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Abstract

Background: Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It
would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and
cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public
health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than
population immunity) that may slow epidemic growth.

Methodology: The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the
basic reproduction number R0, along with a discounting factor to project the growth of outbreaks using only basic
epidemiological information (e.g., daily incidence counts).

Principal Findings: Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a
given outbreak when R0 is low or moderate, and also identifies turning points or new waves. When tested with an outbreak
of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1th serial interval using data from the ith

serial interval within an average of 20% of actual incidence.

Conclusions and Significance: This model for communicable disease outbreaks provides rapid assessments of outbreak
growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of
IDEA as a tool for front-line epidemiologists.

Citation: Fisman DN, Hauck TS, Tuite AR, Greer AL (2013) An IDEA for Short Term Outbreak Projection: Nearcasting Using the Basic Reproduction Number. PLoS
ONE 8(12): e83622. doi:10.1371/journal.pone.0083622

Editor: Alessandro Vespignani, Department of Health, department of Physics, College of computer sciences, United States of America

Received April 2, 2012; Accepted November 13, 2013; Published December 31, 2013

Copyright: � 2013 Fisman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: david.fisman@utoronto.ca

Introduction

Outbreaks of novel emerging pathogens such as the SARS

coronavirus [1,2] or familiar pathogens whose characteristics have

been changed by genetic shift or recombination events such as

novel influenza virus strains [3,4] are an important and ongoing

global health concern [5,6,7]. While numerous factors contribute

to pathogen emergence, including environmental change, global

travel and commerce, and selective pressure via food production

[5,8,9] public health authorities at regional, national, and

international levels are confronted with the practical task of

outbreak management and control. The capacity to describe the

characteristics of epidemic processes in real time, predict the

duration and size of epidemics, and quantify the transmission

characteristics of new or mutated pathogens poses a major

challenge to public health professionals.

Mathematical models provide a useful framework for charac-

terization and quantification of ecological processes, including

outbreaks of infectious diseases [10,11]. However, typical model

forms focus largely on the epidemiological characteristics of the

disease at the time of emergence, and while such models may be

used as a platform for projection of intervention effects, they

seldom explicitly account for the behavioral, regulatory, and

informational interventions that are either put into place by public

health authorities, or occur spontaneously in a worried public,

once knowledge of an epidemic is widespread [12]. Such

limitations can be overcome post-hoc through model fitting and

calibration, but insights from models would be most helpful early

in outbreaks and epidemics, when such data is almost uniformly

unavailable. Standard mathematical models that attempt to

project outbreak duration and final size based on initial

characteristics will predictably overestimate final outbreak size,

since reproduction numbers decline not only due to depletion of

susceptible individuals, but also to spontaneous and planned

control activities and behaviours [1,13,14].

Here we propose a simple phenomenological model derived

from observations that estimates of the basic reproduction number

R0 fail to accurately project the contours of outbreaks when

control interventions are put into place, and in a manner that

cannot be attributed simply to misspecification of depletion of

susceptible individuals. We propose that this simple model could
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find application early in the course of an outbreak for provision of

credible and easily interpreted projections on outbreak timing,

control, and final size.

Methods

Model development
The study was approved by the Research Ethics Board,

University of Toronto. The Incidence Decay and Exponential

Adjustment (IDEA) model is based on concept of the basic

reproduction number, R0, defined by Vynnycky and White as ‘‘the

(average) number of successful transmissions per infected person’’

[11] when an infected person first enters a completely susceptible

population [11,15]. The rate of growth of an epidemic is a

function of both R0 and the average serial interval, which is

defined as the time between symptoms developing in an index case

and symptoms developing in a secondary case [11,15]. We use a

symptom-based interval so that the IDEA model is applicable in

situations where microbiological or serological diagnosis is not

available. Early in an outbreak or epidemic, incident case counts

(I) in each serial interval t may be defined as:

