accessed on 27 

October 2015). 

2. Rice, D.P.; Feldman, J.J. Living longer in the United States: Demographic changes and health needs 

of the elderly. Milbank Mem. Fund Q. Health Soc. 1983, 61, 362–396. 

3. Lee, R. The Demographic Transition: Three centuries of fundamental change. J. Econ. Perspect. 

2003, 17, 167–190. 

4. Fries, J.F. Aging, natural death, and the compression of morbidity. N. Engl. J. Med. 1980, 303,  

130–135. 

5. Wert, D.M.; Talkowski, J.B.; Brach, J.; Vanswearingen, J. Characteristics of walking, activity, fear 

of falling, and falls in community-dwelling older adults by residence. source? J. Geriatr. Phys. 

Ther. 2010, 33, 41–45. 

6. Webber, S.C.; Porter, M.M.; Menec, V.H. Mobility in older adults: A comprehensive framework. 

Gerontologist 2010, 50, 443–450. 

7. Stalvey, B.T.; Owsley, C.; Sloane, M.E.; Ball, K. The Life Space Questionnaire: A Measure of the 

Extent of Mobility of Older Adults. J. Appl. Gerontol. 1999, 18, 460–478. 



Int. J. Environ. Res. Public Health 2015, 12 13935 

 

 

8. Metz, D.H. Mobility of older people and their quality of life. Transp. Policy 2000, 7, 149–152. 

9. WHO. |Physical Activity. Available online: http://www.who.int/topics/physical_activity/en/ 

(accessed on 27 October 2015). 

10. May, D.; Nayak, U.S.; Isaacs, B. The life-space diary: A measure of mobility in old people at home. 

Int. Rehabil. Med. 1985, 7, 182–186. 

11. Fried, L.P.; Bandeen-Roche, K.; Chaves, P.H.; Johnson, B. A Preclinical mobility disability predicts 

incident mobility disability in older women. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, 43–52. 

12. Werner, S.; Auslander, G.K.; Shoval, N.; Gitlitz, T.; Landau, R.; Heinik, J. Caregiving burden and 

out-of-home mobility of cognitively impaired care-recipients based on GPS tracking.  

Int. Psychogeriatrics 2012, 24, 1836–1845. 

13. O’Connor, M.L.; Edwards, J.D.; Waters, M.P.; Hudak, E.M.; Valdés, E.G. Mediators of the 

association between driving cessation and mortality among older adults. J. Aging Health 2013, 25, 

249–269. 

14. Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, 

S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency 

across studies, predictive models, and value of gait speed alone compared with the short physical 

performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, 221–231. 

15. Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity 

function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 

1995, 332, 556–561. 

16. Baker, P.S.; Bodner, E.V.; Allman, R.M. Measuring life-space mobility in community-dwelling 

older adults. J. Am. Geriatr. Soc. 2003, 51, 1610–1614. 

17. Golomb, J.; de Leon, M.J.; Kluger, A.; George, A.E.; Tarshish, C.; Ferris, S.H. Hippocampal 

atrophy in normal aging. An association with recent memory impairment. Arch. Neurol. 1993, 50, 

967–973. 

18. Kelly, P.; Doherty, A.R.; Hamilton, A.; Matthews, A.; Batterham, A.M.; Nelson, M.; Foster, C.; 

Cowburn, G. Evaluating the feasibility of measuring travel to school using a wearable camera.  

Am. J. Prev. Med. 2012, 43, 546–550. 

19. Hodges, S.; Williams, L.; Berry, E.; Izadi, S.; Srinivasan, J.; Bulter, A.; Smyth, G.; Kapur, N.; 

Wood, K. SenseCam: A retrospective memory aid. 2006, 4206, 177–193. 

20. Kerr, J.; Duncan, S.; Schipperijn, J.; Schipperjin, J. Using global positioning systems in health research: 

A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. 

21. Kelly, P.; Doherty, A.; Mizdrak, S.; Marshall, J.; Kerr, A.; Legge, S.; Godbole, H.; Badland, M.; 

Oliver, C.; Foster, C. High group level validity but high random error of a self-report travel diary, 

as assessed by wearable cameras J. Transp. Health 2014, 3, 190–201.  

