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Abstract: Severe hyper-catecholaminergic states likely cause heart failure and cardiac fibrosis.
While previous studies demonstrated the effects of beta-blockade in experimental models of single-
catecholamine excess states, the detailed benefits of beta-blockade in more realistic models of hyper-
adrenergic states are less clearly understood. In this study, we examined different therapeutic dosages
and the effects of propranolol in rats with hyper-acute catecholamine-induced heart failure, and
subsequent cardiopulmonary changes. Rats (n = 41) underwent a 6 h infusion of epinephrine and
norepinephrine alone, with additional low-dose (1 mg/kg) or high-dose propranolol (10 mg/kg)
at hour 1. Cardiac and pulmonary tissues were examined after 6 h. Catecholamine-only groups
had the lowest survival rate. Higher doses of propranolol (15 mg/kg) caused similarly low survival
rates and were not further analyzed. All low-dose propranolol rats survived, with a modest survival
improvement in the high-dose propranolol groups. Left ventricular (LV) systolic pressure and LV end-
diastolic pressure improved maximally with low-dose propranolol. Cardiac immunohistochemistry
revealed an LV upregulation of FGF-23 in the catecholamine groups, and this improved in low-dose
propranolol groups. These results suggest catecholamine-induced heart failure initiates early pre-
fibrotic pathways through FGF-23 upregulation. Low-dose propranolol exerted cardio-preventative
effects through FGF-23 downregulation and hemodynamic-parameter improvement in our model of
hyper-acute catecholamine-induced heart failure.

Keywords: beta-blocker; catecholamine; heart failure; myocardial dysfunction; propranolol

1. Introduction

Catecholamines are an important mediator during physiological stress. Several critical
conditions can cause the elevation of serum catecholamines, from endogenous secretions
in the setting of septic shock [1] to exogenous administrations during acute resuscitation.
Excessive serum catecholamines may likewise induce heart failure [2]. In animal models
of hyperadrenergic states, most models were constructed through single catecholamine
use, with a focus upon long-term effects. Effects of chronic exposure to epinephrine (E)
include biventricular heart failure and ventricular remodeling [3], while rats infused with
continuous norepinephrine (NE) developed left ventricular hypertrophy [4]. Fibroblast
growth factor 23 (FGF-23), a novel inducer of cardiac hypertrophy and fibrosis through
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pro-fibrotic gene transcription, is speculated to participate in cardiac remodeling with
possible reversibility [5,6].

Although the individual effects of E and NE have been studied in various animals,
in vivo models investigating the combined effects of E and NE co-administration upon car-
diopulmonary physiology are relatively scarce, even though they are more representative
of clinical hyperadrenergic states, including sepsis, chronic heart failure, or the iatrogenic
supratherapeutic administration of catecholamines [1,3,7]. On the other hand, prospec-
tive analyses of patients in shock provide insight into the real-world effects of combined
catecholamines. In cohorts with single E use, higher mortality rates with complications
including arrhythmia, lactate acidosis, and cardiac stress were observed than in those with
additional NE [8]. A recent meta-analysis examined the clinical use of beta-blockers in
patients with sepsis and septic shock, with results revealing an improvement in mortality
in 4 out of 6 studies [9]. However, detailed mechanisms of these pathways are still lacking,
with few real-world applications of beta-blockade in these scenarios. With more informa-
tion and mechanistic explanations from the bench-side, clinical utilization may become
more common.

We previously demonstrated, in our preceding work, that rat models injected with E
and NE displayed significant cardiopulmonary impairment and biventricular dysfunction
compared with catecholamine monotherapy, in accordance with previous studies [10].
Therefore, we sought to further investigate the consequences and methods of mitigating
hyperadrenergic states through an experimental model of greater clinical relevance. Al-
though beta-blockade is commonly known to be beneficial in experimental models of single
catecholaminergic states, the mechanisms and benefits of beta-blockade in realistic hypera-
cute adrenergic states through combined excess E and NE administration are less explored.
We hereby propose a catecholamine-induced acute heart failure model in rats through
combined catecholamines, with the aim of alleviating hemodynamic dysregulation through
propranolol. We hypothesize that non-selective beta-blockade, through the downregulation
of beta-adrenergic receptors in catecholamine excess, improves hemodynamic parameters
and pre-fibrotic markers such as FGF-23 [11].