I~Rt
0 ð1:0Þ

The basic reproduction number thus describes initial exponen-

tial growth of an outbreak or epidemic. As this process continues,

the effective reproduction number R is often defined as R0 x S/N,

where S/N is the proportion of the population that remains

susceptible to infection (defined as S = number of susceptibles

divided by N = total population size), and the decline in R with

time results in ultimate termination of the epidemic. However,

many outbreaks rapidly dampen after a short period of time, in a

manner that cannot be attributed to a decline in susceptibles

[1,13,14,16]. A potential mechanism driving decline in epidemics

in the presence of susceptibles is spontaneous or planned reduction

in the components of R0 itself (disease duration, contact rate, and

infectiousness of cases) either because of public health interven-

tions, or due to concern about disease among members of the

public. As a decline in R for this reason is unlikely to be estimable

in real time in the context of an outbreak, we propose that control

be modeled empirically in a time-varying manner analogous to a

financial discounting function. The impact of this discounting or

dampening factor on case counts may be expressed empirically as:

I~
R0

1zdð Þt
� �t

ð2:0Þ

where d is a discount factor. The model may be fitted to available

outbreak data when case counts are aggregated to reflect likely

generation times, and can be readily calculated using information

on latent and infectious periods, which are available for many

pathogens of public health importance [17], or estimated

empirically for novel pathogens [1,18].

Model Properties
In order to more fully understand the model’s performance

based on varying disease and disease control characteristics, we

created a difference equation model with discrete time steps, each

representing a single disease generation. The model was specified

as follows:

Stz1~St{RetIt ð3:0Þ

Itz1~RetIt ð3:1Þ

Rtz1~RtzIt ð3:2Þ

Here S is the number of susceptibles in the population, I is the

number of infectives, and R is the number of immune individuals.

The total population size N = S+I+R. Ret is the time varying

effective reproductive number: the number of new infectious cases

in a given generation created by each infective individual in the

last generation. Ret is a function of the basic reproductive number,

R0. Typically, Ret is expressed as R0St/N but such a formulation

fails to account for control activities and dynamic changes in

population behavior that may reduce transmissibility of infection.

We defined Ret as: Ret = R0 kt St/N where k is a function of

time and represents the proportionate reduction of risk of

transmission via control activities. kt is defined as the relative risk

of disease transmission (RR) raised to some power, such that kt =

RRx. Here x is some exponential function of t such that x = tn and

n is an integer . = 0. We refer to n as the ‘‘order’’ of control. For

0th order control, the impact of control does not change over time,

and Re is simply reduced by a constant fraction throughout the

epidemic. For first order control, disease risk is reduced in a

manner that accelerates with time; second and third order control

represent ‘‘accelerating acceleration of control’’, and so on.

We used this simple difference equation model to evaluate the

fit of the IDEA model to simulated epidemics under different

assumptions about infectiousness (R0), varying orders of control,

under-reporting of cases, and multiple waves of infection. Models

were fit by minimizing root-mean-squared differences (RMSD)

between generation-specific case counts by adjustment of the R0

and d parameters of the IDEA model. When evaluating the

performance of the IDEA model as applied to an SIR difference

model under different assumptions about the order of k, we

normalized RMSD by dividing by total case counts, as higher

order control resulted in smaller epidemics (and consequently

smaller RMSD).

Figure 1. Model fits and ‘‘order of control’’. Relationship between
final-size-normalized root-mean squared differences (RMSD, Y-axis)
between SIR model outputs and IDEA model fits, for R0 ranging from
1.5 to 7 (legend), with variation in order of control in SIR models (X-axis).
It can be seen that for all R0 best-fits are achieved with first order
control. Model fits were however better with low R0 simulations than
with higher R0 simulations.
doi:10.1371/journal.pone.0083622.g001

Nearcasting Epidemics
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In addition to generating empirical estimates of R0 and d

parameters via fitting, the model can be manipulated algebraically

to generate estimates of tmax, the generation where the number of

new cases is ,1, such that the outbreak is effectively over.