22. Carlson, J.A.; Jankowska, M.M.; Meseck, K.; Godbole, S.; Natarajan, L.; Raab, F.; Demchak, B.; 

Patrick, K.; Kerr, J. Validity of palms GPS scoring of active and passive travel compared to 

sensecam. Med. Sci. Sports Exerc. 2015, 47, 662–667. 

23. Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; 

Glanz, K.; Cain, K.L.; Sallis, J.F. Association between neighborhood walkability and GPS-measured 

walking, bicycling and vehicle time in adolescents. Health Place 2015, 32, 1–7. 



Int. J. Environ. Res. Public Health 2015, 12 13936 

 

 

24. Oswald, F.; Wahl, H.-W.; Voss, E.; Schilling, O.; Freytag, T.; Auslander, G.; Landau, R. The use 

of tracking technologies for the analysis of outdoor mobility in the face of dementia: First steps into 

a project and some illustrative findings from Germany. J. Housing Elder. 2010 24, 55–73. 

25. Shoval, N.; Wahl, H.-W.; Auslander, G.; Isaacson, M.; Oswald, F.; Edry, T.; Heinik, J. Use of the 

global positioning system to measure the out-of-home mobility of older adults with differing 

cognitive functioning. Ageing Soc. 2011 31, 849–869.  

26. Wettstein, M.; Wahl, H.W.; Shoval, N.; Oswald, F.; Voss, E.; Seidl, U.; Frölich, L.; Auslander, G.; 

Heinik, J.; Landau, R. Out-of-home behavior and cognitive impairment in older adults: findings of 

the SenTra Project. J. Appl. Gerontol. 2015, 34, 3–25. 

27. Hirsch, J.A.; Winters, M.; Clarke, P.; McKay, H. Generating GPS activity spaces that shed light 

upon the mobility habits of older adults: A descriptive analysis. Int. J. Health Geogr. 2014, 12, 

doi:10.1186/1476-072X-13-51. 

28. Tung, J.Y.; Rose, R.V.; Gammada, E.; Lam, I.; Roy, E.A.; Black, S.E.; Poupart, P. Measuring life 

space in older adults with mild-to-moderate Alzheimer’s disease using mobile phone GPS. 

Gerontology 2014, 60, 154–162. 

29. Kerr, J.; Rosenberg, D.E.; Nathan, A.; Millstein, R.A.; Carlson, J.A.; Crist, K.; Wasilenko, K.; 

Bolling, K.; Castro, C.M.; Buchner, D.M.; Marshall, S.J. Applying the ecological model of behavior 

change to a physical activity trial in retirement communities: Description of the study protocol. 

Contemp. Clin. Trials 2012, 33, 1180–1188. 

30. Shumway-Cook, A.; Brauer, S. Research report predicting the probability for falls in  

community-dwelling older adults using the timed up and go test. source? Phys. Ther. 2000, 80,  

896–903. 

31. Vestergaard, S.; Patel, K.V.; Bandinelli, S.; Ferrucci, L.; Guralnik, J.M. Characteristics of 400-meter 

walk test performance and subsequent mortality in older adults. Rejuvenation Res. 2009, 12, 177–184. 

32. Puthoff, M.L. Outcome measures in cardiopulmonary physical therapy: Short physical performance 

battery. Cardiopulm. Phys. Ther. J. 2008, 19, 17–22. 

33. Amtmann, D.; Cook, K.F.; Jensen, M.P.; Chen, W.-H.; Choi, S.; Revicki, D.; Cella, D.; Rothrock, N.; 

Keefe, F.; Callahan, L.; Lai, J.-S. Development of a PROMIS item bank to measure pain 

interference. Pain 2010, 150, 173–182. 

34. Radloff, L.S. The CES-D Scale: A self-report depression scale for research in the general 

population. Appl. Psychol. Meas. 1977, 1, 385–401. 

35. Irwin, M.; Haydari, K.; Oxman, M. Screening for depression in the older adult. Arch. Int. Med. 

2012, 159, 10–13. 

