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Predicting Protein-Protein 
Interactions from Matrix-
Based Protein Sequence Using 
Convolution Neural Network and 
Feature-Selective Rotation Forest
Lei Wang   1,2, Hai-Feng Wang1, San-Rong Liu1, Xin Yan3 & Ke-Jian Song4

Protein is an essential component of the living organism. The prediction of protein-protein interactions 
(PPIs) has important implications for understanding the behavioral processes of life, preventing 
diseases, and developing new drugs. Although the development of high-throughput technology 
makes it possible to identify PPIs in large-scale biological experiments, it restricts the extensive use 
of experimental methods due to the constraints of time, cost, false positive rate and other conditions. 
Therefore, there is an urgent need for computational methods as a supplement to experimental 
methods to predict PPIs rapidly and accurately. In this paper, we propose a novel approach, namely 
CNN-FSRF, for predicting PPIs based on protein sequence by combining deep learning Convolution 
Neural Network (CNN) with Feature-Selective Rotation Forest (FSRF). The proposed method firstly 
converts the protein sequence into the Position-Specific Scoring Matrix (PSSM) containing biological 
evolution information, then uses CNN to objectively and efficiently extracts the deeply hidden features 
of the protein, and finally removes the redundant noise information by FSRF and gives the accurate 
prediction results. When performed on the PPIs datasets Yeast and Helicobacter pylori, CNN-FSRF 
achieved a prediction accuracy of 97.75% and 88.96%. To further evaluate the prediction performance, 
we compared CNN-FSRF with SVM and other existing methods. In addition, we also verified the 
performance of CNN-FSRF on independent datasets. Excellent experimental results indicate that CNN-
FSRF can be used as a useful complement to biological experiments to identify protein interactions.

Protein is the essential component of the living organism, and it participates in various processes of life activi-
ties such as metabolism, signal transduction, hormone regulation, DNA transcription and replication1,2. In gen-
eral, proteins perform their functions in the form of complexes by interacting with other proteins. Studying 
protein-protein interactions (PPIs) not only help to understand the life process, but also help to explore the 
pathogenesis of disease and pursue drug targets3. Over the past several decades, the detection methods of pro-
tein interaction based on biological experiments, such as tandem affinity purification (TAP)4, yeast two-hybrid 
(Y2H)5,6 and mass spectrometric protein complex identification7, gradually matured and achieved considerable 
research results.

However, due to the biological experiment methods are costly and time-consuming, the protein interaction 
detected by experimental methods can only account for a small part of the complete PPIs networks8–11. In addi-
tion, the detection results are also susceptible to the experimental environment and operational processes, result-
ing in some false positives and false negatives. Therefore, developing reliable computational methods to predict 
protein interactions accurately is of great practical significance.
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In fact, there are many computational methods that have been proposed as complementary to experimental 
methods to predict protein-protein interactions12–15. These methods typically use binary classification model 
to describe protein-protein pairs with or without interaction, which can be roughly divided into the following 
categories: protein domains, gene expression, gene neighborhood, protein structure information16,17, literature 
mining knowledge18, and phylogenetic profiles19,20. However, if there is no corresponding pre-knowledge, these 
methods cannot be implemented21,22.

With the rapid development of sequencing technology, protein sequence information is collected and stored 
in large quantities. There is abundant useful information in the protein sequence, and the experimental results 
show that using amino acid sequence alone is sufficient to predict the interaction of protein accurately. Therefore, 
protein interaction prediction methods that directly extract information from amino acid sequences have aroused 
great interest in recent years23–25. You et al. proposed the method of protein interaction prediction based on 
Support Vector Machine (SVM), considering the sequence order and the dipeptide information of the primary 
protein sequence. This method has achieved 90.06% accuracy, 94.37% specificity and 85.74% sensitivity in the 
protein Yeast dataset26. Hu et al. introduced a novel co-evolutionary feature extraction method, namely CoFex, to 
predict protein interactions. CoFex can extract the feature vectors that accurately express the protein properties 
according to the presence or absence of the co-evolutionary features of the two protein sequences, thereby pro-
viding the performance of the PPIs prediction27. Pan et al. proposed a new hierarchical LDA-RF model to directly 
predict protein-protein interactions in the primary protein sequences, which can mine hidden internal structures 
buried into the noisy amino acid sequences in low-dimensional latent semantic space. The experimental results 
show that this model can effectively predict potential protein interactions9. Saha et al. constructed an ensemble 
model for protein interaction prediction based on a majority voting method. The model uses four well-established 
machine learning methods: support vector machines, random forests, decision trees, and naive Bayes. In the 
cross-validation experiment, the ensemble learning method achieved over 80% sensitivity and 90% prediction 
accuracy28. Jeong et al. predict protein interactions using algorithms that extract features only from protein 
sequences and machine learning for computational function prediction. The experimental results show that these 
features derived from the position-specific scoring matrix are very suitable for protein interaction prediction29.