2. Materials and Methods
2.1. Experimental Animals

All animal research protocols were approved by the Institutional Animal Care and
Use Committee of Kaohsiung Veterans General Hospital (Identification code: 2020-A012,
2021-A002, and 2022-A011; date of approval: 17 May 2019, 11 March 2020, and 29 March
2021). All adult male Sprague Dawley rats (8 to 10 weeks old, 320~380 g, n = 41) were
purchased from BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan), and randomly assigned
into the following five groups: (1) sham (0.9% saline infusion, n = 6), (2) E + NE (E and
NE infusion, n = 10), (3) E + NE treated with low-dose propranolol (E and NE infusion
with propranolol 1 mg/kg, n = 7), (4) E + NE treated with high-dose propranolol (E and
NE infusion with propranolol 10 mg/kg, n = 8), (5) E + NE treated with higher-dose
propranolol (E and NE infusion with propranolol 15 mg/kg, n = 10).

Animals were anesthetized with intraperitoneal (1 g/kg) urethane. Left femoral veins
were cannulated with a syringe pump for E (Taiwan Biotech Co., Ltd., Taoyuan, Taiwan)
and NE (Tai Yu Chemical & Pharmaceutical Co., Ltd., Hsinchu, Taiwan) infusion at a steady
rate (4.5 µg/kg/min and 6.8 µg/kg/min, respectively) for 6 h during the experiment. Right
femoral veins were cannulated for propranolol injection. Propranolol (# P0884, Sigma-
Aldrich Co., St. Louis, MO, USA) was dissolved in dd-H20 (pH3.0) and diluted with
0.9% saline (YF Chemical Corp., New Taipei, Taiwan) to different concentrations (1, 10,
or 15 mg/kg) beforehand. After 1 h of continuous E and NE infusion, propranolol was
injected once into rats.
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2.2. Hemodynamic Data Acquisition

Commercial pressure catheters SPR-513 and SPR-407 were connected to PCU-2000
control units (Millar Inc., Houston, TX, USA) and the PowerLab 35 Series data-acquisition
system with LabChart Pro and analyzed with a blood pressure analysis program (ADIn-
strument Inc., Colorado Springs, CO, USA). The SPR-513 catheter was inserted through the
right jugular vein into the right ventricle (RV) and confirmed by the typical RV pressure
curve. The SPR-407 catheter was placed in the right carotid artery and advanced into the
left ventricle (LV). Biventricular systolic and end-diastolic pressures, heart rates, and other
hemodynamic parameters were recorded. The contractility index was calculated according
to the formula provided by the PowerLab 35 acquisition system. It is calculated as follows:
dP/dtmax divided by the pressure (p) at the time of max dP/dtmax, where max dP/dt is
defined as the steepest slope during the downstroke of the pressure curve.

2.3. Serum Analysis of Cardiac Markers

Six hours post-catecholamine infusion, blood from the rats’ heart were collected into
MiniCollect tubes (MiniCollect® Z Serum Sep, Greiner Bio-One GmbH, Kremsmünster, Aus-
tria) and centrifuged at 5878 g for 10 min. Plasma concentrations of N-terminal pro-brain
natriuretic peptide (NT-proBNP) and Troponin T were assayed with the Rat NT-proBNP
ELISA kit (Cusabio Biotech Co., Ltd., Houston, TX, USA) and Rat cTnT/TNNT2 (Troponin
T Type 2, Cardiac) CLIA Kit (#ER1396, Wuhan Fine Biotech Co., Ltd., Wuhan, China).

2.4. Examination of Cardiac Congestion and Lung Edema

After euthanizing the rats 6 h post-catecholamine infusion, hearts and lungs were
removed and weighed. Heart-to-body weight ratio (%) was calculated by dividing heart
weight by the body weight of the rats. The cranial, middle, and caudal lobe of the right
lungs were weighed. Lung-to-body weight ratio (%) was calculated for lung edema index.
Increased cardiac and lung-to-body weight ratio were used as surrogates of accumulated
fluids and indicative of acute heart failure.