Multiplication of tmax by serial interval duration in calendar time

provides an approximate estimate of outbreak duration. By

manipulating [2.0] it can be seen that:

tmax§
lnR0

ln 1zdð Þ ð4:0Þ

Integration of [2.0] over t also provides a complex expression

which predicts total outbreak size, such that:

Itotal~

ðt~?

t~0

R0

1zdð Þt
� �t

dt ð4:1Þ

Itotal~

exp
ln Roð Þ2

4ln 1zdð Þ

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ln 1zdð Þ

r
2

.

erf x{mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1zdð Þ

p
{erf {mð Þ

ffiffiffiffi
ln
p

1zdð Þ
h i ð4:1:1Þ

Where

m~
ln R0ð Þ

2ln 1zdð Þ ð4:1:2Þ

Here erf is the so-called ‘‘error function’’.

Model Application
To test the ability of the model to describe simple epidemic

dynamics in an actual outbreak, we applied the model to an

outbreak of pandemic influenza A (H1N1) from the territory of

Nunavut, Canada, using an empirically derived serial interval of

5 days [18]. Serial intervals may not be constant throughout

outbreaks [19,20] but are assumed to be nearly constant for the

purposes of this model. The model was fitted to empirical case

counts by minimizing sum-of-squares differences between model-

derived and empirical case counts.

We obtained the daily number of laboratory-confirmed cases of

pandemic H1N1 influenza (in which the cases were reported based

on the earliest date of symptom onset, initial care, specimen

collection, hospital admission, or ICU admission) for each

community under study. A laboratory-confirmed case was

reported as an individual with influenza-like illness or severe

respiratory illness who tested positive for pandemic H1N1

influenza A virus by real-time reverse-transcriptase PCR (RT-

PCR) or viral culture as is typical for Canadian influenza

surveillance. As such, cases likely represent a subset of total true

influenza cases [21,22]. These data were provided by the Nunavut

Department of Health and Social Services (HSS) and their use in

this study was been approved by the Nunavut Chief Medical

Officer of Health (Dr. Geraldine Osborne) and Michael Ruta

(Territorial Epidemiologist) in 2009. No identifying data regarding

individual cases was shared with the research team or used for

subsequent analyses. All data included in the dataset used for

model evaluation were aggregate, daily case counts for de-

identified Nunavut communities. As a result, these data were not

deemed protected health information by the territory of Nunavut

and therefore, no patient consent was deemed necessary.

Cases were normalized to the first day of the outbreak (day 1).

The definition of an outbreak was based on the Ontario Ministry

of Health and Long Term Care (MOHLTC) guidelines [23]. In

this instance, two cases are considered unrelated if they are

separated by more than the sum of the incubation period and the

period of communicability for the causative agent, which is 6 days

for pandemic influenza A (H1N1). Data points which could not be

considered part of the same outbreak (more than 6 days apart) and

all outbreaks less than three serial intervals (15 days) were

excluded from the analysis. It was assumed that short outbreaks

Figure 2. IDEA model fits for low R0 epidemics. Comparison of prevalent infections and cumulative infections from data generated using the
SIR difference equation model described in the text (gray curves), and an IDEA model fitted to the first four generations of the simulated SIR epidemic
(dashed curves). The true R0 used in the SIR model was 3.0. It can be seen that the IDEA model projections reproduce future case counts in the SIR
model almost perfectly.
doi:10.1371/journal.pone.0083622.g002

Nearcasting Epidemics
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(less than 15 days for pandemic influenza A (H1N1)) would

essentially be over by the time an effective and intensive public

health response was mobilized.

Simulations were performed using the Berkeley Madonna

dynamic systems modeling package (University of California,

Berkeley; http://www.berkeleymadonna.com), and model fits for

Nunavut data were performed using the ‘‘Solver’’ application for

Microsoft Excel (Frontline Systems, Incline Village, Nevada;

http://www.solver.com).

Results

Simulations
Normalized sum of squares fits of the IDEA model to simulated

data were best with first order control (i.e., k = RRt), and were

better for systems with low or moderate R0 (i.e., R0, = 5) than

those with higher R0 (Figure 1). Model projections of final

epidemic sizes were extremely accurate for a range of R0 values;

however, as R0 increased beyond 5.5, model projected end dates

for epidemics were later than those seen in simulated data

(Figure A in File S1).