In this study, we propose a novel sequence-based approach, namely CNN-FSRF, to predict potential pro-
tein interactions using deep learning Convolutional Neural Network (CNN) algorithm combined with 
Feature-Selective Rotation Forest (FSRF) classifier. More specifically, we first use the position-specific scoring 
matrix to convert each protein alphabet sequence into the numerically matrix-based protein descriptor that con-
tains evolution information. Then we use the convolutional neural network to extract the high-level abstraction 
features of the protein automatically and objectively. Finally, these features are fed into the feature-selective rota-
tion forest classifier to get the final prediction results. To evaluate the predictive performance of CNN-FSRF, we 
performed verification in the Yeast and Helicobacter pylori PPI datasets, respectively. The experimental results 
show that CNN-FSRF achieves 97.75% and 88.96% accuracy with 99.61% and 91.86% sensitivity at the specificity 
of 95.89% and 86.11% in the above datasets, respectively. Excellent results indicate that CNN-FSRF can be a use-
ful complement to biological experiments to identify potential protein-protein interactions.

Materials and Methodology
In this section, we outline the main idea behind CNN-FSRF approach. Figure 1 gives a schematic diagram 
of how CNN-FSRF uses convolution neural network and feature-selective rotation forest classifier to predict 
protein-protein interactions. As can be seen from the figure, our model can be divided into three steps. The first 
is matrix-based protein numerical representation. For a given protein, since its sequence is usually represented 
by the letter symbol of 20 kinds of amino acids, in order to facilitate computer algorithm processing, we use the 
Position-Specific Scoring Matrix (PSSM) method to convert the letter sequence of the protein into the numerical 
matrix. The second is feature extraction based on Convolutional Neural Network (CNN). Although the protein 
sequence contains abundant information, it also mixed with a lot of noise. In order to get a more precise rep-
resentation, we use the deep learning CNN algorithm to extract its features. CNN can automatically and objec-
tively extract the advanced features of protein information in a layer-by-layer manner, thus effectively avoiding 
the interference of human factors. The finally is the PPI prediction based on Feature-Selective Rotation Forest 
(FSRF) classifier. After obtaining the advanced features of the protein, we used FSRF classifier to predict relation-
ship between them. The FSRF classifier has the advantage of greatly improving the classification speed under the 
premise of guaranteeing the accuracy, so as to quickly and effectively predicts the interaction between proteins.

Golden standard datasets.  We evaluate the CNN-FSRF approach through two real PPIs datasets. The 
Yeast dataset collected from the Saccharomyces cerevisiae core subset of the Database of Interacting Proteins (DIP) 
by Guo et al.30. The core subset contains a total of 5966 interacting protein pairs. After we remove protein pairs 
containing less than 50 residues or more than 40% sequence identity protein, the remaining 5594 protein pairs 
constitute the golden standard positive data set. For the standard negative data set, we constructed based on the 
assumption of Guo et al.30 that there is no interaction between proteins in different subcellular compartments. To 
avoid the occurrence of imbalanced dataset, we selected the same number of protein pairs as the positive dataset 
to construct the negative dataset. As a result, there is a total of 11188 protein pairs in the final Yeast dataset, with 
positive and negative samples each accounting for half. For the Helicobacter pylori PPIs dataset from Martin  
et al.12, we use the same method for processing. The final Helicobacter pylori dataset consisted of 2916 protein 
pairs, of which 1458 interacted pairs and 1458 non-interacted pairs.