2.5. Histological Studies

The lungs and heart were fixed with 10% formaldehyde and paraffin, then cut at a
4-µm slice thickness. Tissue sections were deparaffinized, rehydrated, then placed in either
10 mM sodium citrate buffer or Etope Retrieval Solution pH9 (#RE7119, Leica Biosystems
Newcastle Ltd., Newcastle Upon Tyne, UK) at 90–100 ◦C for 20 min and were cooled to room
temperature for heat-mediated antigen retrieval. Immunohistochemistry was visualized
with the Novolink Polymer Detection Systems (Leica Biosystems Newcastle Ltd., Newcastle
Upon Tyne, UK). Tissue sections were incubated in a peroxidase blocking solution (3–4%
hydrogen peroxide) for 30 min, then treated with Protein Block for 30 min. Next, the
sections were incubated sequentially with diluted rabbit primary antibodies and Anti-
rabbit Poly-HRP-IgG reagent (Novolink Polymer). Primary polyclonal rabbit antibodies
included the following: anti-connexin 43 (Cx43)/ GJA1 antibody (diluted 1:200 for heart
and 1:400 for lungs, Abcam, #ab11370, Cambridge, UK), anti-fibroblast growth factor 23
(FGF-23) polyclonal antibody (Bioss Antibodies Inc., #bs-5768 R-TR, Wobum, MA, USA),
anti-KL rabbit polyclonal antibody (1:50, Proteintech Group, Inc., #28100–1-AP, Rosemont,
IL, USA), anti-high mobility group box protein 1 (HMGB1) rabbit polyclonal antibody (1:250,
Proteintech Group, Inc., #10829–1-AP, Rosemont, IL, USA), anti-prosurfactant protein C
(proSP-C) antibody (1:500, EMD Millipore Corporation, # AB3786, Temecula, CA, USA) and
receptor for advanced glycation end products (RAGE) antibody (diluted 1:200, GeneTex
Inc., Irvine, CA, USA). Endogenous production of reactive oxygen species of the cardiac
tissue was observed via dihydroethidium (DHE) staining (Invitrogen). Deparaffinized
tissue slices of 4 µm were subjected to 30 min staining of 1 µM DHE at 37 ◦C in a zero-light
source area. The derived samples were analyzed and reviewed using a confocal microscope
(Carl Zeiss LSM 5 PASCAL, Göttingen, Germany).
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Finally, tissue sections were incubated in substrate/ chromogen, 3,3′-diaminobenzidine
for 1 min, counterstained with hematoxylin and cover slipped. Results were photographed
with a BX51 p polarizing microscope (Olympus Corp., Westborough, MA, USA). The sec-
tions were reviewed and graded by an experienced technician using a semiquantitative
method, according to Liu et al. [12] and Jeschke et al. [13]. Immunohistochemistry was
evaluated in the following two parts: sum of staining intensity (0 = no signal, 1 = weak,
2 = moderate, and 3 = strong) and proportion of positively stained cells within the 200-fold
magnification field (0 ≤ 5% of cells, 1 = 5–25% of cells, 2 = 26–50% of cells, 3 = 51–75% of
cells, and 4 = 76–100% of cells). The example sections used for reference were evaluated
independently by another technician. The immunohistochemistry scores were calculated
by summing up the staining intensity and proportion of positively stained cells.

2.6. Statistical Analysis

The data are expressed as mean ± SD, mean or median. All results were calculated
using a nonparametric Kruskal-Wallis test, followed by a Mann-Whitney U-test. A p value
of <0.05 was considered statistically significant. Statistical analyses were performed using
IBM SPSS Statistics Version 20 software (IBM Corp., Armonk, NY, USA, 2011) and GraphPad
Prism version 6.01 for Windows, (GraphPad Software. Inc., San Diego, CA, USA, www.
graphpad.com).