For systems with low or moderate R0, and assuming first order

control, stable parameters were identified for the IDEA model

within 3–4 generations, and the use of these parameter values

accurately projected the full extent of the epidemic curve

(Figure 2) in a manner that made IDEA model projections and

simulated data indistinguishable. Empiric best-fit values for the

‘‘discount parameter’’ d were approximately 0.054 or 0.055 for all

low or moderate R0 models. Best-fit R0 values identified for the

IDEA model tended to be slightly higher than true R0 values, and

the proportionate degree of over-estimation increased as the true

R0 increased.

In simulated epidemics with high R0 initial convergence

occurred rapidly as the epidemic grew, with best-fit values of d

approximately 0.054 or 0.055, and accurate estimation of true R0

values, in approximately 4 generations. However as the simulated

epidemic peak occurred, best-fit R0 estimates, and d estimates for

the IDEA model both increased sharply diverging from initial

estimates and, allowing the IDEA model to reproduce epidemic

peaks and subsequent declines (Figure 3 and Figures B and C
in File S1). For high R0 systems, R0 estimates obtained via fitting

after the epidemic had peaked were far higher than true R0 values

and than values estimated prior to peaks.

Under-reporting of cases is expected to occur for a variety of

diseases of public health importance; we evaluated IDEA fits to

SIR model outputs where increasing fractions of cases were

unobserved and consequently unavailable for fitting. In fact, we

found parameter estimates and final-size-normalized RMSD

model fits to be quite stable as long as case reporting fractions

exceeded 5% (Figures D, E, and F in File S1); IDEA model

fits became unstable only with low absolute numbers of reported

cases. We evaluated the impact of multi-wave epidemics on IDEA

model fitting, and found that while the structure of the IDEA

model made it difficult to fit to multi-wave epidemics, an

important indicator of the emergence of a new wave of infection

was an increasing gap between sequential best-fit values of the

Figure 3. IDEA model fits for higher R0 epidemics. Concordance between simulated data from an SIR difference model for a higher-R0 system
(R0 = 6) (solid gray curves) and IDEA fits based on early (T , = 10) generations (gray dashed curves), and based on fits from generation 15 onwards
(black dashed curves). Prevalent infections are shown in the left hand panel while cumulative infections are shown on the right. Fits from generations
prior to the epidemic peak (T, = 10) reproduce the initial growth of the epidemic well, and also provide accurate estimates of the true R0 (R0,6.34,
d = 0.054); however, these parameters result in IDEA projections of far larger epidemics than actually occur. Once IDEA models are fit using
generations that include and follow the epidemic peak (i.e., T. = 15) projections of both prevalent and cumulative infections become fairly accurate
(black dashed curves); however, estimated R0 is much larger than the true value (R0,7.56) and the best-fit value for d increases as well (from 0.054 to
0.069).
doi:10.1371/journal.pone.0083622.g003

Nearcasting Epidemics
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Figure 4. Model behaviour. The overall behaviour of the IDEA model based on a range of possible Ro and d values (a) the variation of tmax or
outbreak duration as a function of Ro and d (b) the variation of Itotal or the final cumulative incidence as a function of R0 and d.
doi:10.1371/journal.pone.0083622.g004

Figure 5. Pandemic H1N1 case counts modeled with the IDEA Model. The IDEA model applied to an outbreak of influenza A (H1N1) in
Nunavut, Canada, with the model parameters R0, d, tmax, Itotal and Dd. (a) the early stages of the outbreak, with largely exponential growth, (b)
dampened growth with reduced projected tmax values by serial interval 7, (c) a second wave in the outbreak and (d) the fit of the model at 24 out of
27 generations.
doi:10.1371/journal.pone.0083622.g005

Nearcasting Epidemics
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discount factor d as time series used for fitting were extended to

include additional waves (Figure G in File S1). We term this

indicator Dd, such that

Dd~di{di{1: ð4:2Þ

Many outbreaks are characterized by sequential ‘‘waves’’ that

may either signify the impact of seasonal or behavioural influences

on disease transmission [24], signify the movement of epidemics

into previously unaffected sub-populations [25], or (as in the case

of SARS in Canada) may signify failure of control measures [26].