Evaluation criteria.  To evaluate the performance of CNN-FSRF, we use the 5-fold cross-validation and sev-
eral general evaluation criteria in our experiments. The 5-fold cross-validation randomly divides whole dataset 
into five independent subsets of the same size. Each time one subset is used as the test set, and the remaining four 
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subsets are used as the training sets. In the experiment, this process is executed five times to ensure that each sub-
set is used as the test set once. Finally, the average and standard deviation of these five experiments are taken as 
the final experimental results. We follow the widely used evaluation criteria to evaluate the model, including accu-
racy (Accu.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), F-Score (Fscore), and Matthews Correlation 
Coefficient (MCC). They are defined as:
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where TP indicates the number of positive samples that are correctly identified, TN indicates the number of 
negative samples that are correctly identified, FP indicates the number of positive samples that are incorrectly 
identified, and FN indicates the number of negative samples that are incorrectly identified.

In these evaluation criteria, the accuracy reflects the proportion of the correct prediction results of the model. 
Sensitivity reflects the ability of classification model to identify positive samples. The higher value of sensitivity 
indicates that the model has a stronger ability to identify positive samples. Precision reflects the ability of clas-
sification model to discriminate negative samples. The higher value of precision indicates that the model has a 
stronger ability to discriminate negative samples. Fscore is a combination of sensitivity and precision. The higher 
value of Fscore indicates that the model is more robust. The Matthew correlation coefficient (MCC) reflects the 
correlation between the prediction results and the observation results. It is an important indicator of the over-
all performance of the model. The larger value of MCC indicates that the model has a better performance. In 

Figure 1.  The schematic diagram for predicting protein-protein interactions by integrating convolutional 
neural network with feature-selective rotation forest model.
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addition, Receiver Operating Characteristic (ROC) curves and Precision-Recall (P-R) curves are also drawn as 
evaluation criteria. In order to directly measure the quality of the results expressed by the ROC curve, the Area 
Under a Curve (AUC) is calculated at the same time. Its value ranges from 0 to 1 and the larger the value, the 
better the performance of the model.

Matrix-based protein numerical representation.  Protein sequences are usually stored in the database 
in the form of letters. In order to facilitate the deep learning algorithm to extract its hidden features, the protein 
sequence must be encoded into the numerical form. In this study, we use the Position-Specific Scoring Matrix 
(PSSM) method that can contain biological evolution information to generate matrix-based numeric descrip-
tors31,32. When measuring the matching weights of amino acids, PSSM not only records the importance and 
relevance of matching, but also records the position of amino acid residues in the sequence. This matrix helps 
to reveal more evolutionary information of protein sequences and is therefore widely used in many fields of 
bioinformatics.

PSSM is the matrix of N row of 20 columns, where the row represents the length of the protein sequence and 
the column represents the 20 naive amino acids. Assume that P = {ri,j:i = 1 … N and j = 1 … 20}, PSSM can be 
expressed as:
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where ri,j in the i row of PSSM mean that the probability of the ith residue being mutated into type j of 20 native 
amino acids during the procession of evolutionary in the protein from multiple sequence alignments.

In the experiment, we use the sequence comparison tool Position-Specific Iterated BLAST (PSI-BLAST) to 
obtain the PSSM matrix. BLAST is an effective tool for finding locally similar regions between sequences. It is 
able to compare nucleotide or protein sequences to sequence databases, and calculate the statistical significance 
of matches, so as to infer the functional and evolutionary relationships between sequences as well as help identify 
gene family members. PSI-BLAST is a more sensitive BLAST program that can effectively detect new members 
of protein families and similar proteins in distantly related species. The feature of PSI-BLAST is that it can use 
the profile to search the database, re-construct the profile with the results of the search, and then search the data-
base again with the new profile, so repeatedly until no new results are produced. PSI-BLAST naturally extends 
the BLAST method to find hidden patterns in protein sequences and to find many related proteins with a large 
sequence difference and a similar structural function. To maximize the effectiveness of the algorithm, we use the 
non-redundant SwissProt as the alignment database. All sequence entries in the SwissProt database are searched 
by experienced protein chemists and molecular biologists for consulting the relevant literature and carefully 
checking through computer tools. In addition, we also set the expected threshold of the PSI-BLAST algorithm to 
0.001, the number of iterations to 3, and the rest of the parameters to the default values.