36. Delbaere, K.; Close, J.C.T.; Mikolaizak, A.S.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. The falls 

efficacy scale international (FES-I). A comprehensive longitudinal validation study. Age Ageing 

2010, 39, 210–216. 

37. Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial 

validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. 

38. Kempen, G.I.J.M.; Yardley, L.; van Haastregt, J.C.M.; Zijlstra, G.A.R.; Beyer, N.; Hauer, K.; Todd, C. 

The short FES-I: A shortened version of the falls efficacy scale-international to assess fear of falling. 

Age Ageing 2008, 37, 45–50. 



Int. J. Environ. Res. Public Health 2015, 12 13937 

 

 

39. Tombaugh, T.N. Trail making test A and B: Normative data stratified by age and education.  

Arch. Clin. Neuropsychol. 2004, 19, 203–214. 

40. Salthouse, T.A. What cognitive abilities are involved in trail-making performance? Intelligence 

2011, 39, 222–232. 

41. Wechsler, D. WAIS-III Administration and Scoring Manual; Harcourt: San Diego, CA, USA, 1997. 

42. Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; 

Tirapu, J.; Barceló, F. Construct validity of the trail making test: Role of task-switching, working 

memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 

15, 438–450. 

43. Duncan, S.; Stewart, T.I.; Oliver, M.; Mavoa, S.; MacRae, D.; Badland, H.M.; Duncan, M.J. 

Portable global positioning system receivers: Static validity and environmental conditions. Am. J. 

Prev. Med. 2013, 44, 19–29. 

44. Mâsse, L.C.; Fuemmeler, B.F.; Anderson, C.B.; Matthews, C.E.; Trost, S.G.; Catellier, D.J.; Treuth M. 

Accelerometer data reduction: A comparison of four reduction algorithms on select outcome 

variables. Med. Sci Sports Exerc. 2005, 37, 544–554. 

45. Marshall, S.; Kerr, J.; Carlson, J.; Cadmus-Bertram, L.; Patterson, R.; Wasilenko, K.; Crist, K.; 

Rosenberg, D.; Natarajan, L. Patterns of weekday and weekend sedentary behavior among older 

adults. J. Aging. Phys. Act. 2015, 23, 534–541. 

46. PALM. UCSD-PALMS-Project. Available online: http://ucsd-palms-project.wikispaces.com/ 

(accessed on 17 September 2014). 

47. Choi, L.; Ward, S.C.; Schnelle, J.F.; Buchowski, M.S. Assessment of wear/nonwear time 

classification algorithms for triaxial accelerometer. Med. Sci. Sports Exerc. 2012, 44, 2009–2016. 

48. Evans, D.A.; Beckett, L.A.; Albert, M.S.; Hebert, L.E.; Scherr, P.A.; Funkenstein, H.H.; Taylor, J.O. 

Level of education and change in cognitive function in a community population of older persons. 

Ann. Epidemiol. 1993, 3, 71–77. 

49. Chang, J.T.; Morton, S.C.; Rubenstein, L.Z.; Mojica, W.A.; Maglione, M.; Suttorp, M.J.; Roth, E.A.; 

Shekelle, P.G. Interventions for the prevention of falls in older adults: Systematic review and  

meta-analysis of randomised clinical trials. BMJ 2004, 328, doi:10.1136/bmj.328.7441.680. 

50. Hindmarsh, J.J. Falls in older persons. Arch. Intern. Med. 1989, 149, 515–521.  

51. James, B.D.; Boyle, P.A.; Buchman, A.S.; Barnes, L.L.; Bennett, D.A. Life space and risk of 

Alzheimer disease, mild cognitive impairment, and cognitive decline in old age. Am. J. Geriatric 

Psych. 2011, 19, 961–969. 

52. Crowe, M.; Andel, R.; Wadley, V.G.; Okonkwo, O.C.; Sawyer, P.; Allman, R.M. Life-space and 

cognitive decline in a community-based sample of African American and Caucasian older adults. 

J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1241–1245. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