As the IDEA model appeared to provide a reasonable means of

modeling epidemics, especially for R0, = 5, we evaluated the

expected relationship between R0, d, tmax and Itotal mathemat-

ically, using formulae 4.0 and 4.1 for a range of possible R0 and d

values. The IDEA model generates an estimate of R0 and d at

each point in an outbreak, and it is then possible to rapidly project

the estimated duration and total cases of the outbreak. These

results are presented graphically in Figure 4.

Application
The Nunavut, Canada data illustrate the behaviour of the

model in a real outbreak situation (Figure 5). This outbreak took

place over 27 serial intervals and included 950 cases. The

population of Nunavut in 2011 was 31,906 [27]. Initially, the

outbreak is unable to gain momentum, as shown in Figure 5a by

the curve predicted when two serial intervals of data are known

(SI = 2). Once four serial intervals are known, however, the

outbreak grows exponentially and the model (SI = 4) projects a

tmax, or outbreak duration, of 74 serial intervals. By SI = 6 (the

model fit with 6 serial intervals), the projected tmax is drastically

dampened to 15 generations. In these early stages of the outbreak,

the IDEA model is able to rapidly determine whether the outbreak

is growing or stabilizing, based on the change in tmax and the

change in Dd.

In later stages of the outbreak (shown in Figures 5b, c and d),

the model continues to provide a rapid analysis of the immediate

direction of the outbreak. Figure 5c shows a key inflection point

at which the outbreak suddenly began growing again. Such

biphasic outbreaks can occur for various reasons, such as the end

of school closure periods, the arrival of a newly infected individual

into a community or a reduction in a public health intervention

such as hand sanitizer provision. The model illustrates the new

projection in the outbreak behavior as such events occur.

Estimating the impact of public health interactions and the

degree of control over an outbreak is a considerable challenge

while an outbreak is ongoing. As a result, the IDEA model was

used to compare actual versus projected cases as a means of

judging whether the outbreak was under control. Figure 6a
shows the Nunavut outbreak with the actual cases of influenza on

the 6 axis and the cases projected by IDEA model on the y axis.

Each point on the y axis represents the model fitted to i

generations and applied to i+1 generations. On average,

projections to the next generation are correct within 20.3%

[95% credible interval 11.8, 28.8]. In Figure 6a we propose that

when y.x, the model is projecting excess cases, implying that at

this snapshot in the outbreak, the current generation had slowed

its growth. Similarly, as the outbreak shifts to the y,x side of the

line, the model is projecting a total case count lower than the

actual outbreak, implying that the outbreak is uncontrolled and

that the current generation has exceeded the model’s projection.

Figure 6b shows the trend in percent error as the outbreak

progresses and demonstrates that after the seventh serial interval

the percent error remains below 22%.

Discussion

With the development of the IDEA model, we have demon-

strated a simple, versatile model for emerging communicable

disease outbreaks that has the capacity to provide short term

projections of outbreak growth and contraction. To the best of our

knowledge, this is the first application of this particular descriptor

to epidemic growth, though other fitting methods of varying

complexity are well described [25,28,29,30]. However, Wu and

Huberman have previously described an approach similar to that

outlined above to describe the growth and decay of interest in

news items on the Internet, with exponential growth countered by

a ‘‘discount factor’’ that damps the ‘‘reproductive number’’ for

page sharing as a function of time [31]. We found that best-fit

projections for the IDEA model for disease dynamic systems with

low or intermediate R0 were exceedingly good, with parameters

derived within 3–4 generations able to project the full extent of

Figure 6. Utility of the IDEA model in evaluating the impact of public health and social or environmental factors on outbreak
behaviour. (a) The utility of the IDEA model in evaluating the level of control over the outbreak. Each projection is based on the outbreak up to i
intervals, projected to the i+1th interval. With the exception of serial intervals 6 and 7 illustrated in the figure, the projected case counts were less than
the actual case counts implying that at each serial interval the outbreak grew more than would be expected by its previous course. During this
outbreak, the model underestimated the actual number of cases except during two serial intervals. (b) Percent error between the projection for the
next generation and actual case counts according to generation.
doi:10.1371/journal.pone.0083622.g006
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simulated epidemics with remarkable accuracy. If validated, the

implications of such a finding may be profound (e.g., the ability to

project, with a high degree of accuracy, the final size and duration

of a seasonal influenza outbreak within 2 weeks of onset).