3. Results
3.1. Overall Survival, Organ-to-Body Weight Ratios and Serum Cardiac Biomarkers

Hourly survival rates during catecholamine infusion were recorded for all subsets
(Figure 1A). Low-dose propranolol (1 mg/kg) groups had the highest survival rates (100%),
equal to the sham group. Groups with higher propranolol doses (15 mg/kg) had decreased
survival rates, akin to E and NE only groups. This is consistent with working groups
studying propranolol overdose in rat models [14]. Trials of greater propranolol doses (20,
25 mg/kg) were administered, however due to 100% mortality, only low-dose and high-
dose propranolol were selected for therapeutic investigation. Lung-to-body weight ratios
increased significantly in combined catecholamine and high-dose propranolol subsets,
with low-dose propranolol groups having similar ratios to the sham groups (Figure 1B).
Heart-to-body weight ratios were not attenuated with propranolol, regardless of dosage
(Figure 1C). Heart rates of low-dose propranolol groups were similar to the sham groups at
hour 2, 3, and 6. Only the high-dose propranolol subset exhibited decreased heart rates
at hour 2 and 3 (Figure 1D). Serum NT-proBNP was significantly increased in all three
experimental groups, compared to sham groups (Figure 1E). No significant change in serum
troponin T was noted among all groups (Figure 1E).

3.2. Hemodynamic Changes of the LV

Left ventricular systolic pressure (LVSP) remained significantly elevated after hour 2
in high- and low-dose propranolol groups, when compared to the sham and catecholamine-
only groups (Figure 2A). The left ventricular end-diastolic pressure (LVEDP) of high-dose
propranolol groups also significantly increased when compared to catecholamine-only
groups at hour 3 and 6, as well as low-dose propranolol groups at hour 3 (Figure 2B).
In catecholamine-only groups, systolic durations of the LV decreased at hour 2 (sham,
0.07 ± 0.005 ms, E and NE, 0.06 ± 0.006 ms, p < 0.05) and hour 3 (sham, 0.07 ± 0.004 ms, E
and NE, 0.06 ± 0.007 ms, p < 0.05). Diastolic durations of the LV decreased at hour 2 (sham,
0.08 ± 0.013 ms, E and NE, 0.06 ± 0.004 ms, p < 0.05) and hour 3 (sham, 0.08 ± 0.008 ms, E
and NE, 0.07 ± 0.005 ms, p < 0.05). After low-dose propranolol treatment, systolic dura-
tions were similar to the sham groups at hour 2, 3 and 6 (respectively, sham, 0.07 ± 0.005 ms,
low-dose, 0.07 ± 0.009 ms, p > 0.05; sham, 0.07 ± 0.004 ms, low-dose, 0.07 ± 0.011 ms,
p > 0.05; sham, 0.07 ± 0.004 ms, low-dose, 0.06 ± 0.012 ms, p > 0.05). In high-dose pro-
pranolol groups, systolic and diastolic durations were significantly prolonged (p < 0.05,
compared to the E and NE group at hour 2 and 3, Figure 2C,D). The contractility indexes

www.graphpad.com
www.graphpad.com


Toxics 2022, 10, 238 5 of 14

of all groups peaked at hour 1, with a significant dose-dependent decline in the treatment
groups (Figure 2E).
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Figure 1. Low-dose propranolol improves overall survival and lung-to-body weight ratio. During
catecholamine infusion alone or with additional propranolol over 6 h, the following data were
measured. (A) Survival rate, sham, n = 6; E + NE, n = 10; E + NE (pro1), n = 7, E + NE (pro10),
n = 8; E + NE (pro15), n = 10. (B,C) Organ-to-body weight ratio of the lungs and heart, respectively,
in rats at the end of 6 h post-catecholamine or propranolol treatment. Sham, n = 5; E + NE, n = 6,
E + NE (pro1), n = 7; E + NE (pro10), n = 7. (D) Heart rate, sham, n = 5; E + NE, n = 6; E + NE (pro1),
n = 6; E + NE (pro10), n = 5. (E) Serum NT-proBNP changes, and (F) serum troponin T changes were
measured in rat groups: Sham, n = 4; E + NE, n = 4; E + NE (pro1), n = 6; E + NE (pro10), n = 6. Data
are represented as mean ± SD. Mann–Whitney U test was used for statistical analysis of all panels.
a p < 0.05 vs. sham group; b p < 0.05 vs. E + NE group; c p <0.05 vs. E + NE (pro1) group; d p < 0.05 vs.
respective group at 0 h; e p < 0.05 vs. respective group at 1 h; f p < 0.05 vs. respective group at 3 h.
E + NE, epinephrine and norepinephrine; pro1, low-dose propranolol 1 mg/kg; pro10, high-dose
propranolol 10 mg/kg; NT-proBNP, N-terminal pro-brain natriuretic peptide.
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Figure 2. Trend graphs of hemodynamic changes of the left ventricle in rat models with excessive
catecholamine infusion alone or with additional propranolol treatment. Measurements of (A) left
ventricular systolic pressure, (B) left ventricular end-diastolic pressure, (C) systolic duration, and
(D) diastolic durations were recorded. These measurements were assessed in the following rat groups:
Sham, n = 5; E + NE, n = 6; E + NE (pro1), n = 7; E + NE (pro10), n = 6. (E) Contractility indexes were
measured in the following rat groups: Sham, n = 5; E + NE, n = 6; E + NE (pro1), n = 6; E + NE (pro10),
n = 5. Data are represented as median. Mann–Whitney U test was used for statistical analysis of all
panels. a p < 0.05 vs. sham group; b p < 0.05 vs. E + NE group; c p < 0.05 vs. E + NE (pro1) group.
E + NE, epinephrine and norepinephrine; pro1, low-dose propranolol 1 mg/kg; pro10, high-dose
propranolol 10 mg/kg.