Convolutional neural network.  Deep learning belongs to a branch of machine learning. Its motivation 
lies in establishing and simulating the neural network of the human brain for learning, and interpreting data in a 
mechanism that imitates the human brain33–35. Deep learning can form an abstract high-level representation by 
combining low-level features to discover the rules of data. Therefore, in this paper, we use deep learning convolu-
tion neural network algorithm to extract hidden useful information in protein.

The convolution neural network is a feed-forward neural network. Its neurons can respond to the surrounding 
units in a part of the coverage and have excellent performance for data feature extraction36. CNN uses forward 
propagation to calculate the output value and back propagation to adjust weights and biases. CNN is composed of 
the input layer, the convolution layer, subsampling layer, full connection layer and the output layer. Its structure 
diagram is shown in Fig. 2.

Assuming that Li represents the feature map of the ith layer, it can be described as:

= +− L h L W b( ) (8)i i i i1

where Wi means the weight matrix of the convolution kernel of ith layer, bi means the offset vector, h(x) means the 
activation function and operator  means convolution operations. The subsampling layer usually behind the con-
volutional layer and the feature map is sampled according to given rules. Assuming that Li is a subsampling layer, 
its sampling formula is:

Figure 2.  Convolution Neural Network Structure Diagram.
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= −L subsampling L( ) (9)i i 1

Through multiple convolution and sub sampling operations, CNN classifies the extracted features by the fully 
connected layer, and the probability distribution   is obtained based on input. The core mathematical idea of 
CNN is to map the input matrix Lo to a new feature representation   through multi-layer data transformation.

 = =i Map C c L W b( ) ( ; ( , )) (10)i 0

where ci represents the ith label class, Lo denotes the input matrix, and   denotes the feature expression.
The goal of CNN training is to minimize the network loss function F(W, b). At the same time, to alleviate the 

over fitting problem, the final loss function E(W, b) is usually controlled by a norm, and the intensity of the over 
fitting is controlled by the parameter ε.

= +
εE W b F W b W W( , ) ( , )
2 (11)

T

When adjusting parameters, CNN usually uses gradient descent method to optimize, update network param-
eters (W, b) layer by layer from back to front, and use learning rate λ to control the strength of back propagation.
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Feature-selective rotation forest.  The Rotation Forest (RF) is an ensemble classifier which contains mul-
tiple decision trees. It can quickly be applied to many data science problems and can efficiently obtain accurate 
classification results37. Therefore, it has received high attention and popularity from researchers. The main idea of 
RF is to randomly divide the data set into multiple subsets and implement the corresponding coordinate trans-
formation, and transform the data from the original space to the new space to increase the difference between the 
data, so as to improve the diversity and accuracy of the classifier at the same time.

In this study, aiming at the high dimensionality and noise-containing characteristics of the PPIs data, we 
improved the RF and proposed Feature-Selective Rotation Forest (FSRF) algorithm. The FSRF algorithm can 
effectively reduce the data dimension and remove the noise information in the data, thus improving the pre-
diction accuracy and speed of the classifier. More specifically, we use the χ2 method in statistics to calculate the 
weight of all the features, and rank them according to the weighted values, and delete the small influence on 
the classification according to the given feature selection rate. The weight of a given feature P can be calculated 
according to the following formula.
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where l is the number of values in feature P, ρij is the count of the value βi in feature P belongs to class yj, defined 
as:

ρ β= = =count P and Y y( ) (15)ij i j

σi,j is the expected value of βi and yj, defined as:
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where count(P = βi) is the number of samples with the value βi in the feature P, count(Y = yj) is the number of 
samples with the value yj in the class Y, and L is the total number of samples in the training set.

After calculating the weights of all the features by formula 14, we remove the features with small weight value 
according to the given weight selection rate ε, and thus obtain a new feature set S. Let E = (e1, e2, …, en)T be an 
n × L matrix which is composed of n observation feature vector for each training sample and C = (c1, c2, …, cn)T 
denote the corresponding labels. Therefore, the data sample can be represented as {ei, ci}, where ei = (ei1, ei2, …, 
eiL) is an L-dimensional feature vector. According to the number K of given decision trees, the sample set is ran-
domly divided into a subset of the same size and transformed by principal component analysis (PCA) algorithm. 
Then all coefficients of the principal component are rearranged and stored to form a rotation matrix to change the 
original training set. Therefore, the decision tree can be represented by T1, T2, …, Tk, and the training process of 
one decision tree Ti can be described as follows:

	(a)	 The sample set S is randomly divided into K (a factor of n) disjoint subsets, and each subset contains the 
number of features is n/k.