The application of the model to simulated epidemics with

higher R0 (.5) was more challenging, as best-fit parameters

derived from early outbreak generations, while close to true R0

values, resulted in epidemic curves that dramatically overshot true

epidemics (a difficulty similar to that often encountered when

attempting to fit an SIR model to early outbreak data).

Nonetheless, the application of this technique to high R0

epidemics may be useful for a variety of reasons: first, early (pre-

epidemic peak) IDEA estimates of R0 closely matched true R0

values in simulations, suggesting that the use of this technique for

early R0 estimation when novel diseases emerge may be

reasonable regardless of whether R0 is low or high. Furthermore,

the Dd metric, and the abrupt shift in R0 estimates that occurs with

the epidemic peak would provide a helpful signal to epidemiol-

ogists that the epidemic is peaking or changing. Finally, as

parameter estimates stabilize again for high R0 systems, the IDEA

model remains a useful tool for projecting the total size and

duration of an outbreak. It is also possible that challenges in fitting

the IDEA model to simulated data represent not a limitation of the

IDEA model, but are rather an artefact of our use of SIR

difference equation models, which tend to peak and collapse

suddenly with at high R0.

The utility of this model was evaluated further with data from a

large outbreak of pandemic influenza A (H1N1) and the potential

of the IDEA model to begin to understand the impact of public

health interventions and structural and human behavioural factors

in outbreaks was also explored. Although the IDEA model can

provide no hypothesis about which factors caused a sudden

acceleration or deceleration of the outbreak, it provides a fast

barometer of the situation, based on all known cases.

Further testing and development in real-time outbreak situa-

tions will be needed before the IDEA model can be used in public

health interventions for nearcasting (short term outbreak projec-

tion) and to assess the impact of public health interventions and to

separate the impact of such interventions from spontaneous

behavioural changes. The model’s main asset is its simplicity and

the fact that it does not require consideration of population

immune status for parameterization. The model is constructed

entirely on a case count time series that is likely to be available to

public health professionals charged with outbreak control. IDEA

requires no sophisticated knowledge of mathematics or computing,

and can be realized using commonly available spreadsheet

programs. The model’s outputs, which include both cumulative

case counts under best-fit conditions, and cumulative outbreak

duration, would be valuable to front-line public health profession-

als seeking to budget material and human resources needed to see

an outbreak through to its conclusion. This simplicity may make

the model especially useful in resource-limited settings where rapid

assessment of both outbreak behaviour, and change in outbreak

behaviour is needed.

Nevertheless, the simplicity of the IDEA model is also a

limitation, as it cannot provide insight into the fundamental

workings of outbreaks. The factors driving contraction of growth

are non-specific and could include the impact of public health

interventions, changes in population behaviour, saturation of sub-

populations with infection, and changes in the physical environ-

ment that speed or slow epidemic spread (e.g., rainfall or change of

season).

In situations where limited public health resources must be

allocated to one region at the expense of another, this model may

aid in deciding which region is experiencing an outbreak that is

growing more rapidly, and which region has stabilized, while using

minimal data. Moreover, the model may aid in the assessment of

public health interventions. If a drastic intervention is implement-

ed, such as the closing of schools, the model may be able to rapidly

identify (by means of a sudden reduction in the expected length of

the outbreak tmax) that the intervention is having a positive impact

on slowing the outbreak.

Our application of this simple model to influenza outbreak data

in an isolated Canadian population has been encouraging, and it is

our hope that other groups will assess the usefulness of this model

in the context of other diseases and demographic groups. We also

hope to translate knowledge regarding this model to front-line

public health professionals who may be able to assess its usefulness

in real-time. Given the ceaseless emergence of novel communi-

cable disease threats that challenge current public health

professionals, we expect no shortage of opportunities for such

applications.