3.3. Hemodynamic Changes of the RV

In the E and NE group, the immediate elevation of the right ventricular systolic pressure
(RVSP) and right ventricular end-diastolic pressure (RVEDP) (Figure 3A,B) was noted after the
administration of catecholamines. A lack of improvement in RVSP and RVEDP was observed
in the low-dose and high-dose propranolol groups (hour 1 through 6, compared to E and NE,
p > 0.05 in low-dose and high-dose groups, Figure 3A,B). Shortened systolic durations were
observed at hour 2 (sham, 0.07 ± 0.005 ms, E and NE, 0.05 ± 0.007 ms, p < 0.05) and hour 3
(sham, 0.07 ± 0.004 ms, E and NE, 0.05 ± 0.007 ms, p < 0.05) (Figure 3C,D). Shortened dias-
tolic durations were also noted (sham, 0.08 ± 0.009 ms, E and NE, 0.07 ± 0.007 ms, p < 0.05)
(Figure 3C,D). At hour 2, 3, and 6 after low-dose propranolol treatment, normalized systolic
duration (sham, 0.07 ± 0.005, low-dose, 0.06 ± 0.013 ms, p > 0.05) (Figure 3C) and normalized
diastolic duration (sham, 0.07 ± 0.010 ms, low-dose, 0.08 ± 0.015 ms, p > 0.05) (Figure 3D)
were observed.

The administration of high-dose propranolol caused a marked prolongation of both
systolic and diastolic durations, observed at hour 2, 3 and 6 (p < 0.05, compared with E
and NE, Figure 3C,D). The contractility index changes of the RV were similar to that of LV,
with maximal contractility indexes observed at 1 h post-catecholamine administration. A
subsequent proportional decrease in the contractility index with low-dose and high-dose
propranolol was observed (Figure 3E).