	(b)	 A corresponding column of features in the subset Si,j is selected to form a new matrix Ei,j from the training 
dataset E. A new training set ′E i j,  which is extracted from Ei,j randomly with 3/4 of the dataset using 
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bootstrap algorithm. Loop K times in this way, so that each subset is converted
	(c)	 Matrix ′E i j,  is used as the feature transform by PCA technique for producing the coefficient matrix Mi,j, 

which jth column coefficient as the characteristic component jth.
	(d)	 A sparse rotation matrix Ri is constructed, and its coefficients which obtained from the matrix Mi,j ex-

pressed as follows:
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In the prediction period, provided the test sample e, generated by the classifier Ti of µd ER( )i j i,  to determine e 
belongs to class ci. And then the class of confidence is calculated by means of the average combination, and the 
formula is as follows:

∑θ = µ
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Therefore, the test sample e easily assigned to the classes with the greatest possible.

Results and Discussion
In this section, we summarize the experimental results of the CNN-FSRF method on the standard data-
sets. To comprehensively evaluate the performance of the model, we compare the proposed method with the 
state-of-the-art Support Vector Machine (SVM) classifier and other excellent methods on the same datasets. In 
addition, we verified the proposed method on independent datasets. The CNN-FSRF based on protein sequence 
is implemented by MATLAB platform. For the SVM classifier, we use the LIBSVM implementation designed by 
Lin et al., which can be downloaded at https://www.csie.ntu.edu.tw/~cjlin/libsvm/. The parameters of FSRF and 
SVM algorithms have been optimized by the grid search method.

Prediction Performance of CNN-FSRF Model.  We first performed experiments on Yeast dataset, and 
Table 1 summarizes the results of the 5-fold cross-validation experiment. It can be seen that the accuracy of 
CNN-FSRF on Yeast dataset was as high as 97.75%. In order to better investigate the predictive ability of the 
model, we also calculate the values of sensitivity, specificity, precision, Fscore, Matthews correlation coefficient, and 
AUC. In these evaluation criteria, the Fscore value that reflects the stability of the model is 97.79% and the MCC 
and AUC values that reflect the overall performance of the model were 95.57% and 97.54%, and their standard 
variance were 0.53%, 1.05% and 0.66%, respectively. Figure 3 shows the ROC curves and P-R curves obtained by 
CNN-FSRF on the Yeast dataset respectively. It can be seen from the graph that the curves generated by the five 
experiments cover most of the coordinate space. The 5-fold cross-validation experimental results demonstrate 
that CNN-FSRF performs well on the Yeast dataset.

We next implement the proposed method on the Helicobacter pylori dataset, and its 5-fold cross-validation 
experimental results are shown in Table 2. We can see from Table 2 that CNN-FSRF achieved an accuracy of 88.96% 
on the Helicobacter pylori dataset. In the Fscore, MCC, and AUC that comprehensively reflect model performance, the 
values obtained by CNN-FSRF were 89.26%, 78.09%, and 89.08%, and the standard deviations were 0.67%, 1.16%, 
and 0.79%, respectively. Figure 4 plots the ROC curves and P-R curves generated on the Helicobacter pylori dataset. 
It can be seen from the figure that although the CNN-FSRF performance on the Helicobacter pylori dataset is not 
excellent on the Yeast dataset, it also achieved good performance. This may be due to the fact that the number of 
samples in the Helicobacter pylori dataset (2916) is less than in the Yeast dataset (11188). It is well known that the 
number of samples used to train the classifier in machine learning is closely related to the final test result. The more 
samples in the training set, the more fully trained the classifier, the higher the model fitting degree learned, and the 
better the prediction result. Therefore, the results obtained by the proposed model in the Helicobacter pylori dataset 
were not as good as those in the Yeast dataset also conform to this rule. In addition, this result can also indicate that 
the performance of CNN-FSRF will become better as the training set increases.