Supporting Information

File S1 Combined file of supporting figures. Figure A:
IDEA estimates of total epidemic size and duration. The

figure plots percent deviation of the IDEA model from simulated

epidemic size data (gray dashed curve) and epidemic duration data

(black dashed curve) with increasing basic reproductive number

(R0). Across a broad range of values of R0, final size estimates from

the IDEA model remained accurate. However, when R0 exceeded

a threshold of ,6, there was an increasing tendency for the IDEA

model to project the epidemic to end later than was in fact the

case. This may represent a limitation of the IDEA model, but may

also be an artifact of the sudden ‘‘collapse’’ of epidemics with high

R0 in SIR simulations. Figure B: IDEA estimates of R0 and d
by generations of data available. Estimated values of R0

derived via IDEA model fits, according to generations of data

available, with varying R0, from SIR model simulations with first

order control. True R0 values are presented in the legend; fitted

R0 estimates are presented on the Y-axis. It can be seen for

R0, = 5, best-fit R0 values and true R0 values agree closely. High

R0 models demonstrate similar concordance prior to epidemic

peaks (which occur for high R0 models in generations highlighted

by the shaded rectangle). However, in order to reproduce peaks

and subsequent declines, IDEA model fits to simulated epidemic

curves required higher R0 values than true R0 values, or R0

estimates obtained prior to the epidemic peak. Figure C: IDEA
estimates of R0 and d by generations of data available.
Estimated values of the ‘‘discount factor’’ d derived via IDEA

model fits, according to generations of data available, with varying

R0, from SIR model simulations with first order control. True R0

values are presented in the legend; Estimates of d are presented on

the Y-axis. It can be seen for R0 , = 5, d stabilizes with a value of

around 0.054, in fewer than 5 generations and remains stable.

High R0 models demonstrate similar stability in d (and empiric

values of d) prior to epidemic peaks (which occur for high R0

models in generations highlighted by the shaded rectangle).

However, in order to reproduce peaks and subsequent declines,

IDEA model fits to simulated epidemic curves required extremely

high d values; the greater the true R0 the higher the value of d

required to reproduce the epidemic curve in its totality. Figure D:
Impact of under-reporting. Impact of under-reporting of

cases generated using SIR difference model on IDEA model fits, as

assessed with final-size-normalized root-mean-squared differences

(RMSD). It can be seen that over a range of simulated R0 utilized

in the SIR model, fits remained good except where under-
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reporting resulted in extremely small absolute case numbers. This

is reflected in the fact that low-R0 fits are more sensitive to under-

reporting than high R0 fits. The legend presents R0 values used in

SIR models. Figure E: Impact of under-reporting. Impact of

under-reporting of cases generated using SIR difference model on

best-fit estimates of the discount factor d generated using the

IDEA model. Best-fit values of d, based on a complete 30

generation time series, are robust in the face of a wide range of

under-reporting but become unstable when very small absolute

numbers of cases are reported. Figure F: Impact of under-
reporting. Impact of under-reporting of cases generated using

SIR difference model on best-fit estimates of R0 generated using

the IDEA model. Best-fit values of R0 values are fairly stable;

notably, as under-reporting increases, the best estimate of R0 for

the high-R0 SIR outputs actually becomes a progressively better

approximation of the true R0. Figure G: IDEA fits to biphasic
epidemic. A biphasic epidemic was simulated using the SIR

difference model with an R0 of 3, as described in the text (solid

black curve). IDEA model fits, based on early generations (pale

gray curve, for generations up to generation 16, prior to the onset

of the second wave) and on all generations up to and including the

peak of the second wave (dashed curve) are superimposed on the

biphasic epidemic curve. The IDEA model’s structure makes

fitting to multiple peaks impossible; the best-fit IDEA model is

based on parameters that create a single peak epidemic with a

duration similar to that seen with the biphasic epidemic. Figure

H: IDEA fits to biphasic epidemic. Best estimates of R0 and

d for a biphasic epidemic, according to the number of generations

available for model fitting. It can be seen that fits are perturbed by

the onset of a second peak. The difference in d between sequential

fits increases with the second wave (denoted by the shaded area),

such that increases in this delta d parameter represent a potentially

useful indicator of the onset of a second epidemic wave.

(PPTX)
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