3.4. Acute Cardiac Injury in Histopathology

Cardiac injury was investigated with the immunohistochemistry of connexin 43
(Cx43) for lateralization in cardiomyocytes [15]. Lateralization of Cx43 in the LV lateral
wall, ventricular septum, and RV lateral wall was observed after catecholamine infusion,
without significant changes in the high-dose and low-dose propranolol treatments (see
Figure 4). FGF-23 upregulation was observed after continuous catecholamine infusion.
The attenuation of FGF-23 in the LV wall was observed after propranolol administration.
Maximal FGF-23 downregulation to near-normalization was observed in the low-dose
propranolol groups (Figure 5). An examination of the klotho protein and reactive oxy-
gen species immunohistochemistry denied significant differences among all groups (see
Supplementary Figures S1 and S2, respectively).
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Figure 3. Trend graphs of the hemodynamic changes of the right ventricle in rat models with excessive
catecholamine infusion alone or with additional propranolol treatment. (A) Right ventricular systolic
pressure, and (B) right ventricular end-diastolic pressure, were recorded in rat groups of sham, n = 5;
E + NE, n = 6; E + NE (pro1), n = 7; E + NE (pro10), n = 6. (C) Systolic durations were measured
in groups of sham, n = 5; E + NE, n = 6; E + NE (pro1), n = 7; E + NE (pro10), n = 5. (D) Diastolic
durations were measured in groups of sham, n = 5; E + NE, n = 6; E + NE (pro1), n = 7; E + NE (pro10),
n = 6. (E) Contractility indexes were measured in groups of n = 5 for all conditions, except for E + NE
(pro10), n = 6. Data were presented as median. Mann–Whitney U test was used for statistical analysis
of all panels. a p < 0.05 vs. sham group; b p < 0.05 vs. E + NE group; c p < 0.05 vs. E + NE (pro1) group.
E + NE, epinephrine and norepinephrine; pro1, low-dose propranolol 1 mg/kg; pro10, high-dose
propranolol 10 mg/kg.
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Figure 4. Changes in connexin 43 distribution reveal lateralization in cardiac tissue with 6 h contin-
uous catecholamine infusion alone or with propranolol treatment. (A) Representative immunohis-
tochemical staining with connexin 43 antibodies in cardiac tissue and (B) quantitative analysis of
lateralized Cx43 in LV lateral wall, LV septum, and RV lateral wall of after 6 h in rat groups of: sham,
n = 4; E + NE, n = 5; E + NE (pro1), n = 5; E + NE (pro10), n = 5. Data are represented as mean ± SD.
Mann–Whitney U test was used for statistical analysis of all panels. a p < 0.05 vs. sham group. Cx43,
connexin 43; E + NE, epinephrine and norepinephrine; LV, left ventricle; pro1, low-dose propranolol
1 mg/kg; pro10, high-dose propranolol 10 mg/kg; RV, right ventricle. The scale bars represent 50 µm.
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Figure 5. Expression of fibroblast growth factor−23 (FGF-23) in cardiac tissue after 6 h infusion
of catecholamine alone or with propranolol treatment. (A) Representative immunohistochemical
staining with FGF-23 antibodies, and (B) the immunohistochemical scores of FGF-23 in LV lateral
wall, LV septum, and RV lateral wall after 6 h in groups of: sham, n = 6; E + NE, n = 6; E + NE (pro1),
n = 6; E + NE (pro10), n = 5. Data are expressed as mean ± SD. Mann–Whitney U test was used for
statistical analysis of all panels. a p < 0.05 vs. sham group; b p < 0.05 vs. E + NE group; c p < 0.05 vs.
E + NE (pro1) group. E + NE, epinephrine and norepinephrine; LV, left ventricle; pro1, low-dose
propranolol 1 mg/kg; pro10, high-dose propranolol 10 mg/kg; FGF-23, fibroblast growth factor-23;
RV, right ventricle. The scale bars represent 50 µm.

3.5. Lung Injury Mediated through Apoptosis

In pulmonary tissue, a significantly downregulated RAGE and an upregulation of pro-
surfactant protein C, Cx43, and HMGB-1 expression were observed 6 h post catecholamine
infusion. Low-dose and high-dose propranolol subsets failed to modify the expression
of pro-surfactant protein C, Cx43, and HMGB-1. However, RAGE was upregulated after
high-dose propranolol treatment (Figure 6).
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E + NE (pro1), and E + NE (pro10) groups. n = 4 in all groups except for the sham group in quantitative
analysis of Cx43, n = 3. Data are expressed as mean± SD. Mann–Whitney U test was used for statistical
analysis of all panels. a p < 0.05 vs. sham group; b p < 0.05 vs. E + NE group; c p < 0.05 vs. E + NE
(pro1) group. Cx43, connexin 43; E + NE, epinephrine and norepinephrine; HMGB1, High mobility
group box 1; pro1, low-dose propranolol 1 mg/kg; pro10, high-dose propranolol 10 mg/kg; pro-
SpC, pro-surfactant protein C; RAGE, receptor for advanced glycation end products. The scale bars
represent 50 µm.

4. Discussion

Our rat models of combined catecholamine-induced heart failure, observed over 6 h,
demonstrated the prevention of cardiac dysfunction with a low-dose of bolus propranolol.
To the best of our knowledge, no previous animal studies have attempted to realistically
simulate hyperadrenergic states through combined catecholamines. Furthermore, a low-
dose propranolol bolus effectively mitigated acute heart failure and prolonged survival.
Finally, pathological changes of early cardiac dysfunction may be mediated through FGF-
23-dependent mechanisms, with maximal prevention after the administration of low-
dose propranolol. Our experiment demonstrates that the deleterious effects of adrenergic
stimulation are best prevented through low-dose propranolol (1 mg/kg). Therefore, we
propose a catecholamine-induced heart failure model, with the prevention of cardiac
dysfunction mediated through low-doses of beta-blockade.