Test set Accu.(%) Sen.(%) Spec. (%) Prec.(%) Fscore(%) MCC(%) AUC(%)

1 97.36 99.73 95.04 95.18 97.40 94.83 96.97

2 98.17 99.82 96.55 96.59 98.18 96.39 97.92

3 97.45 99.73 95.19 95.36 97.50 95.00 97.17

4 97.27 99.29 95.22 95.48 97.35 94.62 97.13

5 98.48 99.47 97.46 97.58 98.52 96.98 98.52

Average 97.75 99.61 95.89 96.04 97.79 95.57 97.54

Standard Deviation 0.54 0.22 1.07 1.02 0.53 1.05 0.66

Table 1.  The 5-fold cross-validation results were generated on the Yeast dataset by using the CNN-FSRF method.
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Comparison between the proposed model and SVM Model.  SVM is a supervised learning model, 
which is one of the most robust and accurate methods in data mining algorithms38. SVM can map the sample 
space into the high-dimensional feature space through a non-linear mapping, so that the non-linear separa-
ble problem in the original sample space is transformed into a linear separable problem in the feature space. 
To demonstrate the performance of the proposed method, we compare the CNN-FSRF and SVM model 
(CNN-SVM) on the same dataset. For fairness, we optimized the parameters of the SVM using the grid search 
method and used the same protein number descriptors.

The 5-fold cross-validation experimental results by the SVM classifier combined with the CNN extracted 
feature descriptors were shown in Table 3. It is observed from Table 3 that CNN-SVM achieved the 5-fold 
cross-validation accuracy of 88.92% and the standard deviation of 1.34% on the Yeast dataset. The accuracy is 
8.83% lower than that of CNN-FSRF and the standard deviation is 0.80% higher than that of CNN-FSRF. Except 
that CNN-SVM is 0.11% higher than CNN-FSRF on sensitivity, CNN-SVM is 17.76%, 14.01%, 7.79%, 15.84% 
and 8.69% lower on specificity, precision, Fscore, MCC and AUC than CNN-FSRF. However, in the standard devi-
ation, the above evaluation criteria CNN-SVM are 0.03%, 1.64%, 0.95%, 0.59%, 1.17% and 0.63% higher than 
CNN-FSRF, respectively.

Figure 3.  The ROC and P-R curves were generated on the Yeast dataset by using the CNN-FSRF method.

Test set Accu.(%) Sen.(%) Spec. (%) Prec.(%) Fscore(%) MCC(%) AUC(%)

1 89.88 90.10 89.66 89.80 89.95 79.76 90.08

2 88.34 92.83 83.79 85.27 88.89 76.97 89.24

3 88.51 93.41 84.19 83.88 88.39 77.52 89.54

4 89.37 92.31 86.27 87.62 89.90 78.81 88.21

5 88.70 90.67 86.62 87.74 89.18 77.40 88.35

Average 88.96 91.86 86.11 86.86 89.26 78.09 89.08

Standard Deviation 0.65 1.42 2.34 2.31 0.67 1.16 0.79

Table 2.  The 5-fold cross-validation results were generated on the Helicobacter pylori dataset by using the CNN-
FSRF method.

Figure 4.  The ROC and P-R curves were generated on the Helicobacter pylori dataset by using the CNN-FSRF 
method.

https://doi.org/10.1038/s41598-019-46369-4


8Scientific Reports |          (2019) 9:9848  | https://doi.org/10.1038/s41598-019-46369-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

To facilitate observation, we present these evaluation criteria in the form of histogram. At the same time, we 
also plotted ROC curves and P-R curves of CNN-FSRF and CNN-SVM on the same coordinate axis. It can be 
clearly seen from Fig. 5 that CNN-FSRF performed better than CNN-SVM on accuracy and Fscore, which reflects 
the prediction accuracy and the stability of the model. In addition, it can be clearly seen from Fig. 6 that the 
proposed CNN-FSRF also outperforms CNN-SVM on comprehensive evaluation criteria AUC reflecting the 
overall performance of the model. This indicates that the overall performance of CNN-FSRF is superior to that 
of CNN-SVM. Therefore, we have reason to believe that the proposed CNN-FSRF method can effectively predict 
the interaction between proteins.

Comparison with existing methods.  To further evaluate the performance of CNN-FSRF, we collected 
the work of other researchers on the same Yeast and Helicobacter pylori datasets and used 5-fold cross-validation 
method to predict PPI. Since some works do not provide more evaluation criteria, we only list the common eval-
uation criteria of these works, including accuracy, sensitivity, precision and MCC.

Table 4 lists the performance of several previous works and our model on the Yeast dataset. From the table we 
can see that the proposed method achieves the best results in accuracy, sensitivity and MCC, but only the third 
result in precision. Specifically, the proposed model achieved 97.75% on the accuracy, which is 1.15% higher 
than the second highest Wangs’ work. The model has a great advantage in sensitivity, and achieves 99.61% of the 
results, which is 4.49% higher than the second highest Zhangs’ work. The results obtained from the proposed 
model on precision generally achieved only the third highest 95.89% result, which was 3.47% lower than the first 
high Wangs’ work. The proposed model on the MCC also has a large advantage, achieving 96.04% of the results, 
which is 2.63% higher than the second highest Wangs’ work. Generally speaking, the comprehensive performance 
of the proposed method is superior to other methods in the table, and has highly competitive in predicting PPI. 
In addition, we can also see that Wangs’ work, Dus’ work, Zhangs’ work, Patels’ work and the proposed model 
all use deep learning-based algorithms, and the results obtained by these methods are significantly better than 
those of other methods in the table that do not use deep learning. This demonstrates that the use of deep learning 
algorithm can effectively improve the performance of the model.

We collected previous work on the Helicobacter pylori dataset and summarized the results in Table 5. We can 
see from the table that our model achieved the best results in terms of accuracy, sensitivity, and precision, and 
achieved the second best result on the MCC. Specifically, CNN-FSRF is 1.46% higher in accuracy than the sec-
ond Ensemble ELM model, 2.91% higher in sensitivity than the second Ensemble ELM model, 0.71% higher in 
precision than the second Ensemble ELM model, and 0.04% lower in MCC than the first Ensemble ELM model. 
Generally, our model achieved the highest prediction accuracy on the Helicobacter pylori dataset, and the perfor-
mance of the model ranked second, but it is only 0.04% less than the first one.

Test set Accu.(%) Sen.(%) Spec. (%) Prec.(%) Fscore(%) MCC(%) AUC(%)

1 89.27 99.73 78.99 82.35 90.21 80.35 88.34

2 87.89 99.91 76.13 80.36 89.08 78.11 88.42

3 89.05 100.00 78.18 81.97 90.09 80.06 89.11

4 87.48 99.56 75.20 80.33 88.92 77.21 87.48

5 90.89 99.38 82.14 85.15 91.72 82.94 90.91

CNN-SVM Average 88.92 99.72 78.13 82.03 90.00 79.73 88.85

CNN-SVM Standard 
Deviation 1.34 0.25 2.71 1.97 1.12 2.22 1.29

CNN-FSRF Average 97.75 99.61 95.89 96.04 97.79 95.57 97.54

CNN-FSRF Standard 
Deviation 0.54 0.22 1.07 1.02 0.53 1.05 0.66

Table 3.  Comparison of 5-fold cross-validation results of CNN-FSRF and CNN-SVM on Yeast dataset.

Figure 5.  Comparison of performance between CNN-FSRF and CNN-SVM on the Yeast dataset.
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We can also see from Tables 4 and 5 that the performance of these methods we collected on the Helicobacter 
pylori dataset is generally not as good as that on Yeast dataset, which is likely to be related to the number of dataset 
samples, and also in accordance with the conclusions of our previous section. In addition, it can be seen from the 
horizontal comparison that the results obtained by our model on the Helicobacter pylori dataset are only slightly 
better than the other methods, but the results obtained on the Yeast dataset are much better than the other meth-
ods. This indicates that with the increase of data sets, our approach can quickly improve overall performance and 
is well-suited for large datasets.

Performance on independent datasets.  Although CNN-FSRF achieved high light performance on the 
Yeast and Helicobacter pylori datasets, we further verify its performance on independent datasets. Specifically, we 
first train the CNN-FSRF using the entire Yeast dataset, and then use the trained model to predict the interaction 
among the proteins in the C. elegans, E. coli, H. sapiens and M. musculus datasets. This in biological experiments 
means using protein interactions identified in one organism to predict interactions in other organisms. This 
approach is based on the assumption that homologous proteins have the ability to maintain their interactions. 