Few studies have reported animal models of combined catecholamine-induced car-
diomyopathy. Previous animal models were mostly chronically exposed to either E or NE,
leading to ventricular dysfunction [16–18]. Chronic high-dose E infusion (7.5 mg/kg/min)
in rats induced biventricular ischemia and fibrosis, while continuous NE (0.1 mg/kg/h)
infusion induced LV hypertrophy and fibrosis [19]. Yet, despite the plethora of animal
models utilizing individual catecholamines for heart failure models, a combination of
E and NE has not been broadly adopted for acute heart failure models. However, we
believe this catecholamine-induced heart failure model is also compatible with clinical
scenarios of hyper-catecholaminergic states, including sepsis [1], chronic heart failure [20],
and catecholamine administration during resuscitation [21].

In our preceding study, we investigated the physiological changes of excessive cat-
echolamine infusions in rat models with parameters such as echocardiography and ven-
tricular pressure. Infusions of high-dose E (4.5 µg/kg/min) and NE (6.8 µg/kg/min)
over 6 h in rats were observed to cause a thickened interventricular septum and increased
left ventricular mass upon echocardiography, reflecting cardiomyocyte hypertrophy. A
significantly reduced stroke volume, cardiac output, systolic and diastolic function were all
found in combined E and NE infusion groups as well, signifying cardiac dysfunction [10].

Of the hemodynamic parameters measured in our current study, the catecholamine-
only subsets reflected similar declining LVSP and LVEDP changes as in our previous study
groups, reflecting adverse cardiac hemodynamic changes through initially high cardiac
output states with subsequent cardiac dysfunction. After low-dose propranolol treatment,
LVSP, LVEDP and the contractility indexes improved significantly, preventing cardiac
dysfunction through cardiac function optimization. This is consistent with propranolol’s
beta-1 antagonism properties, maintaining cardiac output and decreasing the myocar-
dial oxygen demand through decreased heart rate, longer diastolic duration and higher
end-diastolic volume. These results provide mechanistic explanations for recent studies
investigating the benefits of optimized heart rates and hemodynamics with beta-blockers
in hyper-catecholaminergic states [22]. In high-dose propranolol groups, the high mor-
tality rate is likely due to its strong membrane action, potential stabilization properties
and over-suppression of the adrenergic system as elevated LVEDP was observed [23].
It is worthwhile to note that at even higher doses of propranolol treatment (15 mg/kg),
mortality was higher than the high-dose group and on par with the E-and-NE group.
Previous lethal dosing of propranolol in rats was documented at 15 mL/kg, with cause of
death due to clinical suppression of the central neurological system through membrane
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action potential stabilization, and direct cardiac depressant effects such as PR prolongation
and AV dissociations [14,24]. However, the rats in previous studies were not pre-treated
with combined catecholamines, therefore, rat groups with sequential boluses of combined
catecholamines and 15 mg/kg propranolol were included in the initial stage of our study.
Further analyses of this group were not performed as their mortality rate was similar to the
combined-catecholamine rat group.

The hemodynamic trends of RV were slightly different from those of LV. The
catecholamine-alone group had an overall slower right ventricular response than the
LV, likely due to ventricular anatomical and physiological differences. The RV has less
muscle mass with thinner walls and is therefore acutely sensitive to afterload changes
leading to dysfunction [25]. Another reason for different ventricular responses may be
the heterogenous distribution of adrenergic receptors between the ventricles; however,
previous rat studies suggest that the distribution of beta-adrenoreceptors is not significantly
different among ventricles [26].