Figure 6.  Comparison of ROC curves and P-R curves of CNN-FSRF and CNN-SVM on the same coordinate 
axis.

Author Model Accu.(%) Sen.(%) Prec.(%) MCC(%)

Yangs’ work40

Cod1 75.08 ± 1.13 75.81 ± 1.20 74.75 ± 1.23 N/A

Cod2 80.04 ± 1.06 76.77 ± 0.69 82.17 ± 1.35 N/A

Cod3 80.41 ± 0.47 78.14 ± 0.90 81.86 ± 0.99 N/A

Cod4 86.15 ± 1.17 81.03 ± 1.74 90.24 ± 0.45 N/A

Zhous’ work41 SVM + LD 88.56 ± 0.33 87.37 ± 0.22 89.50 ± 0.60 77.15 ± 0.68

Yous’ work42 PCA-EELM 87.00 ± 0.29 86.15 ± 0.43 87.59 ± 0.32 77.36 ± 0.44

Guos’ work30
ACC 89.33 ± 2.67 89.93 ± 3.68 88.87 ± 6.16 N/A

AC 87.36 ± 1.38 87.30 ± 4.68 87.82 ± 4.33 N/A

Wangs’ work43 SAE 96.60 ± 0.22 93.73 ± 0.46 99.36 ± 0.41 93.41 ± 0.41

Dus’ work44 DeepPPI 94.43 ± 0.30 N/A 96.65 ± 0.59 88.97 ± 0.62

Zhangs’ work45 EnsDNN 95.29 ± 0.43 95.12 ± 0.45 95.45 ± 0.89 90.59 ± 0.86

Patels’ work46 DeepInteract 92.67 86.85 98.31 85.96

Our model CNN-FSRF 97.75 ± 0.54 99.61 ± 0.22 95.89 ± 1.02 96.04 ± 1.05

Table 4.  The performance comparison between different methods on the Yeast dataset.

Model Accu.(%) Sen.(%) Prec.(%) MCC(%)

HKNN 84.00 86.00 84.00 N/A

Boosting47 79.52 80.37 81.69 70.64

Signature products12 83.40 79.90 85.70 N/A

Ensemble of HKNN48 86.60 86.70 85.00 N/A

Ensemble ELM42 87.50 88.95 86.15 78.13

Phylogentic bootstrap49 75.80 69.80 80.20 N/A

Our model 88.96 91.86 86.86 78.09

Table 5.  The performance comparison of different methods on the Helicobacter pylori dataset.
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The hypothesis is based on the assumption that homologous species have similar functional behaviors, so that 
they maintain the same PPIs39.

The C. elegans, E. coli, H. sapiens and M. musculus datasets contain only pairs of interacting proteins, the num-
bers of which are 4013, 6954, 1412, and 313, respectively. Therefore, in the experiment we only calculated mean-
ingful accuracy, sensitivity and Fscore. Table 6 lists the experimental results on the independent datasets. As can be 
seen from the table, CNN-FSRF achieved good results in these four datasets, with average accuracy, sensitivity, 
and Fscore of 95.95%, 95.95% and 97.92%, respectively. Excellent experimental results show that our model can also 
achieve good results in independent datasets. This fully demonstrates that our method not only has good perfor-
mance, but also has good generalization and can be applied to different protein interaction prediction problems.

Conclusions
In this study, we develop a novel sequence-based approach to accurately predict potential protein-protein inter-
actions by combining deep learning convolutional neural network with feature-selective rotation forest. It is well 
known that extracting effective feature descriptors is the key to predicting PPIs, so the main advantage of this 
paper is that it can extract the feature information of protein objectively and profoundly by the convolution neu-
ral network. Then use FSRF to remove noise information and give accurate prediction results. The experimental 
results show that CNN-FSRF performs significantly well in predicting PPIs. CNN-FSRF obtained 97.75% and 
88.96% prediction accuracy using the 5-fold cross-validation in the real PPIs datasets Yeast and Helicobacter 
pylori. In the experiment, we compared the CNN-FSRF with the SVM model and other existing methods. In 
addition, we validated our approach on the independent datasets. Excellent experimental results demonstrate 
that our approach can be an effective tool to accurately predict potential protein interactions. In future research, 
we will continue to study the use of deep learning to extract effective protein features in the hope of achieving 
better results.
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