We further investigated the histopathological changes of propranolol upon the my-
ocardium after catecholamine injury. It was previously observed that with supratherapeutic
doses of NE and E, the lateralization of Cx43 through reactive oxidative stress pathways
occurs in response to severe stress [10]. In vitro studies of cultured rat cardiomyocytes
exposed for 24 h to norepinephrine (1–10,000 nM) also increased their expression of Cx43,
while in vivo equivalents showed an association of catecholamine stimulation with en-
hanced gap junctional intercellular communication [27]. Our results are consistent with
other working groups that used isoproterenol, a β1- and β2 -adrenoceptor agonist, as a
medium to stimulate neonatal cardiomyocytes, with findings of upregulated Cx43 protein
in both isoproterenol-only and combined isoproterenol-metoprolol mediums [28]. The
lateralization of Cx43 was not improved by either of the propranolol groups within our
6 h observation period, implicating clinical-histopathological incompatibility with early
signs of pathological acute cardiac injury despite perceived clinical hemodynamic reversal.
To the best of our knowledge, the role of catecholamines and possible treatment effects
of beta-blockers upon Cx43 expression has not been well-researched in the literature, and
our pathological findings suggest that acute cardiac injury and subsequent pathological
compensatory mechanisms are persistent despite propranolol treatment within six hours.

Next, we investigated possible participating molecular pathways in acute hemody-
namic changes after adrenergic overstimulation through the staining of FGF-23. Faul et al.
demonstrated pathological left ventricular hypertrophy through the direct intraventricular
injection of FGF-23 [29], likely through klotho-independent pathways [30]. While there are
known associations of elevated FGF-23 and cardiovascular morbidities in chronic kidney
diseases in both clinical and experimental studies, less is understood in an acute, hypera-
drenergic setting [31,32]. Previous investigations associated FGF-23 with causal myocardial
fibrosis during acute cardiac injury [33]. In our study, FGF-23 was significantly upregulated
in the LV, and though upregulated in the RV, failed to reach significance. This suggests
an early initiation of the pro-fibrotic pathway in bilateral ventricles through FGF-23 up-
regulation in hyper-catecholaminergic states. It is also worthy of note that an increased
expression of FGF-23 in the RV was not previously observed in intramyocardial injections
of FGF-23 [29].

Low-dose propranolol was the only treatment group to effectively downregulate
FGF-23 in both ventricles, likely due to optimal cardiac stabilization as evidenced by
hemodynamic parameters, with high-dose propranolol only effective in the RV. FGF-
23 reversal is thus corroborative of the compatibility between ventricular function and
histological changes, further evident of the pathological prevention of adverse cardiac
dysfunction. FGF-23 upregulation was only significant in the LV lateral wall of the high-
dose propranolol group, likely secondary to the overt adrenergic suppression of the LV,
leading to volume overload with acute decompensated heart failure.

Our present catecholamine-induced heart failure model, while similar to various
hyper-adrenergic states, may not be strictly compatible with specific clinical scenarios due
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to their variability. Another potential limitation is the lack of pressure-volume loop analyses,
meaning that detailed measurements such as ejection fraction were not collected. Further-
more, immunohistochemistry could be refined with the identification of beta-selective
receptors, and downhill kinases could be included for an investigation of different path-
ways. In addition, we were unable to exclude the role of inflammation in catecholaminergic
acute lung injury due to a lack of relevant markers, and the experiment time of 6 h may not
have been long enough for the development of lung apoptosis. Finally, we were unable to
determine the precedence of cardiac and pulmonary injury as the accruement of murine
tissues was only possible at the end of the 6 h experiment, instead of detailed time points
at hour 1 through 6. While cardiac function improved with propranolol administration,
the negative findings in histopathological markers including HMGB-1, Cx-43 and prosur-
factant apoprotein-C may be limited by the short 6 h experiment period; therefore, the
compatibility of clinical and histopathological changes is still unclear.

5. Conclusions

In conclusion, this experiment demonstrated that a single low-dose propranolol
of 1 mg/kg was successful in improving survival and hemodynamics in a combined
catecholamine-induced acute heart failure model. The therapeutic effects of propranolol
were not dose-dependent, as high-dose and higher-dose propranolol both caused lower
survival rates. Myocardial FGF-23 expression, a pro-fibrotic marker, was also downreg-
ulated with propranolol treatment, implicating the role of non-selective beta blockers in
the prevention of cardiac dysfunction. Low-dose propranolol may therefore be useful as a
cardioprotective treatment option in the hyper-acute setting of excess catecholaminergic
states with acute heart failure.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10050238/s1, Figure S1: Klotho expression in the heart tissue
6 h post continuous combined catecholamine infusion alone, or with propranolol treatment, Figure S2:
Level of reactive oxygen species in heart tissues 6 h post excess catecholamine infusion alone, or with
propranolol treatment.
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